

2141-25

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies

3 - 14 May 2010

Cross section measurements and uncertainties of cross section data

PLOMPEN A. EC-JRC_IRMM Geel BELGIUM

ICTP-IAEA 10 and 11 May 2010

Joint Research Centre (JRC)

Cross section measurements and

uncertainties of cross section data

Arjan Plompen

European Commission, Joint Research Centre,

Institute for Reference Materials and Measurements

http://www.jrc.ec.europa.eu/

ICTP-IAEA 10 and 11 May 2010

Overview

2

General introduction

Some detailed measurement examples

Uncertainties in measurement

Some highlights of new possibilities

Measurement design

Quantity to measure (measurand)

cross section(s)
reaction parameter(s)

Measurement principle

activation, emitted particle detection, ...

Expression of the quantity in terms of control and influence quantities

Identification of possible influence quantities (sources of error)

Method of measurement

Sequence of logical steps how to fix control quantities how to correct for other influence quantities

Measurement procedure

Detailed prescription Physical operations Data manipulations Arriving at Measurement value Corrected Uncertainties Complete Correlations

Evaluation of measurement uncertainty – Guide to the expression of uncertainty in measurement, JCGM 100:2008, www.bipm.org (2008)

Method of measurement

'Hardware' Neutron source/collimation

Sample

Detection equipment fluence or normalization

Detection equipment process rate

Data acquisition

Peripheral control

Ancillary measurements

'Software'

Measurement sequence (foreground, background, iterate over samples, other experimental conditions, sample characterization, calibration)

Evaluation of data

Selection criteria Data reduction Determination of values, uncertainties and correlations

ICTP-IAEA 10 and 11 May 2010

There is a large variety even for one particular quantity

Specific examples worked out in more detail

Highlights to show the range of possibilities

ICTP-IAEA 10 and 11 May 2010

6

Transmission in the resonance range

Capture

Inelastic scattering by the (n,n'y)-technique

Activation Uncertainties for activation

Drawn from experience at the IRMM neutron sources GELINA and the 7 MV VdG accelerator

EUROPEAN COMMISSION

Total cross section & transmission + time-of-flight

ICTP-IAEA 10 and 11 May 2010

$$= \frac{Y_{\text{in}}^c - B_{\text{in}}^c}{Y_{\text{out}}^c - B_{\text{ou}}^c}$$

Attenuation measurement

7

- σ_T = the total cross section
 - *T* = the transmission factor
 - *C* = Corrected counts in the detector
 - **N** = the nuclide concentration
 - *d* = the sample thickness
- Y^{C} = Total counts
- B^{C} = Background counts
- \circ^{C} = deadtime corrected&normalized

Influence quantities N d: nuclides per unit area background other nuclides in sample sample container wall sample homogeneity collimation temperature detector+monitor stability flight path length resolution functions neutron source detector deadtime

8

ICTP-IAEA 10 and 11 May 2010

Transmission method

GELINA, a multi-user facility

ICTP-IAEA 10 and 11 May 2010

Neutron conversion target

Uranium target $(e^- \Rightarrow \gamma \Rightarrow n)$ rotating, mercury cooled 4 10¹⁰ neutrons / burst Moderated or fast neutron spectrum 24 h/d, 100h/w, 12 parallel FPs

12 Flight paths, 8 to 400 m

9

Flaska et al., NIM , A531, 394 (2004)

Neutron Production

10

ICTP-IAEA 10 and 11 May 2010

Compression Magnet

ICTP-IAEA 10 and 11 May 2010

11

100 A

1 ns

→ compressed pulse length ~ 1 ns

From time-of-flight to energy: effective flight path

ICTP-IAEA 10 and 11 May 2010

EUROPEAN COMMISSION

JRC

Analytical expressions in REFIT include storage term of Ikeda & Carpenter

Moderator resolution function

ICTP-IAEA 10 and 11 May 2010

Resonance broadening

Total cross section & transmission + time-of-flight

ICTP-IAEA 10 and 11 May 2010

15_

Transmission setup, sample holder and neutron detector

Total cross section & transmission + time-of-flight

ICTP-IAEA 10 and 11 May 2010

Transmission data and (REFIT, ²⁴¹Am)

Resonance analysis to obtain resonance parameters from which cross section may be reproduced under any required circumstances

Gas model

Crystal lattice

17

Neutron capture and time-of-flight

A neutron is absorbed Nucleus decays: cascade of gamma-rays

Principle: detection of gamma-rays Needed: gamma detectors, detection efficiency Concerns: gamma-cascades vary with energy Gamma-ray angular distribution

Normalization/fluence measurement

fluence distribution as function of energy Reference cross section or black resonance

Otherwise the issues also shown for transmission (background, deadtime, resolution functions, etc).

Neutron capture and time-of-flight

19

ICTP-IAEA 10 and 11 May 2010

ICTP-IAEA 10 and 11 May 2010

Total energy principle

C₆D₆ liquid scintillators

125° PHWT $\int R(E_d, E_\gamma) WF(E_d) dE_d = kE_\gamma$

Flux measurements (IC)

¹⁰B(n,α)
 ²³⁵U(n,f)
 These are standards with well known energy
 dependence and cross sections

Modify response with a weighing function so detection efficiency is proportional to the gamma-energy

Then detection efficiency depends on the total excitation energy (not on the details of the cascade) Efficiency is independent of E_n

For dipole transitions: possible gamma-angular distribution. No impact at 125 degrees!

$$Y_{exp} = N \frac{C'_{w} - B'_{w}}{C'_{\phi} - B'_{\phi}} Y_{\phi} \cong N \frac{C'_{w} - B'_{w}}{C'_{\phi} - B'_{\phi}} \sigma_{\phi}$$

Borella et al., NIMA 577(2007) 626

WF : from MC simulations

 $C_w(T_n) = \int C_c(T_n, E_d) WF(E_d) dE_d$

EUROPEAN COMMISSION Capture measurements: e.g. 103 Rh(n, γ)

ICTP-IAEA 10 and 11 May 2010

Normalization of capture data

ICTP-IAEA 10 and 11 May 2010

- C_6D_6 liquid scintillators : $C'_w B'_w$
- Flux measurements (IC) : C[']_φ B[']_φ
 ¹⁰B(n,α) < 150 keV
 - $-^{235}$ U(n,f) > 150 keV

Normalization constant N Saturated resonance - ¹⁹⁷Au : 4.9 eV - ¹⁰⁹Ag : 5.2 eV - • Resonance with : $\Gamma_n << \Gamma_v$ - Γ_n from transmisson - ⁵⁶Fe : 1.15 keV Internal normalization: \Rightarrow Reduction of systematic effects

Normalization: saturated resonance

ICTP-IAEA 10 and 11 May 2010

$$n\sigma_{tot} \gg 1 \text{ and } \sigma_{\gamma} \approx \sigma_{tot}$$

$$Y_{\gamma} \cong \frac{\sigma_{\gamma}}{\sigma_{tot}} (1 - e^{-n\sigma_{tot}}) + \dots$$

$$Y_{\gamma} \cong 1$$

$$\Rightarrow N \cong \frac{C'_{\phi} - B'_{\phi}}{C'_{w} - B'_{w}} \frac{1}{\sigma_{\phi}}$$
N is independent of :
• target thickness of reference sample
• nuclear data

 $σ_φ$: only the relative energy dependence is required ⇒¹⁰B(n,α) ~ 1/v

$$\frac{{\sf U}_{Y_{exp}}}{{\sf Y}_{exp}} \, \le 2 \, \%$$

23

Yield

Normalization to 1.15 keV resonance of ${}^{56}Fe(n,\gamma)$

ICTP-IAEA 10 and 11 May 2010

1160

	0 15
ORELA $\Gamma_{\gamma} = 574 \text{ meV}$	WITO * Y _{exp} REFIT
Transmission Perey et al. : Γ_n = 61.7 ±0.9 meV	0.10
Capture (thin + thick sample) Macklin : Γ_n = 61.8 \pm 1.9 meV	Periode → 0.05 -
Use the well known iron resonance at 1.15 keV for which Γ_n is very well established. Iron alloyed or sandwiched with the sample of interest to minimize differences in detection efficiency	0.00 1140 Neutron Energy / eV

 \Rightarrow Uncertainties of 2% can be reached

25

ICTP-IAEA 10 and 11 May 2010

Measurement of the associated gamma-rays Very selective (indirect)

Access to angle-integrated cross section

ICTP-IAEA 10 and 11 May 2010

Germanium detectors 8 x 8 cm Ø by 8 cm long, Δt ~9.7 ns

GELINA, time-of-flight, 200 m flight path, $\Delta E_n/E_n=1$ keV @ 1 MeV, direct flux configuration, 800 Hz, 550 n/cm2/s

Measurement normalized to ²³⁵U(n,F)

Compensation for angular distribution by Gaussian quadrature using weighted sum of $d\sigma/d\Omega$ at 110 and 150 degrees

Elemental sample produced at IRMM

Aiming for $\Delta\sigma/\sigma$ = 5% below 5 MeV

Method

ICTP-IAEA 10 and 11 May 2010

Setup

ICTP-IAEA 10 and 11 May 2010

GAINS @ FP3/200m

28

Use of digitizers w. HPGe

Inelastic angular distributions

JRC

EUROPEAN COMMISSION

E. Sheldon and D.M. van Patter, Rev.Mod.Phys. 38(1966)143

Angular distribution of gammas

Sample TP-NP 08/10

ICTP-IAEA 10 and 11 May 2010

Metrological information Na disc Ø80 x 4mm (Can N°2)

Total mass:	19,44± 0.04 g
Ø	$79,80 \pm 0.08 \text{ mm}$
Thickness:	$4.23 \pm 0.08 \text{ mm}$
Area:	$50,01 \text{ cm}^2$
Mass/area	0,389 g/cm ²
Density	0,92 g/cm ³ (Theoreti

Metallic sodium sample prepared by André Moens at IRMM

cal density: 0.97 g/cm³)

Preparation method

Cutting, Pressing, Mechanical Rolling (sandwich-method) and Punching. Note: All mechanical transformations done under petrol. Determination dimensions + weighing under inertgas atmosphere. Canning Na-disc in Al-can under Ar-atmosphere. Closure of the cans was performed by a gluing method using "UHU plus".

Chemical analyses

Alfa Aesar, Lot D11S201 – Sodium ingot, 99.8% (metals basis)

Normalization to fission

Y: yield above threshold, YA: yield below threshold (linear extrapolation)
YB: fragments stopped in the deposit (not shown) YB/(Y+YA+YB) = 0.105(7) t/(mg/cm2)
YB: measured by Budtz-Jörgensen Nucl.Instrum.Meth. 236(1985)630

Normalization: sample preparation

ICTP-IAEA 10 and 11 May 2010

235U

Fission deposit Evaporated UF₄ Alpha-counting High purity

34

Roger Eykens Andre Moens Marc Peeters Anna Stolarz

Peter Schillebeeckx

Sample preparation and characterization

35

ICTP-IAEA 10 and 11 May 2010

P. Schillebeeckx et al., NIM A 613(2010)378

Sample preparation and characterization

36

ICTP-IAEA 10 and 11 May 2010

ICTP-IAEA 10 and 11 May 2010

Sample production and characterization

A 4 - --- 0/

 $\sim (2 \sim)$

Activity to atoms
lass spectrometry
5% activity: U-234

37

15 November 1985	Alom%	ACC (2S)	Mass spectrometry 65% activity: U-234	
U-234	0.0626	0.0025		
U-235	99.8266	0.0044		
U-236	0.0365	0.0027	Quantity	Value (1s)
U-238	0.0739	0.0025	Decay constant	8.78(10) 10 ⁻¹⁷ U/s
Richter 23 March 2009	Atom%	Acc (2s)		
U-234	0.06389	0.00014		
U-235	99.82275	0.00020		
U-236	0.03768	0.00007	Quantity	Value (1s)

More accurate new value: +1% and 0.3% uncertainty

Example ²³Na

38

ICTP-IAEA 10 and 11 May 2010

Example ²³Na, 440 keV

ICTP-IAEA 10 and 11 May 2010

Example ²³Na, 1636 keV

Activation cross section measurements

ICTP-IAEA 10 and 11 May 2010

Neutron source 7MV Van de Graaff accelerator

Binary reactions for quasi monoenergetic neutrons ⁷Li(p,n)⁷Be, ³H(p,n)³He, ³H(d,n)⁴He reaction

High intensity compared with time-offlight, but only one energy per measurement

Solid-state Ti/T

Samples Both natural and enriched

Example ²⁴¹Am(n,2n)²⁴⁰Am

Neutron energy and flux monitoring

The neutron fluence rate was determined by the $^{27}\text{Al}(n,\alpha)^{24}\text{Na}$ ENDF/B-VI standard cross section

The neutron flux density distribution were determined by the spectral index method

¹¹⁵In(n,n²)^{115m}In, ⁵⁸Ni(n,p)⁵⁸Co,
 ²⁷Al(n,p)²⁷Mg, ²⁷Al(n,α)²⁴Na,
 ⁵⁶Fe(n,p)⁵⁶Mn, and ⁹³Nb(n,2n)^{92m}Nb

distinct energy thresholds time-of-flight spectrum measurements.

7 MV Van de Graaff accelerator

ICTP-IAEA 10 and 11 May 2010

Single-user facility, 100h/w 6 different beam lines 0.1 - 10 & 13-21 MeV Li(p,n), T(p,n), D(d,n), T(d,n)

Fission Activation measurements light charged particles Flux (BIPM) Calibration of detectors

Irradiation setup L3 beamline with Ti/T target Light weight sample holder

Sample preparation

ICTP-IAEA 10 and 11 May 2010

9 samples

- 32.2 to 42.2 mg ²⁴¹Am (AmO₂)
- 0.3 to 0.4 g AI_2O_3 matrix
- Ø =12.2 mm, height=1.6 to 2.1 mm
- 5 GBq/piece, 10 mSv/h contact

Infiltration technique (JRC-ITU, Karlsruhe) :

- Porous alumina granules made by powder metallurgy
- Am infiltration with a nitrate solution
- Drying/calcination

Nästren, Holzhäuser, Fernandez, Brossard, Wastin, Ottmar, Somers

43

Experimental procedure

Schematic (n,2n) process and level scheme

ICTP-IAEA 10 and 11 May 2010

Activity determination

Cooling time (h)

Counts per second per mg

Dead time ~ 10%

Results

46