

2141-9

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies

3 - 14 May 2010

IAEA Collection of PC-Based Nuclear Reactor Simulators for Educational Purposes

Bilbao Y Leon S. *IAEA Vienna AUSTRIA*

IAEA COLLECTION OF PC-BASED NUCLEAR REACTOR SIMULATORS FOR EDUCATIONAL PURPOSES

Sama BILBAO Y LEON S.Bilbao@iaea.org

IAEA/ICTP Workshop on Nuclear Reaction Data for Advanced Reactor Technologies ICTP, Trieste, May 3 – 14, 2010

1. INTRODUCTION

- Computer based tools are becoming the state of the art for learning about Nuclear Power Plants, particularly about Water Cooled Reactor.
- The IAEA PC-based simulators are designed to provide insight and understanding of the general design and operational characteristic of various power reactor systems.
- The simulators provide the general response characteristic of PWR, BWR, WWER, PHWR and have illustrative screens to provide the plant response information.
- Focus on education, not licensing or reactor operator training, etc.

2. SIMULATOR TYPES

Replica Full Scope Simulators

Plant operation in a control room environment

Procedure based, cognitive skill based, team work

2. SIMULATOR TYPES

Classroom/Desktop Simulators

- Configuration suited to classroom & self learning tool as complement to textbooks and manuals.
- Provides knowledge of dynamic behavior
- Provides subsystem training, as well as overall plant training (startup, shutdown, malfunctions).

International Atomic Energy Agency

3. IAEA PC-based Simulators Models and Simulation

- Mathematical models of all systems have been developed to simulate the dynamic features of the NPP
- □ They include:
 - Mathematical Model of Reactor System
 - Mathematical Model of Reactor Coolant
 - Mathematical Model of Steam & Feedwater
 - Mathematical Model of Turbine Generator
 - Mathematical Model of Overall Unit System
- □ PC-based

Manuals describe all models in full detail

Role of PC-based Simulators

Provide initial educational training to all NPP personnel before NPP is built & full scope simulator in service.

Provide knowledge of system interfaces, integration and interactions.

Complement training on a full scope, replica simulator.

PC-Based Simulator Characteristics

Relatively low cost and affordable.

- Can use highly portable, standard PC platforms.
- Math models are easily configurable and provide flexibility of use.
- Can use graphic icons, control pop-ups, time trends for user interfaces instead of hardwired panels.

4. Simulators Available in the IAEA Collection

PWR

- Advanced PWR
- **BWR**
- Advanced BWR
- **WWER-1000**
- PHWR
- □ Advanced PHWR (ACR-700)

[PWR Simulator]

- Developed by Micro-Simulation Technology of USA using the PCTRAN software.
- PCTRAN is a reactor transient and accident simulation software program that operates on a personal computer.
- Generic two-loop PWR with inverted U-bend steam generators and dry containment system
- It could be a Westinghouse, Framatome or KWU design with thermal output in the neighborhood of 1800 MWt (600 MWe).
- A single loop with the pressurizer is modelled separately from the other loop.

[PWR Simulator]

- Released in 1985
- Constantly upgrading its performance and expanding its capabilities.
- Normal & Abnormal operation
- □ Spent fuel pool simulator
- Severe accident operation:
 - ►TMI-2 Event
 - Large Break without ECCS
 - Station Blackout

[PWR Simulator]

Transient and Accident Analyses

- Uncontrolled Rod Bank Withdrawal
- □ Hot Full Power Rod Drop
- Moderator Dilution
- □ Startup of an Inactive RCP
- Reduction in Feedwater Enthalpy
- Excessive Load Increase
- □ Loss of Reactor Coolant Flow or Normal Feedwater
- □ Turbine Trip
- □ Steam Generator Tube Rupture
- □ Small and Large Break LOCA

PWR Simulator Display Screen

File Restart View Code Control Help

PWR Simulator (Radiation monitoring & Source term mimic)

File Restart View Code Control Help

PWR Simulator (Severe accident; Core-Concrete Interaction model)

[Advanced PWR]

- Developed by Cassiopeia Technologies Ins. (CTI)
- Largely based on a 600 MW(e) Passive PWR Design, similar to AP-600.
- Reactor Controls based on Korean Standardized 1000 MW PWR Design –Mode K
- SG pressure control to maintain setpoint at 5.7 Kpa
- Overall Unit Control allows Reactor-Leading or Turbine-Leading Mode
- Passive Systems modeled to demonstrate LOCA mitigation

[Advanced PWR] **Key features**

- Larger core, resulting in lower (25 % less) power density
- Lower fuel enrichment, and the use of radial reflectors for better neutron economy;
- Longer fuel cycle;
- About 15 % more safety margin for DNB and LOCA;
- Reduced worth control rods to achieve load following capability without substantial use of boron;
- Passive core cooling system which includes core depressurization, SI, and residual heat removal;
- Passive containment cooling system;
- In-vessel retention of the molten core in the very unlikely event of a core melt accident. International Atomic Energy Agency

[Advanced PWR] Basic operations & Transient recovery

- Plant load manoeuvring reactor lead
- Plant load manoeuvring turbine lead
- Power level reduction to 0% FP
- Reactor trip and recovery
- **U** Turbine trip and recovery

[Advanced PWR] 20 Malfunction Transient Events

- Fail closed all feedwater level control valves
- FW LCV#1 fails open / closed
- Main BFP trips
- □ PRZR pressure relief valve (CV22) fails open
- Loss of 2 RC pumps in loop 1
- 100% main steam header break
- RC hot leg #1 LOCA break etc

Passive PWR Simulator Display Screen (Overview)

Passive PWR Simulator Display Screen (Core cooling)

Passive PWR Simulator Display Screen (Rods & Reactivity)

Passive PWR Simulator Display Screen

Reactor Trip	Turbine Trip	RC Press Lo Lo	Step Back Req'd	Setback Req'd	Turbine Runback	Gen Breaker Opn	Labview
Hi Neutron Pwr	RC Press Hi Hi	Coolant Flow Lo	Stm Gen Level Lo	PRZR Lvl Hi	Low Fwd Pwr Trip	Main BFP(s) Trip	CASSIM
Hi Neut Pwr LogR	i Neut Pwr LogR RC Press Hi		Stm Gen Level Hi	Turbine Gov in Man	Loss RC Pmp(s)	Malfunction Active	31352

REACTOR TRIP PARAMETERS

FIRST OUT	SCRAM CAUSES	SDS Reactor Trip Setpoint						
0	Low Coolant Pressure Trip	For High Neutron Flux						
0	Low Steam Generator Level Trip	REACTOR STEPBACK CAUSES REACTOR SETPBACK CAUSES						
0	High Coolant Pressure Trip	Hi PC Pressure Main Steam Header Press Hi						
0	High Neutron Flux Trip							
0	High Log Rate Trip	Loss of 1 RC Pump Hi Pressurizer Level						
0	Low Coolant Flow Trip	Loss of 2 RC Pumps Manual Setback in progress						
0	Low Pressurizer Level Trip	Hilog Rate In Steam Generator Level						
0	Low Feedwater Discharge Header Pressure Trip							
0	High Steam Flow Trip	Manual Stepback O Lo Deaerator Level						
0	Departure from Nucleate Boiling (DNB) Trip	O Hi Zone Flux						
0	Containment High Pressure Trip	Hi Zonal Flux						
0	Manual Trip	Press to clear Press to clear						

Trip Parameters	Reactor Neutron Pwr (%)	Reactor Thermal Pwr(%)	Generator Output(%)	Primary Coolant Pressure (kPa)	Core Flow (kg/s)	Main STM Press BOP STM Flow	5739.8 1076.4	Freeze	Run	Iterate
Reactor Trip Turbine Trip	99.99	100.36	101.05	15515.00	9206.13	FW Flow Fuel Temp	1020.9 484.2	IC	Malf	Help

Passive PWR Simulator Display Screen (Trip Parameters)

[BWR Simulator]

Developed by Cassiopeia Technologies Inc. (CTI),

- Represents a generic 1300 MW(e) BWR with internal recirculation pumps and fine motion control rod drives.
- Containment model based on ABWR added in 2008
 - Drywell and wetwell with the suppression pool

□ Improvement on the reactor level response

Implement the logic for ABWR Rx internal pump trips and runbacks

[BWR Simulator] Simulator display screens

- □ BWR plant overview screen
- BWR control loops screen
- BWR power/flow map & controls screen
- □ BWR reactivity & controls screen
- □ BWR scram parameters screen
- BWR turbine generator screen
- BWR feedwater and extraction steam screen
- BWR Containment

[BWR Simulator] Malfunction 1

- Loss of feedwater : both FW pumps trip
- Increasing/Decreasing core flow due to flow control failure
- Increasing/Decreasing steam flow from dome due to pressure control failure
- □ TBN throttle PT fails low
- Safety relief valve (SRV) on one main steam line fails open
- □ Feedwater level control valve fails open
- □ Turbine trip with bypass valve failed closed

[BWR Simulator] Malfunction 2

- Inadvertent withdrawal of one bank of rods
- Inadvertent insertion of one bank of rods
- Inadvertent reactor isolation
- Loss of feedwater heating
- Power loss to three reactor internal pumps
- □ Steam line break inside drywell
- Feedwater line break inside drywell
- Reactor vessel bottom break 3000 kg/sec LOCA
- Load rejection

Active BWR Plant (Overview)

Active BWR Simulator Display Screen (Overview)

Active BWR Simulator Display Screen (Turbine Generator)

Active BWR Simulator Display Screen (Feedwater & Ext steam)

Active BWR Simulator Display Screen (Control Loops)

Active BWR Simulator Display Screen (Power/Flow map & Control)

Active BWR Simulator Display Screen (Reactivity & Setpoints)

Active BWR Simulator Display Screen (Scram Parameters)

[Advanced BWR Simulator]

Developed by Cassiopeia Technologies Incorporated (CTI), Canada

Largely based on GE ESBWR passive BWR design

Released in 2009

[Advanced BWR Simulator] Simulator display screens

- Passive BWR plant overview screen
- Passive BWR control loops screen
- □ Passive BWR power/flow map & controls screen
- Passive BWR reactivity & controls screen
- Passive BWR scram parameters screen
- Passive BWR turbine generator screen
- Passive BWR FW and extraction steam screen
- Passive BWR Containment
- Passive BWR cleanup/shutdown cooling screen

[Advanced BWR Simulator]

Maneuver, shutdown, startup

- Power maneuver: 10% power reduction and return to full power
- Reduction to 0% full power and back to 100% full power
- □ Turbine trip and recovery
- Reactor scram and recovery
- Reactor Shutdown Cooling
- Reactor Startup and Warmup

[Advanced BWR Simulator] Malfunction 1

- Loss of feedwater : both FW pumps trip
- Increasing/Decreasing core flow due to flow control failure
- Increasing/Decreasing steam flow from dome due to pressure control failure
- □ TBN throttle PT fails low
- Safety relief valve (SRV) on one main steam line fails open
- □ Feedwater level control valve fails open
- □ Turbine trip with bypass valve failed closed

[Advanced BWR Simulator] Malfunction 2

- Inadvertent withdrawal of one bank of rods
- Inadvertent insertion of one bank of rods
- Inadvertent reactor isolation
- Loss of feedwater heating
- Power loss to three reactor internal pumps
- Steam line break inside drywell
- Feedwater line break inside drywell
- Reactor vessel bottom break 3000 kg/sec LOCA
 Load rejection

Passive BWR Simulator (Overview)

Passive BWR Simulator (Control loops)

Passive BWR Simulator (Power/Flow map & controls)

Passive BWR Simulato⁴⁶(Reactivity & Setpoints)

Passive BWR Simulator (Turbine Generator)

Reactor Scram	Turbine Trp	Reactor Pres V. Lo	Rods Run-in Read	Hi Dryw P/LOCA	Turbire Runback	Gen Breaker Opn	Labview
HI Neut Pwr vs Flow	Reaulur Pres V. Hi	Reactor Fres Lo	Reactor Level Lo	Reactor Lvl V. Lc	Lo Turb Fwd Pwr	FW Pump(s)Trb	19
Reactor Isolated	eactor Isolated Reactor Press Hi Core Flow Lo Reactor		Reactor Level H	Turbine Gov. in Man	Loss RIP Pmp(s)	Malfunction Active	2056
PCC F C C C C C C C C C C C C C	Pool 2.61 35.0 P 101.0 main steam flow F 2128.5 0.0 CPV F 0.0 CPV L3 L3 L2 L1.5 L1 GDCS Inject V F 0.0 F 0.0 F 0.0 CPV	287.5		0.61 R 15C.0 35.0 10C.0 75.0 35.0 75.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 35.0 25.0 25.0 35.0 25.0 25.0 2000.0 200.0 200.0 2000.0 2000.0 2000.0 2:40:23 FM ADS/LOCA/Stm 3000.0 2:000.0 1500.0 1500.0 5:0 1000.0 500.0 200.0 0.0 2:48:23 FM Resolution Max Out Max Out Max	3:11:35 PM (%) 3:11:35 PM (%) TDone Pressure (KPaa) F 0:11:35 PM (%) Strk/FW Brk Flows (%) 3:11:35 PM (%) Strk/FW Brk Flows (%) (%) Strk/FW Brk Flows (%) Strk/FW Brk Flows (%	Drywell/WetwellPres 180.0 - 150.0 - 100.0 - 50.0 - 0.0 - 2.48:23 PM 3:11:35 Reactor Level/Drywell/Wetw 25 - 20 - 15 - 10 - 5 - 0 2.40:20 PM 3:11:35 FW/GDCS/EQ/IC Flows to R 5000 - 4000 - 3000 - 500 - 10 - 5 - 0 2.48:23 PM 3:11:35 FW/GDCS/EQ/IC Flows to R 5000 - 4000 - 3000 - 10	s (vPcs)
Containment •	Reactor Neutron Pwr (%)	Reactor Gene Thermal Pwr(%)	rator Output(%) Rea Fressur	re (kFa) Core Flow (kg/s)	BOP STM Flow 2 FW Flow 2	20.8 Freeze Run 123.5 IC Not	Iterate Feb
Reactor Trip Turbine Trip	100.09	101.89	97.33	7175.05	Huel Temp	487.4	Ticth

Passive BWR Simulator (Containment)

[WWER-1000 Simulator]

Originally developed by Moscow Engineering and Physics Institute, Russian Federation for personnel training.

The present configuration of the Simulator is able to respond to operating conditions normally encountered in WWER-1000 power plant operation.

□ Water Water Energy Reactor 1000 MWe

□ Manual updated in 2009

[WWER-1000 Simulator]

□ Ten display pages are available in the Simulator.

- Reactivity control page (CPS),
- Enunciator page (TAB),
- Primary circulation loop page (1C),
- Feed and bleed system page (TK),
- Process support systems page (TQ),
- Extraction water cooling system page (TF),
- Secondary circulation loop page (2C),
- Trends page (GRP),
- Reactor core parameters page (PAR),
- Three dimension diagram page (3D).

International Atomic Energy Agenc

[WWER-1000 Simulator]

Tasks - WWER-1000 Reactor Department Simulator (Loading 1)							
WWER-1000 Reactor Department Simulator (Loading 1)	asks 🖸 🚊 📠 🖻 🗠 🖼 🤶 🖓						
A01_ burnup_1load (NOfailure of ex-core monitoring system)	CO8_Hot shutdown and start up with single failure_3 MOC						
A02_ burnup_1load (failure of ex-core monitoring system)	C09_Hot shutdown and start up without failures EOC						
A03_Reactivity effects for BOC of 1load	C10_Hot shutdown and start up with single failure_1 EOC						
A04_Reactivity effects for EOC of 1load	C11_Hot shutdown and start up with single failure_2 EOC						
A05_Xe (power and offset) oscils for BOC of 1load	C12_Hot shutdown and start up with single failure_3 EOC						
A06_Xe (power and offset) oscils for EOC of 1load	D01 MCP trip (1of3&1of4)						
A07_Xe (power and offset) oscils for MOC of 1load	D02 Trip of two adjacent MCP						
A08_Xe oscils of offset (N=const) for BOC_1load_1h delay	D03 Closure of turbine stop-valve						
A09_Xe oscils of offset (N=const) for BOC_1load_4h delay	D04 Trip of 1 out of 2 FWP						
A10_Xe oscils of offset (N=const) for BOC_1load_8h delay	D051 of 4 MCP jams						
A11_Xe oscils of offset (N=const) for EOC_1load_1h delay	D07 Loss of feed water						
A12_Xe oscils of offset (N=const) for EOC_1load_4h delay	Rated state operation. 1load						
A13_Xe oscils of offset (N=const) for EOC_1load_28h delay							
A13_Xe oscils of offset (N=const) for EOC_1load_8h delay							
A14_Xe oscils of offset (N=const) for MOC_1load_1h delay							
A15_Xe oscils of offset (N=const) for MOC_1load_4h delay							
A16_Xe oscils of offset (N=const) for MOC_1load_8h delay							
C01_Hot shutdown and start_up without_failures at BOC							
C02_Hot shutdown and start up with single failure_1 BOC							
C03_Hot shutdown and start up with single failure_2 BOC							
C04_Hot shutdown and start up with single failure_3 BOC							
C05_Hot shutdown and start up without failures MOC							
C06_Hot shutdown and start up with single failure_1 MOC							
C07_Hot shutdown and start up with single failure_2 MOC							

List of training tasks

WWER-1000 NPP Diagram

International Atomic Energy Agency

WWER-1000 Simulator (Control & Protection System)

WWER-1000 Simulator (Reactivity Control Display Screen)

WWER-1000 General View of Steam Generator

International Atomic Energy Agency

WWER-1000 3D Diagram (⁵⁶ Ore Output temperature)

[PHWR Simulator]

 Developed by Cassiopeia Technologies Inc.,
 Largely based on the CANDU-9 system, with a capacity of approximately 900 MW(e)

[PHWR Simulator]

- □ Ten process screens that provide essential system parameters, along with dynamic trends:
 - 1. CANDU Overview
 - 2. Shutoff Rods
 - 3. PHT (Primary Heat Transport System)
 - 4. PHT Pressure/Inventory Control
 - 5. Boiler Feedwater
 - 6. Turbine Generator
 - 7. RRS/DPR (Reactor Regulation Sys / Demand Power Regulator)
 - 8. UPR (Unit Power Regulator)
 - 9. Reactivity Status & Control Display
 - 10 Real-time trends.

PHWR Simulator (Overview)

PHWR Simulator (PHT main circuit)

PHWR Simulator (PHT Feed & Bleed)

PHWR Simulator (Reactivity control)

PHWR Simulator (SG level control)

[Advanced PHWR Simulator]

- Developed by Cassiopeia Technologies Inc. from Canada
- □ Largely based on the ACR-700 system.
- □ Two major differences:
 - The use of slightly enriched uranium fuel (2.1 wt% U-235 in 42 pins of the fuel bundle),
 - Light water (as opposed to heavy water D2O) as the coolant, which circulates in the fuel channels

[Advanced PHWR Simulator] ACR Basic operations & Transient recovery

- Plant load manoeuvring reactor lead
- Plant load manoeuvring turbine lead
- Power level reduction to 0% FP
- Reactor trip and recovery
- **U** Turbine trip and recovery

[Advanced PHWR Simulator] ACR Malfunction Transient Events

- FW LCV #1 fails open
- Main BFP trips
- Turbine throttle PT fails low
- Turbine spurious trip
- One band of MCA rods drops
- Loss of one RC pump P1
- Loss of 2 PHT pumps
- Primary Coolant RIH #1 LOCA Break, etc

REACTOR TRIP PARAMETERS

Trip Parameters	Reactor Neutron Pwr (%)	Reactor Thermal Pwr(%)	Generator Output(%)	Primary Coolant Average ROH Pressure	Core Flow (kg/s)	Main STM Press BOP STM Flow	6399.8 1167.4	Freeze	Run	Iterate
Reactor Trip Turbine Trip	100.00	99.98	100.00	12068.14	7139.73	FW Flow Fuel Temp	1111.8 714.8	IC	Malf	Help

Advanced PHWR Simulator (Reactor trip parameters)

Advanced PHWR Simulator (Turbine Generator)

5. Obtaining the Simulators

Available free of charge to institutions in all IAEA Member States for non-profit education and training

http://www.iaea.org/NuclearPower/Education/Simulators/

Contact : S. Bilbao@iaea.org

6. Training

 IAEA organizes courses/workshops periodically
October 12~23, 2009, International Centre for Theoretical Physics (ICTP), Trieste, Italy

Customized courses and workshops organized at the request of interested organizations

7. Conclusion

- Technology training is one of the key priorities of IAEA
- IAEA has developed a suite of PC-based simulators that currently contains
 - A. Active and Advanced PWR,
 - B. Active and Advanced BWR,
 - C. WWER-1000,
 - D. PHWR and Advanced PHWR.

7. Conclusion

These simulators, including the associated documentation are distributed at no cost to interested parties in IAEA Member States.

Furthermore, the IAEA sponsors training courses and workshops on a regular basis, and would also be willing to support additional training events on this topic at the request of Member States.

Acknowledgements

The IAEA appreciates the contributions of:

- ✓ Dr. Bereznai, University of Ontario Institute of Technology, Canada
- ✓ Dr. Lam, Cassiopeia Technologies Incorporated, CTI, Canada
- ✓ Dr. Po, Microsimulation Technologies, USA
- ✓ Dr. Tikhonov, Moscow Engineering and Physics Institute, Russia

...atoms for peace

International Atomic Energy Agency