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Outline of the talk
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1. Introduction:
Disordered systems with fractal wavefunctions
Spatial correlations of fractal wavefunctions and
the dynamical scaling hypothesis
How dynamical scaling shows up in the return probability

2. Strong multifractality regime:
Model (the Critical RMT) and method (the Virial Expansion)

3. Scaling exponents:
. Leading logarithmic terms
- When dynamical scaling exists?

4. Conclusions
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Localization transition in disordered systems

Anderson, 1958
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Criticality at the localization transition
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Fractal wave-functions

(Wegner, 1980)
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fractal dimension: () < d ; <d Wavefunction occupies a fraction of space



Correlations of the fractal wavefunctions

Two point correlation function:

Co(w,R) = v 13" Y 8(w/2—€n)d(w/2+Em) [ve, (P) % |9, (P + R)|?)

p mn

For a disordered system at the critical point (fractal wavefunctions)

Co(w=0,R) x (L/|R|)d_d2, R| <L (Wegner, 1985)

If w>Athen [, = L(A/w)l/d must play a role of L:




Correlations of the fractal wavefunctions
Two point correlation function:
Co(w,R) = v 13" Y 8(w/2—€n)d(w/2+Em) [ve, (P) % |9, (P + R)|?)

p mn

For a disordered system at the critical point (fractal wavefunctions)

Co(w=0,R) x (L/lRDd_an R| < L (Wegner, 1985)
Dynamical scaling hypothesis: [, 92 _, (Lw)d—dz

= Co(w > AR) o (Lw/|RD", I<|R| <Ly, < L
(Chalker, Daniel, 1988; Chalker, 1990)

d —space dimension, A - mean level spacing, / — mean free path, <...> - disorder averaging



Fractal enhancement of correlations

EO 1—dy/d
Dynamical scaling: Co(A<w< Ep, |R| K1) x (—)
W

Eg/w > 1, 1 —dy/d > Q -Enhancement of correlations

Extended WF:
small amplitude
; substantial overlap in space
C.é: MmO .
[U_ TR G T e .;.e,l-..;-..;’.;.;.';;.;‘:1..;'-...-,..-...-. - Locallzed WF:
3 extended %’%ﬁ high amplitude
< o'l ”’%g ] J\ j\ small overlap in space
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10° 102 10" EU 10° Fractal WF:

IE-E| relatively high amplitude and
(Cuevas , Kravtsov, 2007) M

(The Anderson model: tight binding Hamiltonian)



Strong fractality regime: do WFs really overlap in space?

O < do K d - sparse fractals, AL ém—&n| < Ep

Naive expectation: A consequence of the dynamical scaling:
!\ z !\
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/ weak space correlations\ strong space correlations

So far, no analytical check of the dynamical scaling; just a numerical evidence

IQH WF: Chalker, Daniel (1988),

Huckestein, Schweitzer (1994), Prack, Janssen, Freche (1996)
Anderson transition in 3d: Brandes, Huckestein, Schweitzer (1996)
WF of critical RMTs: Cuevas, Kravtsov (2007)



Why dynamical scaling is important

C>(w,R) governs the interaction matrix elements =

Critical correlations are important for many body systems with interactions:

“Multifractal superconductivity” (Feigel’'man, Kravtsov, et.al., 2007-2010)
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“Multifractal Stoner instability” (Kiselev, OY, Kravtsov, in progress)



Statement of problem

v, (k) ﬂ
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We address two questions:

* Does the dynamical scaling hypothesis hold true in the strong fractality regime?

* Which conditions are necessary for the existence of dynamical scaling?



Coinciding space point: scaling in energy-domain

R = 0, energy representation

Co(w,0)=v " HY Y5 (g — Sn) é (g + €m> e, D)% [e,,, (P)?) = C2 diag+Co.0ff_diag

p m,n
Diagonal part
Co diag = 0 -1 5 A o S(w)vd2/d = d
2,diag — (w) (v ZZ (fm)ng(PN x §(w) ) —
\ P _/  (space scaling)

VIPR, P,
Off-diagonal part

CQ,ofF—diag|A<<w<<EOO< w (dynamical scaling)

1—p=dp/d




Coinciding space point: scaling in time-domain

R = 0, time representation

—zwtd_w

Fourier transform of C,(w,0): P(t) = /C’Q(w,O)e 5
-

- averaged return probability for a wave packet

Expected sc§ling properties of P(t)
P

T_dQ/d- dynamical scalingi

y—d2/d spatial scaling
i : (IPR)
1 L T

[ [ >

(t - scaled time)
P(t) is more convenient for the further analysis



Scaling of the return probability

T = min(7, L) - IR cutoff of the theory

Expected behaviour of P(t) in the long time limit

P(t) = A(T) (B’(TT)>@‘\ Universal exponent
log(P) = log(A) + m(log(B) — Iog(’Y‘))

N _—

can be non-universal — let’s eliminate them



Scaling of the return probability

T = min(7, L) - IR cutoff of the theory
Expected behaviour of P(t) in the long time limit

k(1)
P(t) = A(T) <@>

M"’“% — iog(1)lr 10 og(T

IF the dynamical scaling hypothesis holds true then

/
—d

O’Iog('Y‘) log(P)

1) Olog(T) 109(P) = —k(T") - Equation for «

2) K’|V>>’7‘ — K’|T>>V — dz/d = Universality of «



Model: MF RMT (Power-Law-Banded Random Matrices)

&ites

4 PR PN SUIIN VT PN N 1d chain with
) i ; ] i+ ooe random long-range hopping
H, 75 H;;, d=1
~ o \ ( .
H - NxN Hermitian BRM N e L Ji-jl<b

b is the bandwidth

i—j|>b

)

o=1: RMT with multifractal eignestates at any band-width
(Mirlin, Fyodorov et. al., 1996, Mirlin, Evers, 2000)

27w b>>1

~1_ const
d, ~1 Aﬂ'b

1-d,<<I - regime of weak multifractality

b<I
d, =const b

d,<<I —regime of strong multifractality




Universality of critical correlations: MF RMT vs. the Anderson model

MF (criticclll) RMT, Anderson model at. criticelity (MF ecigenstates),
bandwidth b dimension d

= ‘0" — MF PLBRMT, B=1, b = 0.42
g “m” — 3d Anderson model from orthogonal class
with MF eigenstates (at the mobility edge, E=3.5)

- Co(A € w,0) < 1/wh,

FIG. 5 Two-eigenfunction correlation function for the 3D
Anderson model (orthogonal symmetry class) with a triangu-
lar distribution of random on-site energies (solid symbols) and
the critical PLERM Eq.(3) with 3 = 1 and b = 0.42 {open
symbols). The energy difference w = |E — E'| is measured in (Cuevas’ KrthSOV’ 2007)
units of mean level spacing. The insert shows the mean den-
sity of states; the mobility edge corresponds to € = £3.5. The



Variance of matrix elements for almost diagonal MF RMT

Almost diagonal MF RMT from the GUE symmetry class

() = 5

2
2 1 1 b2 /2
1+|Z_]| /b |z—]|
/ o o \
b< 1 -smallband width — almost diagonal MF RMT @<1
e — -0 - UV regularizing parameter >
- W,



Method: The virial expansion

As an alternative to the o-model, we use

Note: 4 field theoretical machinery of the c -model cannot be used in the case
* of the almost diagonal RMT

the virial expansion in the number of interacting energy levels.

Gas of low density p IAlmost diagonal RM A >> bA
O O I bA pl
’ |
o 44
2-particle collision I 2-level interaction
O I ¥
p’ |
® ©
3-particle collision I 3-level interaction

VE allows one to expand correlations functions in powers of b<<I



SuSy virial expansion

Interaction of energy levels Hybridization of localized stated
AHmn
- N
‘9m
SUAENR- N
gn | |
m n

The SuSy trick is used to average over disorder (OY, Ossipov, Kronmiiller, 2007-2009)

H_ Coupling of supermatrices

\:j\ j\/ —> exp( (| Hmn| )Str(Qan)>

m n

Summation over all possible configurations

~ /dx exp (—<|Hmn|2>3tr(cgm@n))ﬂ@, r = m—n

SuSy breaking factor




Application of the virial expansion
Expected behavior: Poc Y %; YT =min(r,N), s ~bk 1

VE for the return probability: P = 1 4+ Z P;, Pjr~ O((b |09(T))j_1>
J=2

Pertubation theory for the scaling exponent

|y _alog(’Y‘) |Og(1—|—P2—|—P3—|—. . ) = I'i',2—|—/ﬁ§3—|—. ..

Ko = —0 P — '
V2 log(T7)* 2,
Y
2 level contribution ~O(b7)
L. 5
K3 = —8|Og(T)(P3—— 2)
<
— 2 _/

Y
3 level contribution ~O(b?)



What shall we calculate and check?

1) Dynamical scaling:

\

—iog(r)P2, k3(T)

g
®
=
N
Il

a) Log-behavior of P;:
Py ~ blog(T), P3~ (blog(T))?

b) Smallness of corrections %2,3(T)

= log?(Y) must cancel out in P,- (P,)%/2

2) Universality: scaling exponent is cut-off independent

K’]lT:N: K’]|T:7‘7 ]:273

A m
“Yiog(m)\ 13

N+~
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Regular contributions to the scaling exponents

dg [N da 3
AXA P217N>>1—/ / —f2<1€), T = bt

| ] ol el ~ ool ~ |21 — 2ol
(reg) mdg N (reg) ( B 5 5 )
P b 3 =
3 InN1 0 0 kx} a3 67\:1:1—352|1_6)

Homogeneity at ¢ — 0
Measure dﬁ/ﬁ, dx/ﬁ - general property

1—€|

Argument [3/x” %[, L o= [B/x -property of the critical RMT



Role of criticality

Homogeneity results in equivalence of time/space coordinates at criticality

re re ~ re :
= 8I09(7')Pj( 7 N — oo 8|09(N)Pj( 9)‘ T — 00 :/O d{xm}}—]{ 7 ({—}>

Lm
e — 0 e — 0

br i

Assumptions about
1) dynamical scaling and 2) universality of k
hold true up to O(b)

- universal

(b)=
2

7 =3 A X4 A X5 A /f:(gl)(T) = 0.141 x




Singular contributions

S v R R A

x| > |y]

. _ (2) o : (sing) 1 o
Contributionto x: k3 " (T) = — lim <3log(T)(P3 - EPQ))

2e€
50109+ P3 = T—(Az+ Bae)

€
\ - 1/¢ singularities

; 2¢
| Blog P = TX(A34 Bae)

€

We cannot put ¢ — 0 and use homogeneity property before solving uncertainties

2e€
e = i (*,

([A2 — Az] + €[Bo — B3])>



Singular contributions

(P2)? [R; “ pyeind) A X )

[z| > |y
>
Rgz) (Wb)

——[log(2) — 1]

Assumptions about
1) dynamical scaling and 2) universality of k
hold true up to O(b?) IF

1) I/¢ terms cancel out: A,=A4;;
2) subleading terms are universal B -B = constV
. (7Tb)2
Results of 7/s-expansion: A, = A3: Bz — By = [log(2) — 1]

/ﬁ:éQ)('Y‘) = !I_r% <?([A2 — A3z] + €[By — B3] )



Singular contributions

(P2)? H “ S P

x| > |y]

Assumptions about
1) dynamical scaling and 2) universality of k
hold true up to O(b?) IF

1) 1/¢terms cancel out: A,=A4;; \/
2) subleading terms are universal  B,-B;= const.\/

KgZ) _ (wb)

[log(2) — 1] - small and universal




Conclusions

1—u—d2:m2—|—mg1)—|—n(2)—T—I—0818b2

e Using the model of the of the almost diagonal RMT with multifractal
eigenstates in the strong fractality regime we have shown that:

- assumptions about the dynamical scaling and the relation y=1I-d,
hold true up to the leading and the subleading terms of the VE IF:

m the system is critical

m anomalous part of the scaling exponent is regular and universal

Open question

- are anomalous contributions always regular and universal at criticality?





