

2144-2

Workshop on Localization Phenomena in Novel Phases of Condensed Matter

17 - 23 May 2010

Quantum and Classical Localization Transitions

John CHALKER

University of Oxford, Dept. of Theoretical Physics I Keble Road Oxford, OX1 3NP U.K.

QUANTUM AND CLASSICAL LOCALISATION TRANSITIONS

John Chalker

Physics Department, Oxford University

Work with

Adam Nahum in progress

M. Ortuño and A. Somoza Phys. Rev. Lett. 102, 070603 (2009)

Building on

J. Cardy and E. Beamond Phys. Rev. B 65, 214301 (2002)

I. A. Gruzberg, A. W. W. Ludwig and N. Read Phys. Rev. Lett. 82, 4254 (1999)

Outline

• Symmetry classes for random Hamiltonians

Discrete symmetries and additions to Wigner-Dyson classification

Network models

Quantum lattice models for single-particle systems with disorder

• Quantum - classical mapping

For class C network models

Applications

Spin quantum Hall effect and classical percolation

Spin quantum Hall effect in bi-layer systems

3D class C Anderson transition

Symmetry Classes

Dyson random matrix ensembles

Orthogonal with time-reversal symmetry Symplectic with time-reversal symmetry and Kramers degeneracy Unitary without time-reversal symmetry

Additional symmetry classes Altland and Zirnbauer 1997 Hamiltonian H 2×2 block structure + discrete symmetry Energy levels in pairs $\pm E$ $X^{-1}H^*X = -H$ (or $X^{-1}HX = -H$) Given $H\psi = E\psi$ define $\tilde{\psi} = X\psi^*$ (or $\tilde{\psi} = X\psi$) Then $H\tilde{\psi} = -E\tilde{\psi}$

'Class C' $\sigma_y H^* \sigma_y = -H$

Disordered Superconductors and Additional Symmetry Classes

Bogoliubov de Gennes Hamiltonian for quasiparticles

Singlet Superconductor

$$\mathcal{H} = \sum_{\alpha\beta} \left[h_{\alpha\beta} (c^{\dagger}_{\alpha\uparrow} c_{\beta\uparrow} + c^{\dagger}_{\alpha\downarrow} c_{\beta\downarrow}) + \Delta_{\alpha\beta} c^{\dagger}_{\alpha\uparrow} c^{\dagger}_{\beta\downarrow} + \Delta^{*}_{\alpha\beta} c_{\beta\downarrow} c_{\alpha\uparrow} \right]$$

with spin rotation symmetry $\Delta^{\mathrm{T}} = \Delta$
Put \mathcal{H} into standard form via $\gamma^{\dagger}_{\uparrow} = c^{\dagger}_{\uparrow} \qquad \gamma^{\dagger}_{\downarrow} = c_{\downarrow}$
hen
$$\mathcal{H} = \left(\downarrow^{\dagger} \downarrow^{\dagger} \downarrow^{\dagger} \right) \left[\begin{array}{c} h & \Delta \end{array} \right] \left(\begin{array}{c} \gamma_{\uparrow} \end{array} \right)$$

Tł

$$\mathcal{H} = \left(\begin{array}{cc} \gamma_{\uparrow}^{\dagger} & \gamma_{\downarrow} \end{array}\right) \cdot \left[\begin{array}{cc} h & \Delta \\ \Delta^{*} & -h^{\mathrm{T}} \end{array}\right] \cdot \left(\begin{array}{c} \gamma_{\uparrow} \\ \gamma_{\downarrow}^{\dagger} \end{array}\right)$$

Class C: spin rotation but no time-reversal symmetry

Special features of additional symmetry classes

In class C

- \bullet Structure in density of states $\rho(E)$ around E=0
- \bullet Critical behaviour in $\rho(E)$ at Anderson transition

Network Models

Ingredients

Model

Lattice of links and nodes

Evolution operator

 $W = W_1 W_2$

 W_1 : links W_2 : nodes

Disorder introduced via random distribution for link phases ϕ_l

Generalisations of network models

Amplitudes $z_i \rightarrow$ n-component vectorLink phases $e^{i\phi} \rightarrow n \times n$ unitary matrices

Without further restrictions: U(n) model

not time-reversal invariant, so member of unitary symmetry class

With discrete symmetries:

Class C: $\sigma_y H^* \sigma_y = -H$ so link phases \in Sp(n), with Sp(2) \sim SU(2)

For SU(2) model:

Quantum localisation maps onto classical localisation

SU(2) network model and classical random walks

Feynman path expansion for Green function $G(\zeta) = (1 - \zeta W)^{-1}$

$$[G(\zeta)]_{r_1,r_2} = \sum_{n-\text{step paths}} \zeta^n A_{\text{path}}$$

with weight $A_{\text{path}} \sim \prod_{\text{links}} U_{\text{link}} \begin{cases} \cos(\alpha) \\ \pm \sin(\alpha) \end{cases}^n$

SU(2) Averages

$$\langle U^n \rangle = \begin{cases} 1 & n = 0 \\ -1/2 & n = \pm 2 \\ 0 & \text{otherwise} \end{cases}$$

- keep only paths that cross each link 0 or 2 times.

Gruzberg, Ludwig and Read (1999); Beamond, Cardy and Chalker (2002)

Mirlin, Evers and Mildenberger (2003); Cardy (2005)

Quantum to classical mapping

Calculating Physical Quantities

Conductance

Evolution operator W eigenvalues $e^{i\varepsilon}$

density $\rho(\varepsilon)$

Classical system

Return probability p_n after *n* steps

transmission matrix t_{ij}

Landauer formula $G = \sum_{ij} |t_{ij}|^2$

Classical system

transmission probability $p_{i \rightarrow j}$

Mapping

Mapping

 $\rho(\varepsilon) = \frac{1}{2\pi} \left[1 - \sum_{n} p_n \cos(2n\varepsilon) \right]$

 $\langle |t_{ij}|^2 \rangle = p_{i \to j}$

Applications of Mapping

- In 2d: Spin quantum Hall effect and classical percolation
- Quasi-2D: Spin quantum Hall effect in bi-layer systems
- In 3D: class C Anderson transition

Spin Quantum Hall Effect

Random SU(2) link phases + uniform scattering angle α at nodes

Delocalisation transition as α varied

SU(2) network model and percolation

Quantum amplitudes + random SU(2) phases **Classical**

Classical probabilities $p = \sin^2(\alpha), 1 - p = \cos^2(\alpha)$

Consequences: $\xi_{Quantum} \sim |\alpha - \pi/4|^{-4/3}$ and $\rho(\varepsilon) \sim |\varepsilon|^{1/7}$ at $\alpha = \pi/4$

Gruzberg, Ludwig, Read

Spin quantum Hall effect in bi-layer systems

Expected scaling flow

Conductance vs. geometry

$$G\propto\sigma_{xx}$$

 $G \propto \sigma_{xy}$

in quantum Hall plateaus

Bi-layer simulations

Conductance σ_{xx} and σ_{xy} vs p

Hall conductance vs \boldsymbol{p} and size

3D Class C Anderson Transition

SU(2) network model on diamond lattice

Link directions and nodes chosen so classical walks are: short closed loops at p = 0 infinite trajectories at p = 1

Expect transition at $p = p_{\rm c}$

Very large simulations possible for classical walks

Insulator $p < p_{\rm c}$ walks have size $\sim \xi(p)$

 $\xi(p) \sim |p - p_{\rm c}|^{-\nu}$

Density of states

 $\rho(\varepsilon) \sim \varepsilon^2$

Critical point $p = p_c$ fractal walks, dimension d_f return probability $p_n \sim n^{-3/d_f}$ Density of states

 $\rho(\varepsilon) \sim |\varepsilon|^{(3/d_{\rm f})-1}$

 $\begin{array}{ll} \mbox{Metal} & p > p_{\rm c} \\ \mbox{free random walks} \\ \mbox{at distances} \gg \xi(p) \\ \mbox{Fractal dimension two} \\ \mbox{Ohm's law scaling} \end{array}$

$$G \propto \frac{\text{Area}}{\text{Length}}$$

3D Class C Simulations: Conductance

Scaling of conductance with sample size and correlation length

$$G(L,p) = f(L/\xi(p))$$
 with $\xi(p) \sim |p - p_{\rm c}|^{-\nu}$ and $\nu = 0.9985 \pm 0.0015$

See also: Kagalovsky, Horovitz and Avishai, PRL (2004)

Classical walks: return probability

Integrated return probability

 $N(s,p) = \sum_{t \ge s} P(s,p) = \xi(p)^{d_{\rm f}-3} h_{\pm}(s/\xi(p)^{d_{\rm f}})$

Scaling collapse: $d_{\rm f} = 2.53 \pm 0.01$

Classical walks: end-to-end distance vs. length

Critical at short distances, free walks at long distances

small s: $\langle R^2 \rangle \sim s^{2/d_{\rm f}}$ large s: $\langle R^2 \rangle \sim s$

What is universality class for these 3D walks?

Compare with collapse transition for polymers

Swollen phase: self avoiding walks $\langle R^2 \rangle \propto s^{1.18}$ Theta-point: $\langle R^2 \rangle \sim s$ Collapsed phase: $\langle R^2 \rangle \sim s^{2/3}$

Self avoidance + local attraction

In contrast, Ohm's law requires $\langle R^2(s)
angle \propto s$

for class C walks in metallic phase

Tricolour percolation and tricolour walks

- Pick lattice in which each edge of Wigner-Seitz cells is shared by three sites.
- Colour sites red, blue or green with probabilities p, q and 1 p q.
- Tricolour walks formed from edges where three colours meet.

Tricolour percolation and tricolour walks

- Pick lattice in which each edge of Wigner-Seitz cells is shared by three sites.
- Colour sites red, blue or green with probabilities p, q and 1 p q.
- Tricolour walks formed from edges where three colours meet.

On body-centred cubic lattice: [Bradley *et al.*, PRL (1992)]

- Some walks extended near p = q = 1/3
- All walks localised for *p*, *q* both small
- Exponent values match ones for class C walks

Continuum Theory

Generalise classical walks to n flavours

$$\mathcal{Z} = \sum_{\text{configs}} p^{n_{\text{left}}} (1-p)^{n_{\text{right}}} n^{n_{\text{loops}}}$$

Continuum Theory

Generalise classical walks to \boldsymbol{n} flavours

$$\mathcal{Z} = \sum_{\text{configs}} p^{n_{\text{left}}} (1-p)^{n_{\text{right}}} n^{n_{\text{loops}}}$$

Calculate $\mathcal{Z} = \mathcal{N} \prod_{l} \int d\vec{z}_{l} e^{-\mathcal{S}}$ with $e^{-\mathcal{S}} = \prod_{\text{nodes}} \left[p(\vec{z}_{A}^{\dagger} \cdot \vec{z}_{B})(\vec{z}_{C}^{\dagger} \cdot \vec{z}_{D}) + (1-p)(\vec{z}_{A}^{\dagger} \cdot \vec{z}_{D})(\vec{z}_{C}^{\dagger} \cdot \vec{z}_{B}) \right]$

Continuum limit CP(n-1) model

 $S = \int d^d \mathbf{r} \left| (\nabla - iA) \vec{z} \right|^2$ with $A = \frac{i}{2} (z^{*\alpha} \nabla z^{\alpha} - z^{\alpha} \nabla z^{*\alpha})$ with $|\vec{z}|^2 = 1$ and invariance under $\vec{z} \to e^{i\varphi(\mathbf{r})} \vec{z}$ Critical dimensions: $d_l = 2$ and $d_u = 4$. First order for $n > n_c$

see also: Candu, Jacobsen, Read and Saleur (2009)

Summary

Quantum-classical mapping

for class C localisation problems

Class C Anderson transition

Critical behaviour in density of states

Correspondence between quantum and classical localisation

Critical behavour known exactly for 2D classical problem

Classical problem:

efficient starting point for simulations in quasi-2D and 3D

3D transition: same universality class as tricolour walks

Continuum description

CP(n-1) model with $n \rightarrow 1$