

2141-24

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies

3 - 14 May 2010

Introduction to Nuclear Model Code TALYS

HILAIRE S. CEA, Centre DAM Ile de France France

1 CEA,DAM,DIF - France
2 Nuclear Research and Consultancy Group, Petten, The Netherlands
3 Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelles, Brussels, Belgium

Why do we need nuclear data?

Nuclear data needed for

Understanding basic reaction mechanism between particles and nuclei Astrophysical applications (Age of the Galaxy, element abundances ...) Existing or future nuclear reactor simulations Medical applications, oil well logging, waste transmutation ...

But

Finite number of experimental data (price, safety or counting rates) Complete measurements restricted to low energies (< 1 MeV)

Predictive & Robust Nuclear models (codes) are essential

→ General features of TALYS

- → Models implemented in TALYS
- → Some TALYS results
- → Conclusions and prospects

General features of TALYS

The TALYS team

Authors

Arjan Koning, NRG Petten Stéphane Hilaire, CEA-DIF Marieke Duijvestijn, NRG Petten

Computational & Theoretical support, validation

Several members of CEA-DIF Stéphane Goriely, ULB Emmeric Dupont, CEA Cadarache Jura Kopecky, JUKO Research Robin Forrest, UKAEA

Current version

TALYS-1.2 at www.talys.eu

TALYS in numbers

- Date of birth : 1998
- Fortran 77
- 50000 lines (+ 20000 lines of ECIS)
- Modern programming
 - modular (270 subroutines)
 - descriptive variable names & well commented (45% of lines are comments)
 - transparent programming
- Very extensive input handling and checking
 - Flexible (from default to multi-parameter adjustment : > 200 keywords)
 - Random input to check stability
 - Drip-line to drip-line calculations
- > 380 pages manual
- Compiled and tested with f77, f90, f95, ... over several OS
- Externally driven for :
 - ENDF formatting
 - Random input to check stability

(e)

Other codes

ALICE – LLNL – 1974 – Blann

(Mc-)GNASH – LANL – 1977 – Young, Arthur & Chadwick

TNG – ORNL – 1980 – Fu

STAPRE – Univ. Vienna – 1980 – Uhl

UNF,MEND – CIAE, Nanking Univ. – 1985 – Cai, Zhang

EXIFON – Univ. Dresden – 1989 – Kalka

EMPIRE – ENEA/IAEA/BNL – 1980 – Herman

Modern computers (i.e. High speed & Big memory) already available when TALYS development started

What TALYS does !

- Simulates a nuclear reaction between a projectile and a target

projectiles : n,p,d,t,³he, ⁴he target : $3 \le Z \le 110$ or $5 \le A \le 339$

- Projectile energy from 1keV up to 200 MeV
- TALYS mantra : " Completeness then quality "
 - Optical, pre-equilibrium and statistical model implemented with sets of default parameters
 - All opened channels smoothly described
 - Possibilities for future improvements anticipated
 - Level densities (stored and interpolated)
 - Parity dependence
 - Still under development (improvement)

What TALYS yields !

- -Cross sections : total, reaction, elastic (shape & compound), inelastic (per level & total) and all opened channels.
- Elastic and inelastic angular distribution
- Exclusive reaction channels : xs, spectra & ddx
- Exclusive discrete and continuum γ -ray production
- Photonuclear reactions & reactions on isomeric targets
- Fission cross sections and fission yields
- Residuals production and recoils
- Total particle production : xs, spectra & ddx
- Extrapolation down to thermal energy
- Stellar reaction rates
- Fission fragment decay
- Level density tables

Nuclear reaction modeling

Method which consists in using a physical model (together with sets of parameters) to calculate evaluated data.

Models implemented in TALYS

S. HILAIRE

The Optical model

Direct interaction of a projectile with a target nucleus considered as a whole Quantum model \rightarrow Schrödinger equation Fig.1 10⁴ \sim 20 MeV ²⁰⁸Pb(n,n)²⁰⁸Pb

S. HILAIRE

Approaches implemented in TALYS

Phenomenologic :

- Koning-Delaroche for non-fissile nuclei
- Soukhovitsky for fissile nuclei
- Other implementations easy (e.g. α)
- Tabulation possible

Semi-microscopic

 JLM approach based on matter densities
⇒ any type of matter density can be used (Skyrme and Gogny already available)

⇒ OMP calculations essentially performed with ECIS

Phenomenological OMP

U(r,E) = V(E,r) + i W(E,r)

o

ò

Incident energy (MeV)

Phenomenological OMP

- \approx 20 adjusted parameters
- Very precise (1%)
- Relatively weak predictive power far away from stability

Semi-microscopic OMP

- No adjustable parameters
- Based on nuclear structure properties
 - \Rightarrow usable for any nucleus
- Less precise than the phenomenological approach

Semi-microscopic OMP

Unique description of elastic scattering (n,n), (p,p)et (p,n)

Semi-microscopic OMP

Enables to perform predictions for very exotic nuclei for which There exist no experimental data

coupled chunnels in TALTS	Coup	led	char	nnels	in	TAL	JYS
---------------------------	------	-----	------	-------	----	-----	-----

		deformation file z092				level file z092								
						92	2 2	38 501 1	52			-		238U
						Θ	1	0.000000	0.0	1	0		1.410E+17	0+
92	237	5	R	D		1		0.044916	2.0	1	1		2.060E-10	2+
Θ	R	0			1.75000 0.65000							0	1.000000 6.090E+02	
1	R	Θ				2	:	0.148380	4.0	1	1	,	1 000000 1 1605.01	4+
2	R	Θ				3	ł	0 307180	6.0	1	1	T	1.000000 1.100E+01	6+
3	R	Θ					,	0.507100	0.0	-	1	2	1.000000 1.870E+00	01
5	R	Θ				4	ł	0.518100	8.0	1	1		2.300E-11	8+
92	238	23	R	D							•	3	1.000000 6.260E-01	
0	R	0			1.54606 0.44508	5	,	0.680110	1.0	-1	2		3.500E-14	1-
1	R	0									L	1	0.558700 2.000E-02	
2	R	0				6		0 721020	2.0	,		Θ	0.441300 2.000E-02	2
3	R	0				0	,	0.751950	5.0	-1	2	5	0 000000 3 123E+02	3-
4	R	Θ										2	0.450225 1.000E-02	
5	V	1	3	Θ	0.90000							1	0.549775 7.045E-03	
6	v	1				7	/	0.775900	10.0	1	1		9.000E-12	10+
7	R	0					_				1	4	1.000000 3.130E-01	
8	٧	1				8	1	0.826640	5.0	-1	2	_	0 005445 1 1055 00	5 -
9	٧	2	4	Θ	0.20000							3	0.335445 1.195E-02	
10	٧	3	3	1	0.10000	q	,	0.927210	0.0	1	1	2	0.004555 7.2152-05	0+
11	v	3					_	01527210	0.0	-	-	1	1.000000 1.341E-02	
12	٧	2	1			10	1	0.930550	1.0	-1	3			(1-)
13	٧	1										5	0.157218 3.413E-01	
14	v	4	2	Θ	0.10000							1	0.673221 4.650E-03	
15	v	3				11		0.050120	2.0	,		Θ	0.169560 4.260E-03	2
16	v	4				11		0.950120	2.0	-1	3	6	0 419039 5 570F-01	2-
17	v	2										5	0.251909 2.685E-01	
21	v	5	2	2	0.10000							1	0.329052 4.470E-03	
22	R	0	-	-		12)	0.966130	2.0	1	5		2.400E-12	2+
23	v	5										6	0.064358 6.890E-02	
25	v	4										5	0.035757 4.380E-02	
31	v	5										2	0.418/35 1.000E-02 0.367863 2.300E-01	
	•	-				I						~ T	0.307003 2.3000-01	

S. HILAIRE

œ

Decay-dependent OMPs in TALYS

Decay-dependent OMPs in TALYS

movie

Pre-equilibrium exciton model

P(n,E,t) = Probability to find for a given time t the composite system with an energy E and an excitons number n.

 $\lambda_{a, b}$ (E) = Transition rate from an initial state a towards a state b for a given energy E.

Evolution equation

Emission cross section in channel c

$$\sigma_{c}(E, \varepsilon_{c}) d\varepsilon_{c} = \sigma_{R} \int_{0}^{t_{eq}} \sum_{n, \Delta n=2} P(n, E, t) \lambda_{n, c}(E) dt d\varepsilon_{c}$$

Pre-equilibrium model

Link with high energy cascade

→ Generalities and definitions

→ Model ingredients

→ Fission

→ Level densities

Compound Nucleus model

After direct and pre-equilibrium emission

œ

Compound Nucleus model

Compound nucleus hypothesys

- Continuum of excited levels
- Independence between incoming channel a and outgoing channel b

⇒ Hauser- Feshbach formula

$$\sigma_{ab} = \frac{\pi}{k_a^2} \qquad \frac{T_a T_b}{\sum_c T_c}$$

Compound Nucleus model

Compound angular distribution & direct angular distributions

Compound Nucleus model

Channel Definition

$$a + A \rightarrow (CN)^* \rightarrow b+B$$

Incident channel a = $(\vec{l}_a, \vec{j}_a = \vec{l}_a + \vec{s}_a, \vec{J}_A, \pi_A, E_A, E_a)$

Conservation equations

- Total energy : $E_a + E_A = E_{CN} = E_b + E_B$
- Total momentum : $\vec{p}_a + \vec{p}_A = \vec{p}_{CN} = \vec{p}_b + \vec{p}_B$
- Total angular momentum : $\vec{l}_a + \vec{s}_a + \vec{J}_A = \vec{J}_{CN} = \vec{l}_b + \vec{s}_b + \vec{J}_B$
- Total parity : π_{A} (-1) $I_{a} = \pi_{CN} = \pi_{B}$ (-1) I_{b}

œ

Compound Nucleus model

In realistic calculations, all possible quantum number combinations have to be considered

Width fluctuations

Breit-Wigner resonance integrated and averaged over an energy width Corresponding to the incident beam dispersion

Width fluctuations : models in TALYS

• Tepel method

Simplified iterative method

• Moldauer method

Simple integral

• GOE triple integral

« exact » result

Elastic enhancement with respect to the other channels

$$\begin{aligned} \overline{\text{The GOE triple integral}} \\ W_{a,l_a,j_a,b,l_b,j_b} &= \int_0^{+\infty} d\lambda_1 \int_0^{+\infty} d\lambda_2 \int_0^1 d\lambda \ \frac{\lambda(1-\lambda)|\lambda_1-\lambda_2|}{\sqrt{\lambda_1(1+\lambda_1)\lambda_2(1+\lambda_2)}(\lambda+\lambda_1)^2(\lambda+\lambda_2)^2} \\ \prod_c \frac{(1-\lambda T_{c,l_c,j_c}^J)}{\sqrt{(1+\lambda_1 T_{c,l_c,j_c}^J)(1+\lambda_2 T_{c,l_c,j_c}^J)}} & \left\{ \delta_{ab}(1-T_{a,l_a,j_a}^J) \right. \\ &\left[\frac{\lambda_1}{1+\lambda_1 T_{a,l_a,j_a}^J} + \frac{\lambda_2}{1+\lambda_2 T_{a,l_a,j_a}^J} + \frac{2\lambda}{1-\lambda T_{a,l_a,j_a}^J} \right]^2 + (1+\delta_{ab}) \\ &\left[\frac{\lambda_1(1+\lambda_1)}{(1+\lambda_1 T_{a,l_a,j_a}^J)(1+\lambda_1 T_{b,l_b,j_b})} + \frac{\lambda_2(1+\lambda_2)}{(1+\lambda_2 T_{a,l_a,j_a}^J)(1+\lambda_2 T_{b,l_b,j_b})} \right] \end{aligned}$$

Compound Nucleus Model

$$\sigma_{NC} = \sum_{b} \sigma_{ab}$$
 où b = γ , n, p, d, t, ..., fission

τ_

$$\sigma_{ab} = \frac{\pi}{k_a^2} \sum_{J,\pi} \sum_{\alpha,\beta} \frac{(2J+1)}{(2s+1)(2I+1)} T_{lj}^{J\pi} \left(\alpha \right) \frac{\langle T_b^{J\pi}(\beta) \rangle}{\sum_{\delta} \langle T_d^{J\pi}(\delta) \rangle} W_{\alpha\beta}$$
with $J = l_{\alpha} + s_{\alpha} + I_A = j_{\alpha} + I_A$ et $\pi = (-1)^{l_{\alpha}} \pi_A$

and $\langle T_b(\beta) \rangle$ = transmission coefficient for outgoing channel β associated with the outgoing particle b

Various decay channels

Possible decays

• Emission to a discrete level with energy E_d

$$\langle T_{b}(\beta) \rangle = T_{lj}^{J\pi}(\beta)$$
 given by the O.M.P.

• Emission in the level continuum

$$\langle T_{b}(\beta) \rangle = \int_{E}^{E + \Delta E} T_{lj}^{J\pi}(\beta) \rho(E, J, \pi) dE$$

 $\rho(E,J,\pi)$ density of residual nucleus' levels (J, π) with excitation energy E

• Emission of photons, fission

Specific treatment

Renormalisation technique for thermal neutrons

 $<\mathbf{T}_{\gamma}>=\sum_{\mathbf{J}_{i},\pi_{i}}\sum_{\mathbf{k}\lambda}\sum_{\mathbf{J}_{f},\pi_{f}}\int_{0}^{\mathbf{B}_{n}}\mathbf{T}_{\mathbf{k}\lambda}(\varepsilon)\rho(\mathbf{B}_{n}-\varepsilon,\mathbf{J}_{f},\pi_{f})\mathbf{S}(\lambda,\mathbf{J}_{i},\pi_{i},\mathbf{J}_{i},\pi_{f})\,\mathbf{d}\varepsilon=\mathbf{2}\pi<\Gamma_{\gamma}>\rho(\mathbf{B}_{n})$

$$<\mathbf{T}_{\gamma}>=\mathbf{C}\sum_{\mathbf{J}_{i},\pi_{i}}\sum_{\mathbf{k}\lambda}\sum_{\mathbf{J}_{f},\pi_{f}}\int_{0}^{\mathbf{B}_{n}}\mathbf{T}^{\mathbf{k}\lambda}(\varepsilon)\rho(\mathbf{B}_{n}-\varepsilon,\mathbf{J}_{f},\pi_{f})\mathbf{S}(\lambda,\mathbf{J}_{i},\pi_{i},\mathbf{J}_{i},\pi_{f})\,\mathbf{d}\varepsilon=\mathbf{2}\pi<\mathbf{T}_{\gamma}>\frac{1}{\mathbf{D}_{0}}$$

See S. Goriely & E. Khan, NPA 706 (2002) 217. S. Goriely et al., NPA739 (2004) 331.

Bjornholm and Lynn, Rev. Mod. Phys. 52 (1980) 725.

Impact of class II states

²³⁹Pu (n,f)

Impact of class II states

Case of a fertile nucleus

Partially damped class II states. No class III states (fully damped).

Impact of class II+III states

Case of a fertile nucleus

Class II + III states. Partial damping.

 \Rightarrow For exotic nuclei : strong deviations from Hill-Wheeler.

Microscopic fission cross sections

\Rightarrow Default calculations not sufficient for applications.
Microscopic fission cross sections

\Rightarrow Not ridiculous after few adjustments.

• Exponential increase of the cumulated number of discrete levels N(E) with energy

$$\Rightarrow \rho(E) = \frac{dN(E)}{dE}$$
 Increases exponentially
$$\Rightarrow odd\text{-even effects}$$

• Mean spacings of s-wave neutron resonances at B_n of the order of few eV

 $\Rightarrow \rho(B_n)$ of the order of $10^4 - 10^6$ levels / MeV

The combinatorial method

See PRC 78 (2008) 064307 for details

- HFB + effective nucleon-nucleon interaction \Rightarrow single particle level schemes
- Combinatorial calculation \Rightarrow intrinsic p-h and total state densities $\omega_i(U, K, \pi)$
- Collective effects \Rightarrow from state to level densities $\rho(\mathbf{U}, \mathbf{J}, \pi)$

2006 Approximation : 1) construction of rotational bands 2) multiplication by vibrational enhancement

Current treatment : 1) folding of intrinsic and vibrational state densities 2) construction of rotational bands

- Phenomenological transition for deformed/spherical nucleus

→ Structures typical of non-statistical feature

Description similar to that obtained with other global approaches

Combinatorial level densities

Talys deals with realistic (non statistical) parity and spin distributions

(e)

Combinatorial level densities

Combinatorial level densities

Talys deals with realistic (non statistical) parity and spin distributions

➡ Non-statistical feature imply significant deviations from the usual gaussian spin dependence

Deviations from the usual gaussian spin dependence can have large impact on isomeric level production cross sections

Global adjustment

See NPA 810 (2008) 13 for details

 α and δ adjusted to fit discrete levels (≈ 1200 nuclei) and D₀'s (≈ 300 nuclei) using the TALYS code

Levels density models implemented in TALYS

- Gilbert-Cameron model + Ignatyuk
 - \Rightarrow Default
- Back-Shifted Fermi Gas model + Ignatyuk

 \Rightarrow Default

- (Generalized) Superfluid model
 - \Rightarrow More rigourous treatment of pairing correlation at low energy
 - ⇒ Fermi gaz + Ignatyuk law above some critical energy
 - \Rightarrow Explicit treatment of collective effects
- Combinatorial approach
 - \Rightarrow Direct counting method of both partial and total level densities
 - \Rightarrow Access to non statistical effects

Some TALYS results

Fully microscopic cross section (almost)

⁹⁰Zr (n,2n) ⁸⁹Zr

S. HILAIRE

œ

Coherent fission cross sections with phenomenological approach

Neutron induced fission on ²³⁸U

- several hundreds of parameters
- unique set for all fission chances or U targets

Coherent fission cross sections With microscopic ingredients

HFB-14 predictions of fission barriers and NLD at saddle points,

including renormalization (max 5 parameters) of

- fission path height: $B_f'(\beta_2) = B_f(\beta_2) \ge v_{corr}$
- NLD at 1st and 2d saddle points:

$$\rho'(U,J,P) = \rho(U - \delta,J,P) e^{\alpha \sqrt{U \cdot \delta}}$$

Additional nuclear inputs:

- Nuclear structure properties: HFB-14 (Goriely et al. 2007)
- Optical potential: Soukhovitskii et al. (2004)
- γ-ray strength: Hybrid model (Goriely, 1998)

• NLD: HFB-14 plus combinatorial model (Goriely et al., 2008) normalized on s-wave spacings and discrete excited levels

Note:

- 1 UNIQUE set of nuclear ingredients for all U isotopes
- no class 2 states included
- no discrete transition states included

S. HILAIRE

S. HILAIRE

• Cross section modeling quite easy for non fissile nuclei

Microscopic or Phenomenological OMP, Γ_{γ} , LDs

⇒ full microscopic calculation for non fissile nuclei almost possible

- **Difficult** cross section modeling for fissile nuclei
- Web site opened in October 2006 : **WWW.talys.eu**

⇒ All microscopic ingredients mentionned included in the distribution

- New level densities for pre-equilibrium (done but not tested)
- JLM OMP : spherical (OK) deformed (soon)
- Neutron multiplicities from FF decay (under dev.)
- Microscopic ingredients with Gogny instead of Skyrme (under dev.)