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Outline of the talkOutline of the talk

1. Introduction:
•• Disordered systems with fractal Disordered systems with fractal wavefunctionswavefunctions
•• Spatial  correlations of fractal Spatial  correlations of fractal wavefunctionswavefunctions andand

the dynamical scaling hypothesisthe dynamical scaling hypothesis
•• How dynamical scaling  shows up in the return probabilityHow dynamical scaling  shows up in the return probability

2. Strong multifractality regime:
•• Model (the Critical RMT) and method (the Virial Expansion)Model (the Critical RMT) and method (the Virial Expansion)

3. Scaling exponents:
•• Leading logarithmic terms Leading logarithmic terms 
•• When dynamical scaling exists?When dynamical scaling exists?

4. Conclusions

Workshop on Localization Phenomena in Novel Phases of Condensed Matter, ICTP, May 2010



Localization transition in disordered systems
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Criticality at the localization transition

Fractal wave-functions

( ) ( )
2

1

,

q

q n n
n r

r Eν ψ δ ε−= −∑
r

rP

Inverse Participation Ratio

Wavefunction occupies a fraction of space
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0 qd d< <fractal dimension:fractal dimension:

(Wegner, 1980)

Anderson, 1958  
the Gang of four, 1979
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Correlations of the fractal wavefunctions

Two point correlation function:

If ω>Δ then                                         must play a role of L:
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For a disordered system at the critical point (fractal wavefunctions)

(Wegner, 1985)



(Chalker, Daniel, 1988; Chalker, 1990)

For a disordered system at the critical point (fractal wavefunctions)

(Wegner, 1985)

Correlations of the fractal wavefunctions

Two point correlation function:

d –space dimension, Δ - mean level spacing, l – mean free path, <…> - disorder averaging

Dynamical scaling hypothesis:Dynamical scaling hypothesis:



(Cuevas , Kravtsov, 2007)

extended

localized
critical

Fractal enhancement of correlations

Dynamical scaling:

Extended WF:
small amplitude
substantial overlap in space

Localized WF:
high amplitude
small overlap in space

the fractal the fractal wavefunctionswavefunctions
strongly overlap in spacestrongly overlap in space

Fractal WF:
relatively high amplitude and

- Enhancement of correlations

(The Anderson model: tight binding Hamiltonian)
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Naïve expectation:

weak space correlations

Strong fractality regime: do WFs really overlap in space?

- sparse fractals,
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A consequence of the dynamical scaling:

strong space correlations

So far, no analytical check of the dynamical scaling; just a numerical evidence

IQH WF: Chalker, Daniel (1988), 
Huckestein, Schweitzer (1994), Prack, Janssen, Freche (1996)

Anderson transition in 3d:  Brandes, Huckestein, Schweitzer (1996)
WF of critical RMTs:           Cuevas, Kravtsov (2007)



Why dynamical scaling is important

Critical correlations are important for many body systems with interactions: 

““MultifractalMultifractal superconductivitysuperconductivity”” (Feigel’man, Kravtsov, et.al., 2007-2010)

““MultifractalMultifractal Stoner instabilityStoner instability”” (Kiselev, OY, Kravtsov, in progress)

Tc – critical temperature

Ec – mobility edge

E – Fermi-level position

governs the interaction matrix elements ï



We address two questions:

Statement of problem

• Does the dynamical scaling hypothesis hold true in the strong fractality regime?

• Which conditions are necessary for the existence of dynamical scaling?
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Coinciding space point: scaling in energy-domain

energy representation

Diagonal part

(space scaling)

Off-diagonal part

(dynamical scaling)



Coinciding space point: scaling in time-domain

time representation

Fourier transform of C2(ω,0):

– averaged return probability for a wave packet

ExpectedExpected scaling properties of scaling properties of P(tP(t))

- spatial scaling
(IPR)

P

τ1 L

- dynamical scaling

(τ - scaled time)
P(t) is more convenient for the further analysis



Scaling of the return probability

- IR cutoff of the theory

ExpectedExpected behaviourbehaviour of of P(tP(t) in the long time limit) in the long time limit

can be non-universal → let’s eliminate them

Universal exponent



Scaling of the return probability

- IR cutoff of the theory

ExpectedExpected behaviourbehaviour of of P(tP(t) in the long time limit) in the long time limit

IFIF the dynamical scaling hypothesis holds true thenthe dynamical scaling hypothesis holds true then

-- Equation for Equation for κκ

-- Universality of Universality of κκ



Model: MF RMT (Power-Law-Banded Random Matrices)

2 π b>>1

2
const1 2d bπ≈ −

1-d2<<1 – regime of weak multifractalityweak multifractality

b<1

2 const d b≈

d2<<1 – regime of strong multifractalitystrong multifractality
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αα=1=1: : RMT with RMT with multifractalmultifractal eignestateseignestates at any bandat any band--widthwidth
(Mirlin, Fyodorov et. al., 1996, Mirlin, Evers, 2000)

… …i-1 i i+2i+1

εi-1 εi εi+2εi+1Hi-1,i Hi,i+1 Hi+1,i+2

Hi-1,i+1 Hi,i+2

N citesN cites

1d chain with
random long-range hopping

b is the bandwidth

Ĥ - NxN Hermitian BRM

d=1



Universality of critical correlations: MF RMT vs. the Anderson model

MF (critical) RMT, 
bandwidth b

Anderson model at criticality (MF eigenstates),
dimension d

(Cuevas, Kravtsov, 2007)

“Ñ” – MF PLBRMT, β=1, b = 0.42

“É” – 3d Anderson model from orthogonal class
with MF eigenstates (at the mobility edge, E=3.5)



Variance of matrix elements for almost diagonal MF RMT

Almost diagonal MF RMT from the GUE symmetry class

- small band width → almost diagonal MF RMTalmost diagonal MF RMT

- UV regularizing parameter

b/|i-j|<<1
1



As an alternative to the σσ--modelmodel, we use 

the the virialvirial expansion in the number of interacting energy levelsexpansion in the number of interacting energy levels. 

Method: The virial expansion

2-particle collision

Gas of low density ρ

3-particle collision

ρ1

ρ2

Almost diagonal RM

b1

2-level interaction

bΔ >> Δ

Δ

bΔ

b2

3-level interaction

VE allows one to expand correlations functions in powers of b<<1

Note: a field  theoretical machinery of the σ–model cannot be used in the case
of the almost diagonal RMT



SuSy breaking factor

SuSy virial expansion

The SuSy trick is used to average over disorder (OY, Ossipov, Kronmüller, 2007-2009)

εm

εn

Hmn

Interaction of energy levels

⇔

Hybridization of localized stated

m n

Hmn

m n

Hmn

→
Coupling of supermatrices

Summation over all possible configurationsSummation over all possible configurations



Application of the virial expansion

2 level contribution ~O(b1)

3 level contribution ~O(b2)

PertubationPertubation theory for  the scaling exponenttheory for  the scaling exponent

VE for the return probability:VE for the return probability:

Expected behavior:



What shall we calculate and check?

2)  Universality: scaling exponent is cut-off independent

1) Dynamical scaling:

î log2(U) must cancel out in P3- (P2)2/2

a) Log-behavior of Pj:

b) Smallness of corrections 



Regular contributions to the scaling exponents

HHomogeneity omogeneity at at εε →→ 00

MeasureMeasure

ArgumentArgument

- general property

- property of the critical RMT

x

x1 x2



Role of criticality

Homogeneity results in equivalence of time/space coordinates at Homogeneity results in equivalence of time/space coordinates at criticalitycriticality

x

x1 x2

- universal

- universal

Assumptions about Assumptions about 
1) dynamical scaling     and1) dynamical scaling     and 2) universality of 2) universality of κκ

hold true up to hold true up to O(bO(b))



Singular contributions

- 1/ε singularities

We cannot put We cannot put εε →→ 0 and use homogeneity property before solving 0 and use homogeneity property before solving uncertaintiesuncertainties

x

y
x y

Contribution to κ:
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Singular contributions 

p(sing) 
3 

Ixl» Iyl 

Assumptions about 

1) dynamical scaling and 2) universality of K 

hold true up to O(b2) IF 

1) 1/& terms cancel out: 
2) subleading terms are universal 

A2 A3; \) 

B 2-B 3= const.\) 

D Results of 11s-expansion: A2 == A3 ; 
(7rb )2 

B3 - B2 == 2 [log(2) - 1] 
D 

E ([A2 -A3]+E[B2 -B3] ) 



Singular contributions

Assumptions about Assumptions about 
1) dynamical scaling     and1) dynamical scaling     and 2) universality of 2) universality of κκ

hold true up to hold true up to O(bO(b22) ) IFIF

1) 1/ε terms cancel out: A2=A3;
2) subleading terms are universal B2-B3= const. 

  --expansion:expansion:
- small and universal

x

y
x y



• Using the model of  the of the almost diagonal RMT with multifractal
eigenstates in the strong fractality regime we have shown that:

- assumptions about the dynamical scaling and the relation μμ=1=1--dd22
hold true up to the leading and the subleading terms of the VE IF:

É the system is critical

É anomalous part of the scaling exponent is regular and universal

Open questionOpen question

- are anomalous contributions always regular and universal at criticality?

Conclusions




