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Why solar energy matters
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Source: Pasternak et et al, 2000



Why solar energy matters
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Why solar energy matters
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Why solar energy matters
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Why solar energy matters
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Current and future prospects
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Average producer cost of electricity, € cents / kWh
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Current and future prospects

Posted on April 9, 2010 by David Appleyard, Associate Editor

Parabolic Growth

CSP Moves Into the Mainstream

London, UK [Renewable Energy World Magazine]

Some 150 years after the French mathematician Augustin M
solar energy, the father of CSP technology would no doubt b
Mouchot's vision is at last becoming a reality, given the evid
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Posted on April 16, 2010 by Graham Jesmer, Staff Writer

US Solar Sees 38% Growth in PV Capacity in 2009

Washington, D.C., United States [RenewableEnergyWorld.com]

The Sclar Energy Industries Association (SEIA) this week released the 2009 U.5. Solar Industry Year in Review,
finding another year of strong growth despite the economic recession. Overall U 5. solar electric capacity
increased by 37 percent (photovoltaic and concentrating solar power combined). This was driven primarily by
strong demand in the residential and utility-scale markets, resulting in a 36 percent increase over 2008 in overall

revenue.

Annual Grid-Tied PV Capacity Additions
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& companies keen to expand on their renewable portfolios, but
also original equipment manufacturers which have
traditionally supplied the utility market.

Certainly, one of the clearest signs that the CSP sector is

maturing came from the autumn 2009 acquisition of CSP
technelogy company Sclel by Germany engineering
colossus Siemens.

Siemens acquired the remaining 63% stake in Israel-based
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Grid-tied photovoltaic installations grew by 38
percent. Residential grid-tied PV solar installations
doubled frem 78 megawatts (MW) to 156 MWV while
nen-residential grid-tied PV solar installations grew 2
percent less than in 2008. The utility market tripled
their cumulative grid-tied PV capacity from 22 MW to
66 MWW,

Cwer that same time period, solar water heating
shipments grew by 10 percent over 2008 while solar
pool heating growth was 10 percent less than 2008
growth, reflecting construction and housing declines.

On a call to discuss the results, Freeman Ford,
founder of FAFCO said that while the U.5. solar
thermal is seeing much larger growth than in recent
years, the market lags behind the rest of the world.



Technical aspects leading to vulnerability: PV
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Technical aspects leading to vulnerability: PV
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Technical aspects leading to vulnerability: PV
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Technical aspects leading to vulnerability: PV

Current standard:
withstand 11 impacts
of 25 mm hailstones




Changes in climate extremes

TORRO Scale

Level Intensity category Typical hail diameter Typical damage impacts
(mm]*

HO  True (hard) hail 5-9 (pea) No noticeable damage

H1 Potentially damaging
HZ  Significant, damaging
H3 Severe

10-15 (large pea, mothball)
16-20 [marble, grape)
21-30 (large marble, walnut)

H4 &
H5 Destructive

31-40 (pigeon's egg, squash ball)
41-50 (golf ball, pullet's egg)

HE g 51-60 (hen's egg)
H7 g 61-75 {tennis ball=cricket ball)
HE - 76-90 (large orange>small soft

ball)
H9  Super hailstorms 91-110 ( soft ball, grapefruit)

HI10 " =110 (melon)

Slight general damage to plants, crops

Significant damage to fruit, crops, vegetation

Severe damage to fruit and crops, damage to glass and plastic
structures, paint and wood scored

Widespread glass damage, vehicle bodywork damage
Wholesale destruction of glass, damage to tiled roofs, significant
risk of injuries

Bodywork of grounded aircraft dented, brick walls pitted

Severe roof damage, risk of serious injuries

{Severest recorded in the British Isles) Severe damage to aircraft
bodywork

Extensive structural damage. Risk of severe or even fatal injuries
to persons caught in the open

L

Source: Webb et a., 2009



Technical aspects leading to vulnerability: thermal
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Technical aspects leading to vulnerability: thermal

Flat plate

Evacuated tube

Hailstorm vulnerability low (up to 35mm)
Up to 50% loss of efficiency at very low temperatures

Hailstorm vulnerability higher (25mm destroys one third)
20% loss of efficiency at very low temperatures



Technical aspects leading to vulnerability: CSP
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Technical aspects leading to vulnerability: CSP

Temperature and power output
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Technical aspects leading to vulnerability: CSP




Changes in climate extremes

1951 — 2003 1979 — 2003
Cold nights —1.17 +/-0.20 — 124 +/-0.44
Warm nights 1.43 +/-0.42 2.60 +/- 081
Cold days —0.63 +/-0.16 —091 +/-0.48
Warm days 0.71 +/—0.35 1.74 +/—0.72

Source: IPCC



std. dev.

Changes in climate extremes

Heat waves
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Changes in climate extremes
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Changes in climate extremes
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Source: Webb et a., 2009



Changes in climate extremes

Number of storms over Great Britain, H2+
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Changes in climate extremes

" Number of storms over Great Britain, H5+
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Changes in climate extremes
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* 26 - 46% increase in hailstorm damage in the Netherlands associated
with a 2°C temperature increase (Botzen et al., 2009)

* No significant change in hailstorm risk for Australia (Niall & Walsh, 2005)



Changes in climate extremes

* Increase in the intensity of tropical cyclones

* Increase in the proportion of rainfall
occurring during high rainfall events

* Mixed findings on the increase of wind
speed of extra-tropical storms



Changes in climate extremes

Changes in cloud cover by 2100
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Discussion

Thermal heating

PV

CSP

Furture trend

Hear waves

Cold waves

Hail

Strong wind

Prolonged
cloudiness

Reduced output

Potential material
damage

Material damage

from debris, and
need for cleaning

Reduced output

Reduced output
and potential
material damage

Potential
material damage

Material damage
from debris, and
need for
cleaning

Reduced output

Reduced output
due to cooling
problems

Reduced output,
material damage,
and need for
cleaning

Reduced or
eliminated output

Increase

Decrease

No clear trend

Potential increase,
but regionally
variable

Increase at high
latitudes, decrease
at low latitudes




