

2142-26

Advanced Conference on Seismic Risk Mitigation and Sustainable Development

10 - 14 May 2010

History of Modern Earthquake Hazard Mapping and Assessment in California Using Deterministic or Scenario Approach

> Lalliana Mualchin California Department of Transportation USA

History of Modern Earthquake Hazard Mapping and Assessment in California Using Deterministic or Scenario Approach

Lalliana Mualchin

Retired Chief Seismologist California Department of Transportation <u>mualchin@hotmail.com</u>

ICTP Advanced Conference on Seismic Risk Mitigation and Sustainable Development 10-14 May, 2010 Trieste, Italy

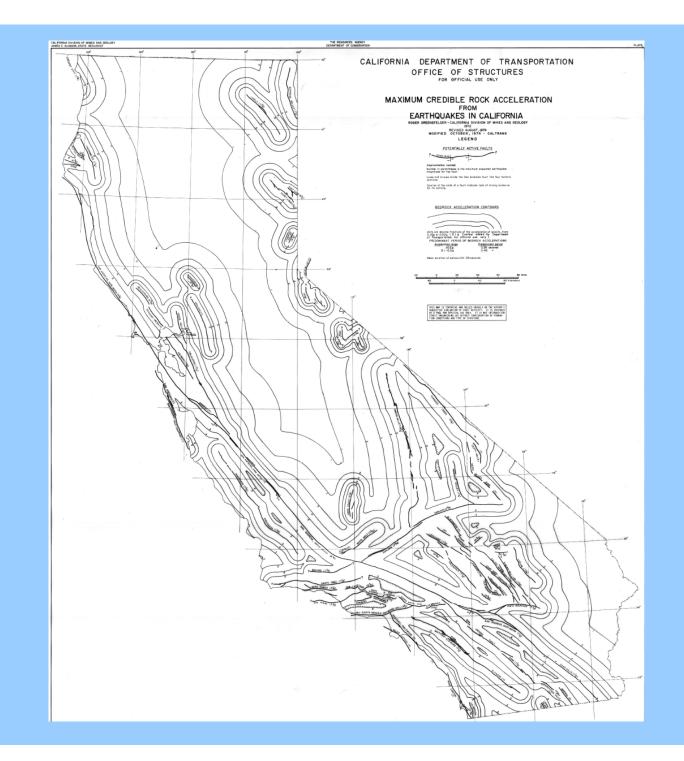
Seismic Hazard

- Purpose-Driven
- Emergency Response, Insurance, etc
- Subjective
- Engineering

Motivators

- Damaging Earthquakes
- Proportional to Level of Disaster
- Available Funding for Solution

Important California Earthquakes


- Pre-1925 Santa Barbara earthquakes First US Seismic Code of 1927
- 1933 Long Beach, M6.3
- **Field Act: EQ-resistant schools**
- 1971 San Fernando, M6.5

Hospital Seismic Safety Act: to withstand EQs

First Seismic Hazard Map published by Calif. Div. Mines & Geology (CDMG)

First Edition California Seismic Hazard Map

- Fault-based EQ Sources
- Used Maximum Credible Earthquake (MCE) Concept
- Used Peak Acceleration Attn Curves using available data & theory
- Later called "Deterministic"
- Accepted & Used for years
- By Calif. Dept. Trans. (Caltrans)

Comments on the First Edition Map

- EERI objected its publication
- Already released by the State Geologist
- Well accepted by public & private agencies, consultants, etc.
- Confidence in the applications

Data for First Edition Map

- No of Faults Used: 77
- Quaternary Faults
- Dip, Width, or Type of Faults Not Considered

Clarifications

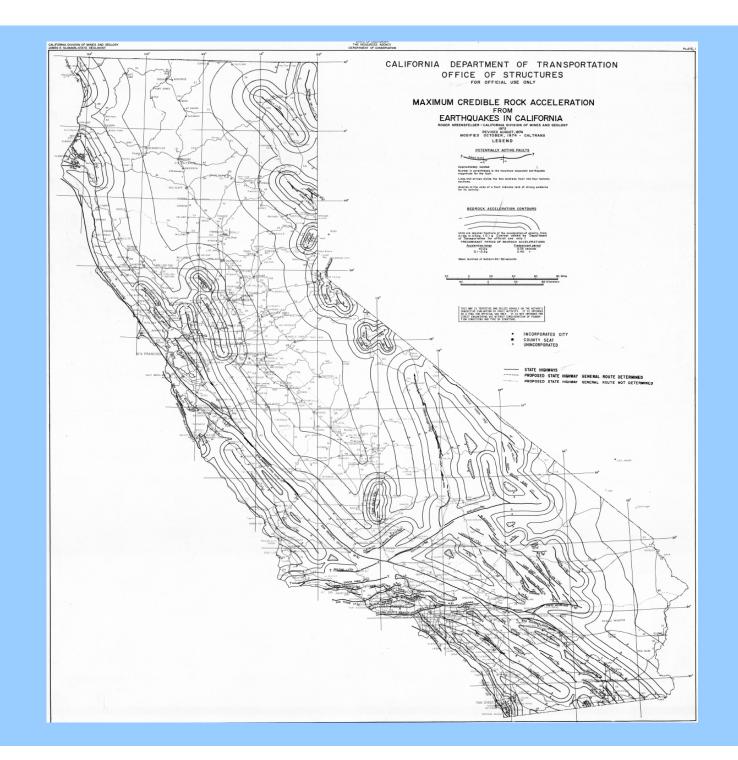
- DSHA used Probability
- EQ rate not explicitly considered
- Single EQ magnitude label misleading
- Smaller EQs considered automatically
- Step by Step Procedure

Living Document

- Revise or Update
- Incorporate New Information & Knowledge
- Use Emerging New Technology
- Evaluate Usefulness or Effectiveness

Related Information

- 1976: First USGS Probabilistic Seismic Hazard Map
- 1982: Second USGS Probabilistic Seismic Hazard Map
- 1988: PSHA-Report of the Panel on Seismic Hazard Analysis, National Research Council

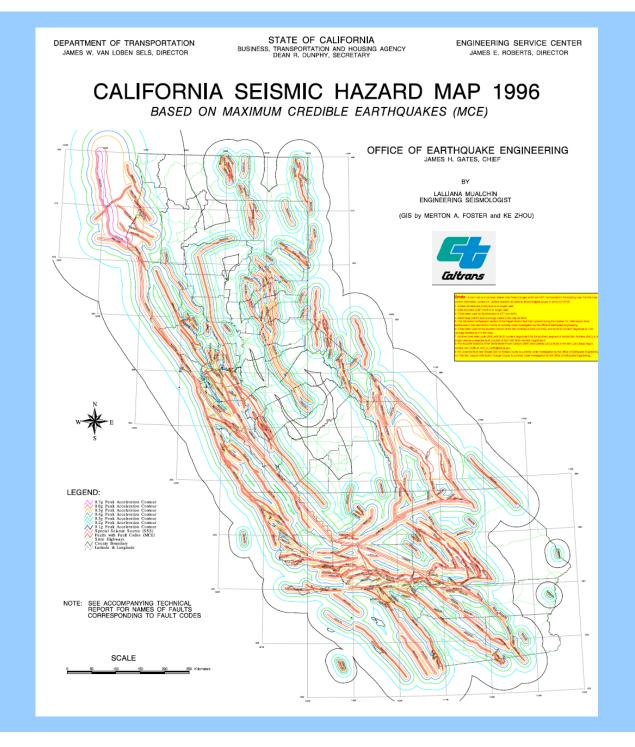

Second Edition California Seismic Hazard Map-1

- 1985 October: Ready for publication as CDMG Map Sheet 45
- Publication Delayed
- 1989 May: Ad-hoc Committee on "Deterministic/Probabilistic Procedures for Evaluating Seismic Hazard" meeting put the map in limbo
- List of MCEs to be published as CDMG Note 34, already referenced in Title 24 CAC

Second Edition California Seismic Hazard Map-2

- 1989 October: Loma Prieta EQ caused a great damage in the San Francisco area
- Board of Inquiry of the EQ got the Map

• 1992: CDMG released the Map at the demand of Caltrans, seven years after its completion


Data for Second Edition Map

- No of Faults Used: 234
- Late Quaternary Faults
- Dip, Width, or Type of Faults Considered
- Deep-seated or Blind Faults (1st time)
- Northridge Hills fault dipping south as a possible 1994 Northridge EQ source!
- New Attenuation Curves
- Magnitude (¼ unit)

Third Edition California Seismic Hazard Map

- Used GIS technology
- Easily associated with bridges & other structures
- Most visited Caltrans website

http://www.dot.ca.gov/hq/esc/earthquake_engi neering/Seismology/

Data for Third Edition Map

- No of Faults used: 275
- Late Quaternary faults
- Dip, Width, or Type of faults considered

Comments for Third Edition Map

• Type of faults still not available for some faults

• Dip & Width also still not available for some faults

Updating & Errata for Third Edition Map

- New faults, including the San Joaquin Hills fault in Orange County
- Faults no longer used
- Fault letter codes corrections

Opinions

- Problems in the national map
- Are map developer responsible?
- Authoritative vs Research project map
- More maps for different applications

Use of the Map

• In preparing bridge design spectrum, including incorporation of site response

• Design spectrum shape/level as a function of MCE magnitude

• May use as a starting source model for ground motion simulations

Personal Experience with PSHA

- San Onofre NPP Christianitos fault by Gutenberg-Richter equation, inadequate data.
- **Diablo Canyon** NPP Hosgri fault, no problem with DSHA and problem with PSHA.
- **Bolsa Chica** Project Newport-Inglewood fault, unrealistic result by PSHA.
- **Hospital** Seismic Reports Too low hazard for Central Valley.
- California Seismic Hazard Map for Caltrans Critical input not available for many faults and PSHA results not correlated with proximity to earthquake source.

Unresolved points on PSHA

- Doubt on combining hazards in PSHA
- Not a return period but just a numerical probability
- Arbitrary 'p' percent exceedance probability in 't' years & return period
- Problems and lack of data in slip rate
- Physically unrealistic extreme ground motions for long return periods

Remarks on DSHA

- Strengths for DSHA/NDSHA
- Need to formalize DSHA/NDSHA

• Variability or Uncertainty wrt MCE

For DSHA & PSHA

- Refine magnitude estimates using regional empirical fault parametermagnitude relationships
- Use both empirical data & simulated ground motion estimates for continuity and confidence in practice
- When in doubt, err on the conservative side and avoid over-analysis

Personal Experience/Observation

- For Caltrans Toll Bridges
- San Francisco-Oakland Bay Bridge
- Caltrans Seismic Advisory Board

Concluding Remarks

- DSHA/NeoDSHA withstand the test of time for engineering applications!
- Incorporate source modelling & advanced simulations
- Use earthquake rate for "Risk Analysis" if & when required
- Open-mind, and avoid polarization & control of ideas in SHA

Recommendations

- DSHA demonstrated its stability and usefulness for engineering
- Neo-DSHA can be used for realistic ground motion estimates in conjunction with DSHA
- PSHA demonstrated its lack of credibility, intractable and costly method, and must be adjusted for engineering
- DSHA can be used for Seismic Risk Analysis if and when required*.

*Klugel, J.-U., Mualchin, L. and Panza, G. F. (2006): Eng. Geology: 88, 1-22.

THANK YOU!

*