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Outline

e Symmetry classes for random Hamiltonians

Discrete symmetries and additions to Wigner-Dyson classification

e Network models

Quantum lattice models for single-particle systems with disorder

e Quantum - classical mapping

For class C network models

e Applications
Spin quantum Hall effect and classical percolation
Spin quantum Hall effect in bi-layer systems

3D class C Anderson transition



Symmetry Classes

Dyson random matrix ensembles

Orthogonal

with time-reversal symmetry

Symplectic
with time-reversal symmetry

and Kramers degeneracy

Unitary

without time-reversal symmetry

Additional symmetry classes
Altland and Zirnbauer 1997

Hamiltonian H
2 X 2 block structure
+ discrete symmetry
Energy levels in pairs +F£

X 'H*X =—-H
(or X 'HX = —H)

Given Hy = E
define QL = X" (or QL = X))

Then H?ﬁ = —E?ﬁ

‘Class C’ UyH*ay = —H



Disordered Superconductors and Additional
Symmetry Classes

Bogoliubov de Gennes Hamiltonian for quasiparticles

Singlet Superconductor

_ i i (A *
=) {haﬁ (CarCap + CaiCp)) + RaplarCy + Aaﬁcmcad
af
with spin rotation symmetry AT = A

Put ‘H into standard form via ﬂ = ¢ Y =€

Then

H:(ﬂ %)' Ah* _irf | Z{r

Class C: spin rotation but no time-reversal symmetry



Special features of
additional symmetry classes

e Structure in density of states  p(F) around E = 0
e Critical behaviour in  p(E) at Anderson transition

In class C
A p(E) A P(E) A P(E)
—
E E E
p(E) ~ E? p(E) ~|E[* p(E)—p(0) ~ |E|¥>

RMT and insulator Critical point Metal



Network Models
Ingredients Model

Lattice of links and
nodes

Z Z, A
———

Y

Nodes:

N
A

Evolution operator
W =W W,
z3 _ cos(a)  sin(a) 21
24 —sin(a) cos(a) 22 Wl: links WQ: nodes

Disorder introduced via random distribution for link phases 0]



Generalisations of network models

Amplitudes  z; — n-component vector

Link phases  ¢'? — n X n unitary matrices U

Without further restrictions: U(n) model

not time-reversal invariant, so member of unitary symmetry class

With discrete symmetries:

ClassC: o,H"0, = —H solink phases & Sp(n), with Sp(2) ~ SU(2)

For SU(2) model:

Quantum localisation maps onto classical localisation



SU(2) network model and classical random walks

Feynman path expansion for Green function G(C) — (1 — CW)_l

[G(C)]ﬁﬂ“z — Z CnApath

n—step paths
\ N
cos()

with weight path thks Ulink 0
+ sin(«)

/
SU(2) Averages

(1 n=~0
({U™) = 4 —1/2 n=4+2

\ 0 otherwise

— keep only paths that cross each link O or 2 times.

Gruzberg, Ludwig and Read (1999); Beamond, Cardy and Chalker (2002)

Mirlin, Evers and Mildenberger (2003); Cardy (2005)



Quantum to classical mapping

Disorder-average for quantum system  — average over classical paths

/e

. AY
Il )
.

Quantum Classical
B OLJ A // or \\
: -+
Y
cos N' p 1_p
Quantum amplitudes Classical probabilities
+ random SU(2) phases p=sin*(a) 1—p=cos?(a)
Quantu Classical

1
-

______________________________________

cos? o sin® o —sin® a cos? « D 1—p



Calculating Physical Quantities

Density of states in quantum system Conductance

transmission matrix  ¢;;
Evolution operator W

eigenvalues €'

L
LT

density p(e)

Landauer formula G = ) [ti;]?
Classical system Classical system

Return probability p,, after n steps transmission probability  p;_,;
Mapping Mapping

p(e) = 5= [1 = >, pncos(2ne)] (ti5]%) = piey



Applications of Mapping

e In 2d: Spin quantum Hall effect and classical percolation
e Quasi-2D: Spin quantum Hall effect in bi-layer systems

® |In 3D: class C Anderson transition



Spin Quantum Hall Effect
Random SU(2) link phases + uniform scattering angle  « at nodes

Delocalisation transition as  « varied

a=0 @
@ @ Localisation length
@) (@ (=@ .

RN

O O Limiting cases >

Model




SU(2) network model and percolation

o t Classical
uantum

COSN '

Quantum amplitudes

Classical probabilities

+ random SU(2) phases
p = sin*(a), 1 — p = cos?(a)
. _ —4/3
Consequences:  EQuantum ~ | — T/4]

and p(e) ~ |e|VT at o =m/4

Gruzberg, Ludwig, Read



Spin quantum Hall effect in bi-layer systems

_ Conductance vs. geometry
Expected scaling flow

Gxx _[ "

G X 0,y

AN N E m—

‘ ‘_>  — H—

Khmelnitskii G

in quantum Hall plateaus

Pruisken



Conductance

Bi-layer simulations
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3D Class C Anderson Transition

SU(2) network model on diamond lattice

Link directions and nodes chosen so classical walks are:

short closed loops at p = 0 infinite trajectoriesat p =1

Expect transition at p = p.

Very large simulations possible for classical walks

Insulator p < p. Critical point p = p. Metal p > pc

walks have size ~ &(p) fractal walks, dimension  dy frefe random walks
. return probability at distances > &(p)
f(p) ~ |p — pcl Dy ~ 3/ ds Fractal dimension two

n
Density of states Density of states Ohm’s law scaling
Area
ple) ~ & p(g) ~ ||/~ G o

Length



3D Class C Simulations: Conductance

Scaling of conductance with sample size and correlation len
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See also: Kagalovsky, Horovitz and Avishai, PRL (2004)
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Classical walks: return probability

Integrated return probability

N (s, p) :thsp(sap) =&(p )df hy (s/&(p ) )

10" e

N
()
=}
T

d.-3
N(s.p) lp-p 7
8&) 3;
N(s,p,)

0.0 ettt
10" 10*> 10° 10* 10° 10° 10" 10°
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s p ol

Scaling collapse: df = 2.53 &= 0.01



Classical walks: end-to-end distance vs. length

Critical at short distances, free walks at long distances
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What is universality class for these 3D walks?

Compare with collapse transition for polymers

Self avoidance + local attraction
Swollen phase: self avoiding walks (R?) oc g1
Theta-point:  (R?) ~ s
Collapsed phase:  (R?) ~ §2/3 1

G/

In contrast, Ohm’s law requires (R*(s)) o s

for class C walks in metallic phase



Tricolour percolation and tricolour walks

e Pick lattice in which each edge
of Wigner-Seitz cells is shared by

three sites.

e Colour sites red, blue or green

with probabilites p,gand 1 —p—q.

e Tricolour walks formed from

edges where three colours meet.




Tricolour percolation and tricolour walks

e Pick lattice in which each edge On body-centred cubic lattice:
of Wigner-Seitz cells is shared by [Bradley et al., PRL (1992)]
three sites.

e Some walks extended

near p=qg=1/3
e Colour sites red, blue or green p=4q /

with probabiliies p,gand 1—p—gq.  ®Allwalks localised

for p, @ both small

e Tricolour walks formed from e Exponent values match

edges where three colours meet. ones for class C walks



Continuum Theory

Generalise classical walks to 7 flavours

Z — Zconﬁgs pnleft (1 _ p)nright nnloops

Introduce 71 component complex

unit vector z; on each link [

Calculate Z=NT][, [dz e

—»'I‘ —

with €7 = [ ], des {p(ZA )20 Zp) + (L —p)(Zy - Zp) (2 - ZB)}

N Sz

S

Expand [], 4qesl---]  Loops contribute factors
>oap.n ) Az [d7L 2202020 20 2]

Hence: (i) factor of n perloop (i) invariance under 2} — el



Continuum Theory

Generalise classical walks to  n flavours

Z — Zconﬁgs pnleft (1 _ p)nright nnloops

Calculate Z =NTJ[, [dZ e®

with ¢ = Tges [P(Zh - ) (5 - 2p) + (1= ) (- 2p) (5 25)

Continuum limit CP(n-1) model

S= [dr|(V—-id)Z]" with A= L(zF V2" — 20V )
with |Z]> =1 and invariance under 2 — e'¥(07
Critical dimensions: d; =2 and d, = 4. Firstorderfor n > n,

see also: Candu, Jacobsen, Read and Saleur (2009)



Summary

Quantum-classical mapping

for class C localisation problems

Class C Anderson transition

Critical behaviour in density of states

Correspondence between quantum and classical localisation
Critical behavour known exactly for 2D classical problem
Classical problem:
efficient starting point for simulations in quasi-2D and 3D

3D transition: same universality class as tricolour walks

Continuum description
CP(n-1) model with n — 1





