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Nuclear Scattering and Reactions

• Elastic scattering – (n, n),  (p, p),  (α ,α), ...
• Inelastic Scattering -- (n, n′),  (p, p′),  (α ,α′), ...
• Knockout/emission – (n, 2n), (n, np), (p, pn), (p, 2p), ... 
• Stripping – (d, p), (d, n), (t, d), ...
• Pickup – (p, d), (n, d), (d, t), ...
• Charge exchange – (n,p), (p,n), (t,3He), (3He, t), ...
• Fission – (n,f), (p,f), (α,f), ...

Depending on the incident energy and the combination of 
projectile and target, some or many of these reactions can 
occur in a nuclear collision.

We will find that they often occur through two very different 
mechanisms – a fast, direct one and a slower, composite 
nucleus one.



Conservation laws

• Charge and nucleon number, Z and A -- 56Fe (p, n) 56Co
• Energy, E – 238U(n,n ′)238U* (Ex= 0.045 MeV)
• Linear momentum,     – thresholds, recoil
• Angular momentum and parity,     and  π --

p�

J
�

d dσ Ω

Conservation laws are important in determining the 
basic characteristics of nuclear reactions.

Parity is not conserved in weak interactions, e.g. in β decay 
and electron conversion, but we will not consider these 
processes here.



Experimental Setup for Studying Scattering
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•Distance from accelerator to target and from target to detector on the 
order of a meter or more.

•Cross sectional area of beam A on the order of mm2.

•Target thickness t on the order of μm or more.

•Beam intensity – n0 (particles/s) – varies greatly, from about 105 to 
1013

•In target, atomic dimension on the order of 10-10 m and nuclear 
dimension on the order of 10-15 m.



The Experimental Cross Section
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( )( )0

particle intensity entering detector in solid angle  ( , )
(incident intensity/area) * (no. of target particles in beam) / tar

d n dd
n A tA

θ ϕσ
ρ

Ω Ω= =

• A – cross sectional area of beam

• n0 – incident beam intensity

• ρtar – target particle density

• t – target thickness 

• n(θ,ϕ)dΩ -- particle intensity (part./s) entering detector of solid angle dΩ

The differential cross section d
d

σ
Ω

has the units of  area/solid angle.
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b – the impact parameter

- perpendicular distance

between particle trajectory

and center of target
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Assuming no dependence on ϕ, 2 ( )d dbb
d d
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=
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The Classical Cross Section



An example – Hard sphere scattering
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so that
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For 238U, R ≈ 7.5 fm and

R2/4 ≈ 14 fm2 = 140 mb.



Another example – a sticky hard sphere

Now, suppose that a fraction of the incoming particles do not scatter, but 
instead stick to the target. Let us assume, for instance, that the fraction

( ) cos sin
2

P θθ α φ α= =

(which decreases as the collision becomes more grazing) is absorbed by 
the target. 
Decomposition of the differential 
cross section:
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eld R P
d
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Only dσel/dθ is observed as scattered particles.      In the figure, α = 0.4



Integrated cross sections
We can integrate the differential cross sections over angle to obtain

2
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2
tot abs el Rσ σ σ π= + =

The total cross section of πR2 is what we would expect and what we 
would obtain in the simple hard sphere case.

In the general case, when there is a value of the impact parameter 
bmax such that θ(b)=0 for b>bmax, we have

max2 2
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0
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tot
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Attenuation and the total cross section
Both elastic scattering and absorption remove particles from the incident 
beam. The sum of the two – the total cross section – determines how the 
beam is attenuated as it passes through the target.

z

n0 n(z)

From the definition of the 
cross section, we have in any 
dz

( )tot
tar

dn
n z dz

σ
ρ

−=

or
( )tar tot

dn n z
dz

ρ σ= −

( )0( ) exp tar totn z n zρ σ= −

The inverse of the product ρtarσtot
defines the mean free path λ of the 
projectile through the target.

1 tar totλ ρ σ=

For our example of hard scattering 
from U-like spheres, assuming a 
density close to that of  U, we have 

1
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Laboratory and Center-of-mass Coordinates
In order to properly treat the conservation of momentum and energy,  
scattering problems should be analyzed in the center-of-mass frame. 

The basic steps in the transformation to the center-of-mass frame and 
back to the lab one are shown below. 

mP , vPi mT mP , vP mT , vT

mP +mT , vCM

mP +mT, vCM

mT , vT
’

mP , vP
’mP , vPf

mT , vTf

to c.m.
scattering in c.m.

back to 
the lab



Laboratory and Center-of-mass Coordinates - Basics 

The transformation of the scattering angle does not reduce to a simple 
expression. However, its numerical calculation is straightforward.

Two fundamental quantities that result from the transformation are the 
reduced mass μ and the energy Ecm in the center-of-mass frame. In terms 
of the projectile and target masses, mP and mT and the projectile energy in 
the lab frame Elab, these are

P T

P T

m m
m m

μ =
+

and T
cm lab

P T

mE E
m m

=
+

The relative velocity in the c.m. frame is the same as that in the lab frame,

, ,cm rel lab relv v=

From this point on, we will assume that we are using the center-of-mass 
frame, unless otherwise noted.



Waves and particles
We know that the wave-like nature of the scattering particles may be neglected 
only if their wavelength is much smaller than the length scale on which the 
scattering system varies. For nuclear scattering, the appropriate length scale 
would be at most the size of the nucleus and should probably be of the size of 
the nuclear surface – about 0.5 to 1.0 fm.

Comparing the wavelength of a nucleon to a typical nuclear radius, taken to be 
R = 1.25A1/3 (fm), we find that the wavelike nature must be taken into account 
over the entire energy range we will consider – up to about 20 MeV.



The quantum view of scattering
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Far from the scattering center, 
we take the scattering wave 
function to be the sum of a 
plane wave and a scattered 
outgoing spherical wave, 

( ) ( ) .
ikr

ikz er e f
r

ψ θ→ +�

The differential cross section is the 
squared magnitude of the scattering 
amplitude,

2( ) .d f
d

σ θ=
Ω

when r � ∞.

z
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The partial-wave expansion
Neglecting spin, we use conservation of angular momentum to expand the 
wave function in partial waves of the orbital angular momentum,

0

( , ) ( ) (cos ).l l
l

r u r Pψ θ θ
∞

=

=	
The plane wave may be expanded as 
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In analogy with the plane wave, we write
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when r� ∞.



Cross sections
We obtain the elastic cross section by integrating over the differential one,

2 2
2

00

2 ( ) sin (2 1) 1 .el l
l

f d l S
k

π πσ π θ θ θ
∞

=

= = + −	�
We may calculate the absorption cross section by taking into account all of 
the flux entering and leaving the scattering region. Integrating the flux over 
a sphere whose radius tends to infinity, we have 

( )2
2

0

1 (2 1) 1 .abs lS
l

j dS l S
v k

πσ
∞

=

= − ⋅ = + −	�
��

The total cross section takes into account all flux lost from the incident 
plane wave, either by scattering or absorption,

( )2
0

2 (2 1) 1 Re .tot el abs l
l

l S
k
πσ σ σ

∞

=

= + = + −	



Low-energy neutron scattering – a simple example
Because of the Coulomb barrier, only neutral particles can reach the 
nucleus in a low-energy scattering. At extremely low energies, the 
centripetal barrier keeps all but l=0, s-waves away from the nucleus. 
Let us examine hard-sphere scattering in the case of low-energy 
neutron scattering.
Scattering from the hard sphere requires 
that the wave-function vanish at the 
radius of the sphere. The s-wave wave 
function is then

2
0 ( ) ( ).

2
ikr ikR ikrir e e e

kr
ψ − −= −

The S-matrix element is 2
0 .ikRS e=

The elastic cross section is 
22

24 1 .ikR
el

d e
d k

σ πσ π −= = −
Ω

rR

When k�0, the elastic cross 
section tends to a constant,

2
0 4 .el k Rσ π→⎯⎯⎯→

This is 4 times the classical 
cross section.

ψ=0 ψ(r)



Low-energy neutron scattering -- resonances

Although the neutron-nucleus interaction is attractive, its rapid variation at 
the nuclear surface has the same effect on low energy neutrons as a hard-
sphere does– the neutrons are reflected.  Absorption also usually occurs, so
that the total cross section is larger than the elastic one. However, if both 
the elastic scattering and absorption are prompt processes, one would 
expect them to vary slowly with energy. Behavior of this type can be seen 
on the low energy side of the figure.

The cross section of the figure also 
possesses a rapidly varying resonant 
component, a feature common to all 
low-energy neutron-nucleus systems.

The resonant contribution arises from 
scattering  through a quasi-bound 
state (a compound nuclear state) of 
the neutron+nucleus. 



Direct and compound nuclear scattering
At low energies, neutron-nucleus scattering occurs either directly or 
through the quasi-bound compound nucleus states.

Direct scattering Compound nuclear scattering

20 22~ 10 10 st − −Δ − 12 20~ 10 10 st − −Δ −
In a direct scattering, the incident neutron interacts with the average field of 
the nucleus. The duration of the collision is approximately the time it takes the 
neutron to cross the nucleus.

In a compound nuclear scattering, the incident neutron loses energy upon 
colliding with the nucleus and is trapped. After a fairly long interval, enough 
energy is again concentrated on one neutron to allow it to escape. 

E tΔ Δ ≥ �



Formalities - I 

To formally separate the direct and compound nucleu contributions, we 
assume that we can partition the space of states into two components:

P -- containing the continuum states, such as the n + 58Ni ones, and 

Q -- containing the quasi-bound states, such as the ground and excited 
states of 59Ni (and any other states that we don’t want in P). 

We define projection operators, P and Q, onto the subspaces with the 
properties

† †

2 2

,
,

1

P P Q Q
P P Q Q

P Q

= =

= =
+ =

We then decompose the wave function into  Ψ = PΨ + QΨ,  where PΨ is the 
continuum component  and QΨ the quasi-bound component of the wave 
function. 



Formalities - II
Using P and Q, we decompose the Schrödinger equation, (E - H) Ψ = 0,
into coupled equations for the two components of the wave function,

( )
( ) ,

PP PQ

QQ QP

E H P V Q
E H Q V P

− Ψ = Ψ

− Ψ = Ψ
and

where
0 , , etc.,PP PQH PH P PVP V PHQ PVQ≡ + ≡ =

and we have assumed that the contributions of the kinetic energy and 
the target Hamiltonian, both contained in H0, do not couple the P and Q
subspaces.
We can now solve the second equation formally, using an outgoing
wave boundary condition, to obtain QΨ, 

( ) 1( )QQ QPQ E H V P+ −Ψ = − Ψ

and substitute in the first of these to obtain an equation for PΨ alone,
( ) 1( ( ) ) 0,PP PQ QQ QPE H V E H V P+ −− − − Ψ =

and which explicitly contains the direct and compound processes we expect.  



Formalities - III
However, it will be useful for us to follow a more convoluted path here. We 
first solve for the continuum component of the wave function PΨ, 

( ) ( ) 1( ) ,c c PP PQ cP E H V Qφ + + −Ψ = + − Ψ
where the wave function ( )

cφ + satisfies the equation
( )( ) 0,PP cE H φ +− =

with an incoming wave in channel c. When the solution for PΨ is 
substituted in the equation for QΨ, the latter may be rewritten as

( )( ) ,QQ QQ c QP cE H W Q V φ +− − Ψ =
where

( ) 1( ) .QQ QP PP PQW V E H V+ −≡ −

In the last expression, we may decompose the P-subspace propagator as

where P.P. is the principal part. The open channels in the P subspace make 
a negative imaginary contribution to WQQ, leading to poles of the the wave 
function in the lower half of the complex energy plane.

( )

1 . . ( )PP
PPPP

P P i E H
E HE H

πδ+ = − −
−−



Formalities - IV

( )( )QQ QQ c QP cE H W Q V φ +− − Ψ =

( ) ( ) 1( ) ,c c PP PQ cP E H V Qφ + + −Ψ = + − Ψ

If we solve the equation for the Q - subspace component, 
1 ( )( ) ,c QQ QQ QP cQ E H W V φ− +Ψ = − −

we may substitute this in the solution for the P-subspace component,

to immediately obtain,
( ) ( ) 1 1 ( )( ) ( ) .c c PP PQ QQ QQ QP cP E H V E H W Vφ φ+ + − − +Ψ = + − − −

This is a solution for the complete P-subspace wave function in terms of 
pure continuum component       and a compound nucleus component.
The prompt contribution  of VPP to the scattering is not as visible as 
before – it is contained in the  wave function        and in the P-subspace
propagator. The compound nucleus term appears in a modified form, in 
which passage through the continuum is taken into account by the WQQ
term in the Q-subspace propagator.

( )
cφ +

( )
cφ +



Low-energy neutron scattering -- resonances
We may now take the expression for the P - subspace wave function,

( ) ( ) 1 1 ( )( ) ( ) ,c c PP PQ QQ QQ QP cP E H V E H W Vφ φ+ + − − +Ψ = + − − −

and apply it to s-wave neutron scattering, for which,

0 0( ) ( ),
2

ikr ikrir e S e
kr

ψ −= −

outside the range of the interaction. (We continue to neglect the spin of the 
neutron.)
After a bit of work, we can approximate the S-matrix of the P-subspace
wave function in a multi-level Breit-Wigner form (among others) as

( )
0, ,

/ 2
a b a bi

ab ab

g g
S e i

E i
μ μφ φ

μ μ μ

δ
ε

− + � �
= −� �� �− + Γ� �

	

where φa and φb are the initial and final channel phase shifts and gμ c
characterizes the coupling of the compound state μ to the continuum 
channel c, with 
The phase shifts vary slowly with the energy while the resonance sum 
varies quickly.

2 .cc
gμ μΓ =	



Low-energy neutron scattering – cross sections

( )0,2

2 1 Re .tot el abs aaS
k
πσ σ σ= + = −

2
0,2 1 ,el aaS

k
πσ = − ( )2

0,2 1 ,abs aaS
k
πσ = −

The absorption cross section is non-zero when non-elastic channels, 
such as γ emission or fission, remove flux from the compound 
nucleus. The cross sections for these take the form

The cross sections directly related to the elastic S-matrix element are 
the elastic, absorption and total ones, 

and

2
0,2 .ac caS

k
πσ =

The total flux is conserved,so that

and .abs ca tot el abs
c a

σ σ σ σ σ
≠

= = +	
The elastic cross section is well described at energies below the 
resonance region by a hard-sphere cross section of  4π R 2.



Comparison with experiment -- n+235U

×100

×10

These experimental data for the total, fission and neutron capture cross
sections are well described by the superposition of scattering from a 
potential and reactions through compound nucleus resonances.

The large number of resonances permits a statistical analysis of their
properties. 

(Larson)



Level statistics

A statistical analysis shows that the reduced neutron partial widths,
and the level spacings, in each partial wave, are distributed as    

0 2 / ,n ng Pμ μ μΓ =

0 01( ) , /
2

x

n n
eP x x

xπ

−

= = Γ Γ
2

( ) 2 ,
2

s DP s s e s
D

π−= =and

Porter-Thomas                                                      Wigner 

These results are consistent with the hypothesis that the matrix elements of  VPQ, 
VQP and VQQ are random variables with Gaussian distributions -- 21( ) .vP v e

π
−=

1 ,Dμ μ με ε+= −

s



From resonances to fluctuations
At low energies, the resonance expression for the S-matrix permits the 
separation of the direct and compound contributions to cross sections. 
However, as the energy increases, both the resonance widths and the 
density of compound nucleus states increase, so that the resonances 
eventually overlap and can no longer be distinguished. The cross section 
fluctuates rapidly, as in the figure, but the fluctuations, called Ericson 
fluctuations, cannot be attributed to individual resonances.

It is in this context that the 
optical model plays a 
fundamental role. The objective 
of the model is to describe just 
the prompt, direct reactions in a 
collision. To this end, one 
defines the optical potential as 
the potential that furnishes the 
energy-averaged (short time) 
scattering amplitudes.



Average amplitudes and cross sections
An energy average of the wave function furnishes a wave function and a 
scattering  amplitude that should describe the prompt part of the scattering. 
The S-matrix that results is an energy-averaged one. We could write the S-
matrix before averaging as 

, ,, 0with so tha .t,l l l fluc l fluc l lS S S S= + = =S S

The energy-averaged total cross-section is just the optical one,

( ) ( ), 2 2

2 21 Re 1 Re ,tot l l lS
k k
π πσ = − = −S

since it is linear in the S-matrix.
However, the energy-averaged elastic and absorption cross sections are

22 2
, ,2 2 21 1el l l l l flucS S

k k k
π π πσ = − = − +S

( ) 22 2
, ,2 2 21 1 .abs l l l l flucS S

k k k
π π πσ = − = − −S

and

Only the total optical cross section may be compared with the 
experimental one.



Energy averaging and the optical model
The energy average of the P-subspace wave function yields the optical wave
function and scattering amplitude, which describe the fast contribution to the 
scattering.  After rewriting the expression for the wave function in the form 
of an equation, we obtain an expression for the optical potential.

The energy average of the P-subspace wave function may be written directly,
( ) ( ) 1 ( )( ) 1/ .c c PP PQ QQ QP cP E H V e Vφ φ+ + − +Ψ = + −

.QQ QQ QQe E H W= − −
since the only rapidly varying quantity in the wave function is

By multiplying by (E-HPP) as well as solving formally for       and 
substituting, we can write a Schrödinger-like equation for <PΨc> .        
,

( )
cφ +

1

1 0.
1/

PP PQ QP c

QQ QQ

E H V V P
e W

−

� �
� �− − Ψ =
� �+� �

The optical potential, which has both real and imaginary parts, is then 

1

1

1/
opt PP PQ QP

QQ QQ

U V V V
e W

−= +
+



Performing the energy average
To conclude the derivation of the optical potential, we must calculate 

1/eQQ�. Although there are many ways to perform the average, the 
simplest is to average over a normalized Lorentzian density,

0
0

0

( , )1/ QQ
QQ QQ

E Ee dE
E H W

ρ=
− −�

where

0 2 2
0

1( , ) .
2 ( ) / 4

E E
E E

ρ
π
Δ=

− + Δ
Assuming that 1/eQQ has no poles in the upper half of the complex E 
plane (causality), we can perform the integral by closing the contour in 
the UHP to find

11/ ( / 2 )QQ QQ QQe E i H W −= + Δ − −

so that 1
/ 2opt PP PQ QP

QQ

U V V V
E H i

= +
− + Δ

The optical potential is energy-dependent, non-local and complex. Its 
imaginary part is negative, resulting in a potential that is absorptive. The 
absorption accounts for the flux that is lost to the Q-subspace.



Low-energy neutron scattering – optical potential
One finds for the low-energy neutron s-wave S-matrix element 2

0 ,ikS e ρ−=
where ρ is a complex scattering length.

We have, as k→0,

n + 238U

24 4 ,el
d R
d

σσ π π= →
Ω

R ρ= is called the scattering
radius. 

The resulting elastic cross section tends to a constant as the energy tends to 
zero, while the absorption and total cross sections diverge at small energy 
as 1/k.

( )4 Im 1 2 Im ,abs k
k
πσ ρ ρ→ − +

.tot el absσ σ σ= +

and



Comparison with 
experiment

We recall that, being linear in the 
scattering amplitude, the total optical 
cross section may be compare to the 
energy-averaged experimental one. We 
see that reasonable agreement with the 
data is possible here.

We also verified that the partial wave 
contributions to the energy-averaged 
elastic cross section, 

,

22

, 2 21
l fluc

j j j
l el lS S

k k
π πσ = − +

exceed the shape elastic (optical) ones 
due to contributions from fluctuations. 
We observe that the fluctuation 
contributions are negligible only at 
higher energies.



Higher partial waves

n + 238U

n + 238UThe angular distribution for a pure s-
wave is obviously constant. As the 
energy increases, more partial waves 
participate in the scattering and the 
angular distribution becomes more 
forward peaked.  

An important auxiliary quantity 
determined in an optical model 
calculation is the transmission 
coefficient,                       which is used 
to calculate the fluctuating contribution 
to the cross sections. The transmission 
coefficient measures the fraction of flux 
that is absorbed from each partial wave.

21 ,l lT S= −

The highest partial wave 
contributing to the scattering may be 
crudely estimated as lmax≈kR. For 
n+238U at an energy of 1 MeV, this 
gives lmax≈1.6.



Inelastic scattering
The single-channel optical model describes the scattering in the elastic 
channel alone. It is often called the spherical optical model because, in it, 
the target may be considered to be spherically symmetric, since its 
structure is never introduced.

Inelastic scattering, in the case of the inert projectiles that we are 
considering (n, p, γ, d, etc.), leaves the target in an excited state and 
diminishes the asymptotic kinetic energy of the projectile. To describe it, 
we must introduce  at least the basic characteristics of the ground and 
excited states of the target. The states that are most strongly excited in 
collisions are those that involve collective movement. 

Direct excitation of rotational and vibrational modes is usually calculated 
using the coupled channels method. This is an extension of the optical 
model formalism that treats the ground and excited states on an equal 
footing. 

Vibrations: Rotations:



Comparison with 
experiment

Inelastic cross sections are dominated 
by the contribution from the compound 
nucleus at low energies, as seen here 
for the first excited states of 58Ni and 
238U.

The two calculations of the 58Ni 
inelastic cross  section use the same 
value of β2=0.2, yet yield cross 
sections that differ by almost a factor 
of two due to differences in the optical 
potentials.

The cross section for excitation of the 
rotational state in 238U is 5 to 10 times 
greater than that of the vibrational state 
in 58Ni, mainly due to the factor of 30 
difference in their excitation energies.



Energy averaging and the compound nucleus
We decomposed the S-matrix in channel a and partial wave l, before 
averaging over energy,  as

, ,with so, 0, t a .h tal al al fluc al fluc al alS S S S= + = =S S

22 2
, ,2 2 21 1 .aa l al al al flucS S

k k k
π π πσ = − = − +S

The elastic cross section that resulted is the sum of an optical contribution  
and a compound nucleus one, 

If we neglect direct coupling between channels, the cross section for a 
reaction from channel a to channel b will consist of just the compound 
nucleus contribution,

*
, , ,2 .ab l bl fluc al flucS S

k
πσ =

The compound nucleus cross sections can be calculated, if we substitute 
the energy average by an average over the random interaction matrix 
elements used to construct the resonance sum. (Weidenmüller et al.)



The Bohr hypothesis
The average cross section has the form

,
C

C b
ab ab a Cwσ σ Γ

=
Γ

where       is the cross section for 
compound nucleus formation from channel 
a,    is the partial width for decaying into 
channel b, with the total width being

C
aσ

C
bΓ

.C C
b

b

Γ = Γ	
The width fluctuation factor wab varies 
between 2 and 3 for the elastic channel. 
For other channels, it is close to one, 
except at very low energies. If we neglect 
it here, we satisfy the Bohr hypothesis, 
which states that the formation and decay 
of the compound nucleus are independent 
processes. This was tested experimentally 
by Goshal in 1950.

64Zn

60Ni

63Cu
(Satchler)



Angular distributions

J
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Due to the independence of the 
formation and decay of the 
compound nucleus, the decaying 
nucleus does not ‘remember’ the 
direction of the incident projectile. It 
does ‘remember’ the conserved 
angular momentum, however. If the 
angular momentum is zero, the 
decay is isotropic. Otherwise, it 
tends to be restricted to the reaction 
plane. The angular distribution is 
always symmetric about 90°.
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(Lefort)



Level densities and emission spectra
In  regions of unresolved levels,
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(Huizenga e Moretto) (Vonach)
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Excitation function of a level 

n+110Pd→n′+110Pd*(Ex=0.374 MeV,2+)
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For a single level or a group of levels, we have

and ( )
( ) .

C
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ab b a C

εσ ε σ Γ
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The cross section just above 
threshold increases with the 
available energy, quickly in the 
case of neutrons, but more slowly 
in the case of charged particles.

However, the number of levels 
contributing to the total width ΓC

increases exponentially with the 
energy, in accord with the density 
of states. The compound nucleus 
cross section for the level(s) thus 
reaches a maximum and then falls 
back to zero exponentially.

(Koning)

2πρC(Ε )



Competition and 
multiple emission

All open channels compete for 
emission from the compound 
nucleus. However, γ emission is a 
much weaker (much slower) 
process than particle emission. 
Charged particle emission tends to 
be suppresses relative to neutron 
emission because of the Coulomb 
barrier.

At sufficiently high energies, a 
compound nucleus can emit more 
than one particle. This is treated as 
sequential emission and can be 
incorporated in the model by 
keeping track of the distribution of 
residual nuclei. Calculations at 
high energy can be lengthy, due to 
the many open channels.



Preequilibrium emission

Compound nucleus models assume that the nucleus reaches an equilibrium  
(all states are equally probable) before emission occurs. Physically, the 
equilibration process proceeds through a series of nucleon-nucleon 
reactions. As the incident energy increases, it becomes more and more likely 
that one of the nucleons still retains a large fraction of the incident energy 
after the first one or two collisions, which favors its emission from a 
preequilibrium configuration.



Multistep compound (MSC) emission
To analyzed preequilibrium 
compound processes, we partition the 
subspace of  states Q into a series of 
subspaces containg configurations of 
increasing complexity,

2p-1h 3p-2h 4p-3h
One now takes into account transitions between the subspaces Qn as well as 
emission from each of them, 

The transition and emission widths can be calculated using the model of 
random matrix elements or using simple physical arguments. Essential in both 
cases is the hypothesis that the states in each subspace are in equilibrium.

Q =  Q1 +   Q2 +   Q3 +   …  +   CN



Multistep compound (MSC) emission - calculations

93Nb(n,n′)

En=14.6 MeV

n=1

n=2
n=7

Multistep compound cross sections 
are calculated by solving the set of 
coupled linear equations that 
describe the distribution of the flux 
over the  different subspaces.

Calculations show that the principal  
contributions to the cross sections 
come from the simplest 
configurations (n=1 or 2) and from 
the complex configurations that 
correspond to equilibrium.

When the emission widths are small 
compared to the internal transition 
widths, only the equilibrium 
configuration contributes and a 
simple expression for the cross 
section, similar to the compound 
nucleus one, is recovered. (Herman)



Multistep direct (MSD) emission

To analyzed direct preequilibrium 
processes, we partition the subspace 
of  states P into a series of subspaces 
containg configurations of increasing 
complexity,

1p-1h 2p-2h 3p-3h

Here one takes into account only the transitions between the subspaces Pn. The 
incident particle maintains its identity.  No hypothesis is necessary concerning 
equilibrium among the states with the same number of particles and holes.

P =  P1 +   P2 +   P3 +   …  +   CN

The process is described using a direct extension of the DWBA treatment of 
weakly excited levels. The differential cross section is written as an 
incoherent sum of one-step and multistep terms,
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Multistep direct reactions
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The one-step cross section is calculated by summing the DWBA cross sections 
to the particle-hole states μ, weighted by a broadened density of states       ,

Since the low-energy collective states are, to a large degree, 1p-1h states, they 
can be considered a part of the first step of the multistep direct cascade. 

The n-step cross section is then usually calculated by convoluting the (n-1)-step 
cross section and summing over all intermediate configurations,

11ρ̂

At the moment, this type of calculation has not been taken beyond the 
second step.



Multistep direct-multistep compound calculations

(Koning and Chadwick)

Multistep compound angular distributions 
are symmetric about 90°. Multistep direct 
ones are smooth but forward peaked. The 
one-step process dominates the angular 
distribution at forward angles and low 
excitation energies, while the higher order 
processes become more important at 
backward angles and at larger energy 
excitation energies.

Compound and multistep compound 
reactions make an important contribution 
to particle spectra to energies of about 15 
MeV. At higher outgoing energies, 
collective excitations and multistep direct 
processes dominate nucleon-induced 
reactions. This is consistent with the idea 
of the gradual slowing down of the 
incident nucleon through multiple 
nucleon-nucleon collisions.



‘Classical’ preequilibrium models

Early (1960’s and 1970’s) preequilibrium models, the exciton and hybrid 
models, do not distinguish between compound nucleus and continuum 
states. They include both in a formalism similar to that of the multi-step 
compound model. The principal differences between the multistep 
compound model and the earlier ones are:

• the densities of states – only bound states are included in the multistep 
compound model,

• the emission widths, which require an interaction in the multistep 
compound model. In the ‘classical’ models, they are obtained directly 
from the cross sections or transmission coefficients, as in the compound 
nucleus model.

Although suspect in terms of theoretical rigor, these models are quite 
succcessful in describing experimental cross sections. Because of their 
ease of use, when compared to a multistep direct-multistep compound 
calculation, they are still very popular today.



Mixing in 'classical' preequilibrium models

In the exciton and hybrid models, one assumes that the states with the same 
number of particles and holes (3p-2h, for example) are in equilibrium. This 
allows the calculation of transition rates between configurations with different 
numbers of particles and holes in terms of the densities of states of the 
configurations: 
λ+/- - transition rates for increasing /decreasing the number of particles and 

holes;
λ0 - rate of transitions between states with same number of particles and holes  
– This is essentially the equilibration rate between these states.

Transition rates for n + 40Ca 
@ 25 MeV (black) and 100 
MeV(blue):

λ0 << λ+

In the initial stages of the 
reaction (small number of 
particles and holes).

No equilibration !



(Hybrid) Monte Carlo simulation

Without the equilibrium hypothesis, the number of equations for the 
occupation probabilities and emissions becomes immense: for n + 40Ca  @ 100 
MeV, about 20 equations become on the order of 106 equations.

A solution – use a Monte Carlo method to solve the master equation, taking 
into taking into account 
1) each particle or hole, until it no longer has sufficient energy to 'escape'; 
2) all two-particle interactions.

The blue exciton model result is 
obtained when the two-body 
interactions that maintains the 
number of particles and holes is a 
33 times larger than the others.

The black and red results are 
obtained when these transitions are 
the same as the others or when they 
are not included at all.



Summary
At low incident energies, nucleon-induced reactions occur on two distinct 
time scales. Direct reactions, in which the incident particle remains in the
continuum, occur quickly. Compound nucleus reactions, in which the 
projectile is trapped in a quasi-bound state, occur much more slowly.

The corresponding differential 
cross sections are consistent 
with their time scales: direct 
reactions tend to be forward 
peaked while compound 
nucleus ones are symmetric 
about 90°.

Preequilibrium processes 
corresponding to intermediate 
time scales arise and become
ever more important as the 
incident energy increases.


