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Overview

General introduction

Some detailed measurement examples

Uncertainties in measurement

Some highlights of new possibilities
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Measurement design

Quantity to measure (measurand)
cross section(s)
reaction parameter(s)

Measurement principle
activation, emitted particle 
detection, …

Expression of the quantity in 
terms of control and 
influence quantities

Identification of possible 
influence quantities (sources 
of error)

Method of measurement
Sequence of logical steps
how to fix control quantities
how to correct for other 

influence quantities

Measurement procedure
Detailed prescription

Physical operations
Data manipulations

Arriving at
Measurement value

Corrected
Uncertainties

Complete
Correlations

Evaluation of measurement uncertainty – Guide to the expression of uncertainty in 
measurement, JCGM 100:2008, www.bipm.org (2008)
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Method of measurement

‘Hardware’
Neutron source/collimation

Sample

Detection equipment 
fluence or normalization

Detection equipment 
process rate

Data acquisition

Peripheral control

Ancillary measurements

‘Software’
Measurement sequence
(foreground, background, 
iterate over samples, other 
experimental conditions, 
sample characterization, 
calibration)

Evaluation of data
Selection criteria
Data reduction
Determination of
values, uncertainties and 
correlations
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Measurements

There is a large variety even for one particular quantity

Specific examples worked out in more detail

Highlights to show the range of possibilities
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Specific examples

Transmission in the resonance range

Capture

Inelastic scattering by the (n,n’γ)-technique

Activation
Uncertainties for activation

Drawn from experience at the IRMM neutron sources GELINA and the 7 
MV VdG accelerator
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Total cross section & transmission + time-of-flight

Influence quantities
N d: nuclides per unit area
background
other nuclides in sample
sample container wall
sample homogeneity
collimation
temperature
detector+monitor stability
flight path length
resolution functions

neutron source
detector

deadtime

Attenuation 
measurement



ICTP-IAEA 10 and 11 May 2010 8

Transmission method

Total cross section & transmission + time-of-flight
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GELINA, a multi-user facility

Neutron conversion target

Uranium target       (e- γ n)
rotating, mercury cooled
4 1010 neutrons / burst
Moderated or fast neutron 
spectrum
24 h/d, 100h/w, 12 parallel FPs

12 Flight paths, 8 to 400 m

Flaska et al.,NIM , A531, 394 (2004)
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Neutron Production

NEUTRON
MODERATOR

ELECTRON
BEAMLINE EXIT

NEUTRON
TARGET

NEUTRON
FLIGHT PATHS

• (e-, γ) Bremsstrahlung in U-target 

• ( γ , n) ,   ( γ , f ) in U-target

• Low energy neutrons by water 
moderator in Be-can
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Compression Magnet 
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From time-of-flight to energy: effective flight path
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Moderator resolution function

Ene et al. 2010
Monte Carlo 
simulations
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Resonance broadening
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Transmission setup, sample holder and neutron detector

Total cross section & transmission + time-of-flight

6Li glass 10cm Ø x 
1cm

2 x 5’’ PMT Sample changer
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Fixed and variable: black resonance technique

Total cross section & transmission + time-of-flight
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Transmission data and (REFIT, 241Am)
Resonance analysis to obtain resonance parameters from which cross 

section may be reproduced under any required circumstances
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A neutron is absorbed
Nucleus decays: cascade of gamma-rays

Principle: detection of gamma-rays
Needed: gamma detectors, detection efficiency
Concerns: gamma-cascades vary with energy
Gamma-ray angular distribution

Normalization/fluence measurement
fluence distribution as function of energy
Reference cross section or black resonance

Otherwise the issues also shown for 
transmission (background, deadtime, resolution 
functions, etc).

Neutron capture and time-of-flight
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Neutron capture and time-of-flight
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external trigger

signal

Water 
moderator
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Total energy principle

C6D6 liquid scintillators
125o

PHWT 

Flux measurements (IC)
10B(n,α)
235U(n,f)
These are standards with
well known energy
dependence and
cross sections
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WF : from MC simulations

Borella et al., NIMA 577(2007) 626

Modify response with a weighing 
function so detection efficiency is 
proportional to the gamma-energy

Then detection efficiency depends 
on the total excitation energy (not 
on the details of the cascade)
Efficiency is independent of En

For dipole transitions: possible 
gamma-angular distribution.
No impact at 125 degrees!

Neutron capture and time-of-flight
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• C6D6 liquid scintillators :

• Flux measurements (IC) :
– 10B(n,α)  < 150 keV
– 235U(n,f)  > 150 keV

Normalization of capture data
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Normalization constant N

• Saturated resonance
– 197Au : 4.9 eV
– 109Ag : 5.2 eV
– ....

• Resonance with : Γn << Γγ

- Γn from transmisson
- 56Fe : 1.15 keV

Internal normalization: 
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Normalization: saturated resonance
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Normalization to 1.15 keV resonance of 56Fe(n,γ) 
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Transmission
Perey et al. : Γn = 61.7 ±0.9 meV

Capture (thin + thick sample)
Macklin : Γn = 61.8 ± 1.9 meV

Use the well known iron resonance at 
1.15 keV for which Γn is very well 
established.
Iron alloyed or sandwiched with the 
sample of interest to minimize 
differences in detection efficiency

Γγ = 574 meV

⇒ Uncertainties of 2% can be reached
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Measurement of neutron inelastic scattering

Primary experimental result:
Gamma production cross section

Databases:
Level scheme

Level cross section
Total inelastic cross section

Primary experimental result:
Gamma production cross section

Databases:
Level scheme

Level cross section
Total inelastic cross section

Measurement of the associated gamma-rays
Very selective (indirect)

Access to angle-integrated cross section
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Germanium detectors 8 x 8 cm Ø by 8 cm long, Δt~9.7 ns

GELINA, time-of-flight, 200 m flight path, ΔEn/En=1 keV @ 1 MeV, 
direct flux configuration, 800 Hz, 550 n/cm2/s

Measurement normalized to 235U(n,F)

Compensation for angular distribution by Gaussian quadrature
using weighted sum of dσ/dΩ at 110 and 150 degrees

Elemental sample produced at IRMM

Aiming for Δσ/σ = 5% below 5 MeV

Method
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Method

depU90Mo10
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external trigger

signal

Neutron time-of-flight with digital processing
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Setup

GAINS @ FP3/200m GELINA
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Use of digitizers w. HPGe

Dead time reduction (< 2.5 μs)

Time response improvement

Time range: 22 μs
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Inelastic angular distributions

J0, π0

J1, π1

Target Compound

J3, π3

J2, π2

Residual

n: j1,l1,s1

n’: j2,l2,s2

γ: L,L’

E. Sheldon and D.M. van Patter, 
Rev.Mod.Phys. 38(1966)143
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Angular distribution of gammas
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Sample TP-NP 08/10 

Metallic sodium 
sample prepared by 
André Moens at IRMM
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Normalization to fission

Efficiency = Y / (Y+YA+YB)
Y+YA forward versus backward bias

4.4% effect for 0.475 mg/cm2 UF4 evaporated

Y:   yield above threshold,        YA: yield below threshold (linear extrapolation)
YB: fragments stopped in the deposit (not shown)  YB/(Y+YA+YB) = 0.105(7) t/(mg/cm2)
YB: measured by Budtz-Jörgensen Nucl.Instrum.Meth. 236(1985)630

Fission 
fragments

Y YYA

YA



ICTP-IAEA 10 and 11 May 2010 34

Normalization: sample preparation

235U
Fission deposit

Evaporated UF4

Alpha-counting

High purity

Roger Eykens
Andre Moens
Marc Peeters
Anna Stolarz

Peter Schillebeeckx
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Sample preparation and characterization
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Evaporator

P. Schillebeeckx et al., NIM A 613(2010)378

Inhomogeneity: +2% areal mass density
61 mm out of 70 mm
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Sample preparation and characterization
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Sample production and characterization

Callet& De Bièvre
15 November 1985

Atom% Acc (2s)

U-234 0.0626 0.0025
U-235 99.8266 0.0044
U-236 0.0365 0.0027
U-238 0.0739 0.0025

Richter
23 March 2009

Atom% Acc (2s)

U-234 0.06389 0.00014
U-235 99.82275 0.00020
U-236 0.03768 0.00007
U-238 0.07568 0.00013

Quantity Value (1s)
Decay constant 8.78(10) 10-17 U/s

Quantity Value (1s)
Decay constant 8.88(2) 10-17 U/s

More accurate new value: +1% and 0.3% uncertainty

Activity to atoms
Mass spectrometry
65% activity: U-234
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Example 23Na
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Example 23Na, 440 keV
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Example 23Na, 1636 keV
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Activation cross section measurements 

Neutron source
7MV Van de Graaff accelerator

Binary reactions for quasi mono-
energetic neutrons 7Li(p,n)7Be, 
3H(p,n)3He, 3H(d,n)4He reaction

High intensity compared with time-of-
flight, but only one energy per 
measurement

Solid-state Ti/T

Samples
Both natural and enriched

Example 241Am(n,2n)240Am

Neutron energy and flux 
monitoring
The neutron fluence rate was determined 
by the 27Al(n,α)24Na ENDF/B-VI standard 
cross section
The neutron flux density distribution were 
determined by the spectral index method

115In(n,n΄)115mIn, 58Ni(n,p)58Co, 
27Al(n,p)27Mg, 27Al(n,α)24Na, 
56Fe(n,p)56Mn, and 93Nb(n,2n)92mNb 

distinct energy thresholds
time-of-flight spectrum 
measurements.
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7 MV Van de Graaff accelerator

Single-user facility, 100h/w
6 different beam lines
0.1 - 10 & 13-21 MeV
Li(p,n), T(p,n), D(d,n), T(d,n)

Fission
Activation measurements
light charged particles
Flux (BIPM)
Calibration of detectors

Irradiation setup
L3 beamline with Ti/T target
Light weight sample holder
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Sample preparation

Infiltration technique (JRC-ITU, Karlsruhe) :
• Porous alumina granules made by powder metallurgy
• Am infiltration with a nitrate solution
• Drying/calcination

Nästren, Holzhäuser, Fernandez, Brossard, Wastin, Ottmar, Somers

9 samples
• 32.2 to 42.2 mg 241Am   (AmO2)
• 0.3 to 0.4 g Al2O3 matrix
• Ø =12.2 mm, height=1.6 to 2.1 mm
• 5 GBq/piece, 10 mSv/h contact
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Experimental procedure

Nucleus Half life Eγ Iγ
(keV) (%)

239Am 11.9(1) h 278 15.0(17)

228 11.3(13)
240Am 50.8(3) h 988 73(4)

889 25.1(13)
241Am 432.1(7) y 60 35.9(5)

233 4.6(3) 10-6

276 6.6(4) 10-6

278 4.4 10-7

887 2.2(5) 10-7

922 1.9(4) 10-7

241Am

242Am

240Am

240Pu

432.2 y

141.690
42.824
6563 y

50.8 hn
2n

EC

0+

2+

4+

1030.53

98
7.

76
 k

eV

88
8.

80
 k

eV

Schematic (n,2n) process and level scheme 

Relevant gamma rays

n-source
n-flux measurement

Activation foil 
technique

Activity 
determination

sample
monitor foils
HPGe
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Activity determination

240Am T1/2 50.8(3) h
988 keV 73(4)%
889 keV 25.1(1.3)% 
fitted T1/2(988 keV)= 50.88 h

Shielding: 5 mm Pb + 2 mm Sn + 1 mm Cu
27Al(n,α)24Mg from container and matrix
Dead time ~ 10%
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Results




