Joint ICTP-IAEA Workshop on Vulnerability of Energy Systems to Climate Change and Extreme Events

19 - 23 April 2010

Considerations of climate related policies and vulnerability of Estonian electricity and heat system development

Marilis Lehtveer

University of Tartu

Tartu

Estonia
Considerations of Climate Related Policies and Vulnerability of Estonian Electricity and Heat System Development

Mariliis Lehtveer
University of Tartu
Estonia
Agenda

• Overview of Estonia’s electricity and heat market
• Current policies and considerations of climate change related events
• Examples of possible climate related events
• Future options
Estonia

- Small Nordic country: population 1.34 million, area 45,227 km²
- The average population intensity: 30 persons per km²
- The average temperature in the summer months is typically 15 – 18°C; in winter, –4 – –5°C
- Domestic energy resources: oil shale and its products, peat, wood or other biomass, wind, hydro
- Imported resources: oil products, gas, coal

Electricity market

- Net installed capacity in 2008: 2362 MW
- Production in 2008: 9498 GWh
- Consumption in 2008: 7427 GWh
- Losses in 2008: 10.7%
- The difference was exported to Latvia and Finland
- Most of the electricity is produced by two oil shale fuelled power plants located in Northeast Estonia

Electricity production in 2008 according fuel (GWh)

Source: Statistics Estonia
Electricity grid

- Estonia’s grid is well connected to and also synchronized with the networks of Latvia, Lithuania, Belarus and Russia
- Sea cable Estlink between Estonia and Finland since 2006 – 350MW
- Another sea cable planned – 635MW

Source: Eesti Energia RAS
Heat market

• Production in 2008: 9240 GWh
• Consumption in 2008: 8284 GWh
• Losses in 2008: 10.3%
• Five CHPs with capacities varying from 23.5 to 100 MW
• Large number of small boilers – 81% <1 MW in capacity
• Most common fuels are gas and wood in boilers and oil shale and gas in CHPs
• Currently there is more capacity installed for heat production than real need

Source: Statistics Estonia
The energy policy up to this point

- Based on energy independence:
 - No strict CO$_2$ taxes (Kyoto protocol has no effect on Estonia)
 - Economic and social security
 - Existing capacities
 - Assumes little fluctuation in peak demand growth
 - Trying to decrease the share of gas due to security risks involving Russia as the sole supplier
Current state of analyses about possible effects of climate change related extreme events

- No impact expected in short term
- Hydro and wind plants are regarded as most vulnerable, but their share is insignificant
- Climate change caused extreme events are not considered in energy development plan nor any other long term plan
- Only possible climate change related threat considered is CO₂ tax
The model for Estonia's heat and electricity supply

- Estonian heat and electricity supply model was created with MESSAGE
- Modelling period 2007-2040, with results reported till 2035
- Entire country is modelled as a single homogeneous region
- Demand of electricity is expected to increase 1.5% annually, demand of heat is expected to stay same.
- Discount rate 5%, all costs in 2008 prices
- Imported fuels prices based on Energy Outlook 2009, investment and operation costs on IEA’s *Projected costs of Generating Electricity, 2010* edition
- CHPs and PPs modelled separately, boilers aggregated by fuel
- CO$_2$ tax of 20 Euros per tonne starting from 2013 was assumed for base cases
Business-as-usual
Electricity production by fuel

![Graph showing electricity production by fuel from 2008 to 2035. The x-axis represents the years from 2008 to 2035, and the y-axis represents the electricity production in MW/yr. The graph includes data for various fuels such as Oil shale, Gas, Coal, HFO, Wood, Peat, Other biomass, Nuclear, Wind, and Hydro.]
Heat production by fuel
Estimated costs

- Estimated discounted cost of CO$_2$ emissions from 2008-2035 with tax 20 Euros per tonne starting from 2013 – 2.59 billion Euros
- Estimated with tax 45 Euros per tonne – 5.82 billion Euros
Demand shocks

- Current system can accommodate winter demand increases up to 50%.
- Uncertain economic profitability makes building excess capacity in future questionable.
- Imports during demand shocks caused by weather are unlikely, because whole region will experience the same shock.
Demand shock at 2012
Conclusions

• Continuing current policy can incur considerable costs
• Only economic indicators are not enough to guarantee the supply of electricity and heat in future
Other technology options for the future

- Increase the share of renewable energy
 + Low CO\textsubscript{2} emissions
 - Increasing vulnerability to weather related extreme events as main available renewable resource is wind
 - Need to build extra capacity for stabilising windmills
Wind distribution in Estonia
Other technology options for the future

- Nuclear power
 + Low CO$_2$ emissions, better capability to deal with demand shocks
 - High investment cost
 - No legislative framework yet
Thank you for your attention!