

2144-9

Workshop on Localization Phenomena in Novel Phases of Condensed Matter

17 - 22 May 2010

Topological Insulators: Disorder, Interaction and Quantum Criticality of Dirac Fermions

Alexander D. MIRLIN

Univ. Karlsruhe Instit. fuer Theorie der Kondensierten Materie Postfach 6980, D-76128 Karlsruhe GERMANY

Topological insulators:

Disorder, interaction, and quantum criticality of Dirac fermions

Alexander D. Mirlin

Karlsruhe Institute of Technology & PNPI St. Petersburg

P. Ostrovsky, Karlsruhe Institute of Technology & Landau I., Chernogolovka I. Gornyi, Karlsruhe Institute of Technology & Ioffe I., St.Petersburg

PRB 74, 235443 (2006); PRL 98, 256801 (2007); EPJ Special Topics 148, 63 (2007); arXiv:0910.1338

Outline

- Anderson localization theory: Symmetries and topologies
- Graphene and 2D Dirac fermions
- Conductivity at Dirac point:
 Absence of localization for chiral disorder and topological delocalization for long-range disorder
- Topological insulators (TIs): General classification
- 2D and 3D \mathbb{Z}_2 TIs in time-reversal-invariant systems with spin-orbit interaction
- Coulomb interaction in TIs: quantum criticality at the surface of 3D TI *and* quantum spin Hall transition 2D TI to normal insulator

50 years of Anderson localization

Philip W. Anderson

1958 "Absence of diffusion in certain random lattices"

sufficiently strong disorder \longrightarrow quantum localization

 \longrightarrow eigenstates exponentially localized, no diffusion

 \longrightarrow Anderson insulator

The Nobel Prize in Physics 1977

Anderson Insulators & Metals

Scaling theory of localization: Abrahams, Anderson, Licciardello, Ramakrishnan '79

Modern approach: RG for field theory (σ -model)

quasi-1D, 2D: all states are localized

d > 2: Anderson metal-insulator transition

 $80,\,1355\,\,(2008)$

Field theory: non-linear σ -model

$$S[Q] = {\pi
u \over 4} \int d^d {
m r} \, {
m Str} \, [-D(
abla Q)^2 - 2i \omega \Lambda Q], \qquad Q^2({
m r}) = 1$$

Wegner'79 (replicas); Efetov'83 (supersymmetry) σ -model manifold:

- unitary class:
- orthogonal class:
 - fermionic replicas:
 - bosonic replicas:
 - supersymmetry:
- $\mathrm{Sp}(4n)/\mathrm{Sp}(2n) imes \mathrm{Sp}(2n) \;, \qquad n o 0$ $\mathrm{O}(2n,2n)/\mathrm{O}(2n) imes \mathrm{O}(2n)\;,\qquad n o 0$ $OSp(2,2|4)/OSp(2|2) \times OSp(2|2)$

in general, in supersymmetry:

 $Q \in \{\text{"sphere"} \times \text{"hyperboloid"}\}$ "dressed" by anticommuting variables

• fermionic replicas: $\mathrm{U}(2n)/\mathrm{U}(n) imes \mathrm{U}(n) \;, \qquad n o 0$ bosonic replicas: $\mathrm{U}(n,n)/\mathrm{U}(n) imes \mathrm{U}(n) \;, \qquad n o 0$ • supersymmetry: $U(1,1|2)/U(1|1) \times U(1|1)$

Disordered electronic systems: Symmetry classification

Altland, Zirnbauer '97

$$H=\left(egin{array}{cc} \mathbf{0} & \mathbf{t} \ \mathbf{t^{\dagger}} & \mathbf{0} \end{array}
ight)$$

Bogoliubov-de Gennes classes

\mathbf{T}	spin rot.	chiral	p-h	symbol
+	+	_	+	CI
—	+	—	+	\mathbf{C}
+	—	—	+	DIII
	—		+	D

$$m{H} = \left(egin{array}{cc} \mathbf{h} & m{\Delta} \ -m{\Delta}^* & -\mathbf{h}^T \end{array}
ight)$$

Disordered electronic systems: Symmetry classification

Ham.	RMT	T S	compact	non-compact	$\sigma ext{-model}$	σ -model compact				
class			symmetric space	symmetric space	$\mathbf{B} \mathbf{F}$	$\text{sector}\mathcal{M}_F$				
Wigner-Dyson classes										
Α	GUE	— ±	$\mathrm{U}(N)$	$\mathrm{GL}(N,\mathbb{C})/\mathrm{U}(N)$	AIII AIII	$\mathrm{U}(2n)/\mathrm{U}(n)\! imes\!\mathrm{U}(n)$				
AI	GOE	+ +	$\mathrm{U}(N)/\mathrm{O}(N)$	$\operatorname{GL}(N,\mathbb{R})/\operatorname{O}(N)$	BDI CII	$\mathrm{Sp}(4n)/\mathrm{Sp}(2n)\! imes\!\mathrm{Sp}(2n)$				
AII	GSE	+ -	${ m U}(2N)/{ m Sp}(2N)$	$\mathrm{U}^*(2N)/\mathrm{Sp}(2N)$	CII BDI	$\mathrm{O}(2n)/\mathrm{O}(n)\! imes\!\mathrm{O}(n)$				
chiral	chiral classes									
AIII	chGUE	— ±	$\mathrm{U}(p+q)/\mathrm{U}(p)\! imes\!\mathrm{U}(q)$	$\mathrm{U}(p,q)/\mathrm{U}(p)\! imes\!\mathrm{U}(q)$	$\mathbf{A} \mathbf{A}$	$\mathrm{U}(n)$				
BDI	chGOE	+ +	$\mathrm{SO}(p+q)/\mathrm{SO}(p){ imes}\mathrm{SO}(q)$	$\mathrm{SO}(p,q)/\mathrm{SO}(p){ imes}\mathrm{SO}(q)$	$\mathbf{AI} \mathbf{AII}$	$\mathrm{U}(2n)/\mathrm{Sp}(2n)$				
CII	chGSE	+ -	$\mathrm{Sp}(2p+2q)/\mathrm{Sp}(2p){ imes}\mathrm{Sp}(2q)$	$\mathrm{Sp}(2p,2q)/\mathrm{Sp}(2p){ imes}\mathrm{Sp}(2q)$	$\mathbf{AII} \mathbf{AI}$	$\mathrm{U}(n)/\mathrm{O}(n)$				
Bogoli	Bogoliubov - de Gennes classes									
С		- +	$\operatorname{Sp}(2N)$	$\mathrm{Sp}(2N,\mathbb{C})/\mathrm{Sp}(2N)$	$\mathrm{DIII} \mathrm{CI}$	$\mathrm{Sp}(2n)/\mathrm{U}(n)$				
CI		+ +	${ m Sp}(2N)/{ m U}(N)$	$\mathrm{Sp}(2N,\mathbb{R})/\mathrm{U}(N)$	D C	$\operatorname{Sp}(2n)$				
BD			$\mathrm{SO}(N)$	$\mathrm{SO}(N,\mathbb{C})/\mathrm{SO}(N)$	CI DIII	${ m O}(2n)/{ m U}(n)$				
DIII		+ -	$\mathrm{SO}(2N)/\mathrm{U}(N)$	${ m SO}^*(2N)/{ m U}(N)$	C D	$\mathrm{O}(n)$				

Symmetry alone is not always sufficient to characterize the system.

There may be also a non-trivial topology !

Magnetotransport in 2D: Integer Quantum Hall Effect

Klaus von Klitzing Nobel Prize 1985

IQHE: \mathbb{Z} topological insulator

$$S = \int d^2 r \left\{ -rac{\sigma_{xx}}{8} {
m Tr} (\partial_\mu Q)^2 + rac{\sigma_{xy}}{8} {
m Tr} \epsilon_{\mu
u} Q \partial_\mu Q \partial_
u Q
ight\}$$

QH insulators $\longrightarrow n = \dots, -2, -1, 0, 1, 2, \dots$ edge states $\longrightarrow \mathbb{Z}$ topological insulator

Graphene: monoatomic layer of carbon

Experiments on transport in graphene

Novoselov, Geim et al; Zhang, Tan, Stormer, and Kim; Nature 2005

- linear dependence of conductivity on electron density $(\propto V_g)$
- minimal conductivity $\sigma \approx 4e^2/h$ ($\approx e^2/h$ per spin per valley) T-independent in the range $T = 30 \text{ mK} \div 300 \text{ K}$

T-independent minimal conductivity in graphene

Tan, Zhang, Stormer, Kim '07

 $T = 30 \text{ mK} \div 300 \text{ K}$

To compare: Disordered semiconductor systems: From metal to insulator with lowering T

Graphene dispersion: 2D massless Dirac fermions

Two sublattices: A and B Hamiltonian: $H = \begin{pmatrix} 0 & t_k \\ t_k^* & 0 \end{pmatrix}$ $t_k = t \left[1 + 2e^{i(\sqrt{3}/2)k_y a} \cos(k_x a/2) \right]$ Spectrum $\varepsilon_k^2 = |t_k|^2$

The gap vanishes at 2 points, $K, K' = (\pm k_0, 0)$, where $k_0 = 4\pi/3a$. In the vicinity of K, K': massless Dirac-fermion Hamiltonian:

$$H_K = v_0 (k_x \sigma_x + k_y \sigma_y), \qquad H_{K'} = v_0 (-k_x \sigma_x + k_y \sigma_y)$$

 $v_0 \simeq 10^8 \text{ cm/s} - \text{effective "light velocity"}, \qquad \text{sublattice space} \longrightarrow \text{isospin}$

Graphene: Disordered Dirac-fermion Hamiltonian

$\begin{array}{l} \mbox{Hamiltonian} &\longrightarrow 4 \times 4 \mbox{ matrix operating in:} \\ \mbox{AB space of the two sublattices } (\sigma \mbox{ Pauli matrices}), \\ & $K-K'$ space of the valleys (τ Pauli matrices$). \end{array}$

Four-component wave function:

$$\Psi = \{\phi_{AK}, \phi_{BK}, \phi_{BK'}, \phi_{AK'}\}^T$$

Hamiltonian:

$$H=-iv_0 au_z(\sigma_x
abla_x+\sigma_y
abla_y)+V(x,y)$$

Disorder:

$$V(x,y) = \sum_{\mu,
u=0,x,y,z} \sigma_\mu au_
u V_{\mu
u}(x,y)$$

Clean graphene: symmetries

Space of valleys K-K': Isospin $\Lambda_x = \sigma_z \tau_x$, $\Lambda_y = \sigma_z \tau_y$, $\Lambda_z = \sigma_0 \tau_z$. Time inversion Chirality $T_0: \quad H = \sigma_x \tau_x H^T \sigma_x \tau_x$ $C_0: \quad H = -\sigma_z \tau_0 H \sigma_z \tau_0$ Combinations with $\Lambda_{x,y,z}$ $T_x: \quad H = \sigma_y au_0 H^T \sigma_y au_0$ $C_x: \quad H = -\sigma_0 au_x H \sigma_0 au_x$ $T_{\boldsymbol{y}}: \quad H = \sigma_{\boldsymbol{y}} \tau_{\boldsymbol{z}} H^T \sigma_{\boldsymbol{y}} \tau_{\boldsymbol{z}}$ $C_{y}: \quad H = -\sigma_{0} au_{y} H \sigma_{0} au_{y}$ $T_z: \quad H = \sigma_x \tau_y H^T \sigma_x \tau_y$ $C_z: \quad H = -\sigma_z \tau_z H \sigma_z \tau_z$

Spatial isotropy \Rightarrow $T_{x,y}$ and $C_{x,y}$ occur simultaneously \Rightarrow T_{\perp} and C_{\perp}

Conductivity at $\mu = 0$

Drude conductivity (SCBA = self-consistent Born approximation):

$$\sigma = -rac{8e^2v_0^2}{\pi\hbar} \int rac{d^2k}{(2\pi)^2} rac{(1/2 au)^2}{[(1/2 au)^2 + v_0^2k^2]^2} = rac{2e^2}{\pi^2\hbar} = rac{4}{\pi}rac{e^2}{h}$$

BUT: For generic disorder, the Drude result $\sigma = 4 \times e^2/\pi h$ at $\mu = 0$ does not make much sense: Anderson localization will drive $\sigma \to 0$.

Experiment: $\sigma \approx 4 \times e^2/h$ independent of T

Can one have non-zero σ (i.e. no localization) in the theory?

Yes, if disorder either

(i) preserves one of chiral symmetries

or

(ii) is of long-range character (does not mix the valleys)

Absence of localization of Dirac fermions in graphene with chiral or long-range disorder

Disorder	Symmetries	Class	Conductivity
Vacancies	$oldsymbol{C_z},T_0$	BDI	$pprox 4e^2/\pi h$
Vacancies + RMF	$oldsymbol{C}_{oldsymbol{z}}$	AIII	$pprox 4e^2/\pi h$
$\sigma_z au_{x,y} ext{ disorder}$	$oldsymbol{C_z},T_z$	CII	$pprox 4e^2/\pi h$
Dislocations	C_0,T_0	CI	$4e^2/\pi h$
Dislocations + RMF	$oldsymbol{C}_0$	AIII	$4e^2/\pi h$
random v , resonant scatterers	$C_0, {f \Lambda_z}, T_ot$	2×DIII	$4e^2/\pi h imes \{1,\log L\}$
Ripples, RMF	$C_0, \Lambda_{oldsymbol{z}}$	2 imes AIII	$4e^2/\pi h$
Charged impurities	$egin{array}{ccc} {f \Lambda}_{m z}, \ T_{ot} \end{array}$	2 imes AII	$(4e^2/\pi h)\log L$
random Dirac mass: $\sigma_z au_{0,z}$	$m{\Lambda_{z}},CT_{\!\perp}$	$2{ imes}{ m D}$	$4e^2/\pi h$
Charged imp. + RMF/ripples	$\Lambda_{oldsymbol{z}}$	$2{ imes}{ m A}$	$4 \sigma^*_U$

 C_z -chirality \longrightarrow Gade-Wegner phase C_0 -chirality \equiv random gauge fields \longrightarrow Wess-Zumino-Witten term Λ_z -symmetry \equiv decoupled valleys $\longrightarrow \theta = \pi$ topological term Random gauge fields (C_0 chirality, WZW term)

Conductivity: $\sigma = 4e^2/\pi h$ exact!

Ripples \approx random abelian vector potential (C_0, Λ_z) Estimated size d and height h: d = 5 nm, h = 0.5 nm (from electron diffraction pattern)

Meyer, Geim, Katsnelson, Novoselov, Booth, Roth, Nature'07

d = 10 nm, h = 0.3 nm (from AFM measurements) Tikhonenko, Horsell, Gorbachev, Savchenko, PRL'08 Long-range disorder: σ -models with topological term

• <u>Generic (ripples + charged impurities)</u> \implies <u>class A (unitary)</u> $S[Q] = \frac{1}{8} \operatorname{Str} \left[-\sigma_{xx} (\nabla Q)^2 + Q \nabla_x Q \nabla_y Q \right] = -\frac{\sigma_{xx}}{8} \operatorname{Str} (\nabla Q)^2 + i\pi N[Q]$

topol. invariant $N[Q] \in \pi_2(\mathcal{M}) = \mathbb{Z}$

 $\Rightarrow \text{ Quantum Hall critical point } \iint_{\theta=\pi} 0 \iint_{\theta=\pi} 0$ $\sigma = 4\sigma_U^* \simeq 4 \times (0.5 \div 0.6) \frac{e^2}{h}$

• Random potential (charged imp.) \implies class AII (symplectic)

$$S[Q] = -rac{\sigma_{xx}}{16}\operatorname{Str}(\nabla Q)^2 + i\pi N[Q]$$

topological invariant: $N[Q] \in \pi_2(\mathcal{M}) = \mathbb{Z}_2 = \{0, 1\}$

Topological protection from localization !

Long-range potential disorder: numerics

Bardarson, Tworzydło, Brouwer, Beenakker, PRL '07

Nomura, Koshino, Ryu, PRL '07

• absence of localization confirmed

• log scaling towards the perfect-metal fixed point $\sigma \to \infty$

Schematic beta functions for symplectic class AII

Conventional spin-orbit systems

Dirac fermions (topological protection) Topological Insulators: \mathbb{Z} and \mathbb{Z}_2

Topological Insulators

= Bulk insulators with topologically protected delocalized states on their boundary

Theory: Moore, Balents; Kane, Mele; Bernevig, Zhang; Schnyder, Ryu, Furusaki, Ludwig; Kitaev; ...

Well-known example: Quantum Hall Effect (2D, class A) QH insulators $\longrightarrow n = \dots, -2, -1, 0, 1, 2, \dots$ edge states $\longrightarrow \mathbb{Z}$ topological insulator

 \mathbb{Z}_2 TIs: n = 0 or n = 1

Recent experimental realizations: Molenkamp & Hasan groups 2D and 3D systems with strong spin-orbit interaction (class AII) 2D: Quantum Spin Hall Effect

Periodic table of Topological Insulators

Symmetry classes					Topological insulators			
p	H_p	R_p	S_p	$\pi_0(R_p)$	d=1	d=2	d=3	d=4
0	AI	BDI	CII	\mathbb{Z}	0	0	0	\mathbb{Z}
1	BDI	BD	AII	\mathbb{Z}_2	\mathbb{Z}	0	0	0
2	\mathbf{BD}	DIII	DIII	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
3	DIII	AII	BD	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
4	AII	\mathbf{CII}	BDI	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
5	\mathbf{CII}	\mathbf{C}	\mathbf{AI}	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
6	\mathbf{C}	\mathbf{CI}	\mathbf{CI}	0	0	\mathbb{Z}	0	\mathbb{Z}_2
7	\mathbf{CI}	\mathbf{AI}	\mathbf{C}	0	0	0	\mathbb{Z}	0
0'	A	AIII	AIII	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
1'	AIII	\mathbf{A}	\mathbf{A}	0	\mathbb{Z}	0	\mathbb{Z}	0

 H_p – symmetry class of Hamiltonians

 R_p – sym. class of classifying space (of Hamiltonians with eigenvalues $\rightarrow \pm 1$) S_p – symmetry class of compact sector of σ -model manifold

Kitaev'09; Schnyder, Ryu, Furusaki, Ludwig'08-09; Ostrovsky, Gornyi, ADM'09

Classification of Topological insulators

Two ways to detect existence of TIs of class p in d dimensions:

(i) by inspecting the topology of classifying spaces R_p :

$$egin{cases} \mathrm{TI} ext{ of type } \mathbb{Z} \ \mathrm{TI} ext{ of type } \mathbb{Z}_2 \end{cases} \iff \pi_0(R_{p-d}) = egin{cases} \mathbb{Z} \ \mathbb{Z}_2 \end{cases}$$

(ii) by analyzing homotopy groups of the σ -model manifolds:

 $\begin{cases} \text{TI of type } \mathbb{Z} \iff \pi_d(S_p) = \mathbb{Z} & \text{Wess-Zumino term} \\ \text{TI of type } \mathbb{Z}_2 \iff \pi_{d-1}(S_p) = \mathbb{Z}_2 & \theta = \pi \text{ topological term} \end{cases} \end{cases}$

WZ and $\theta = \pi$ terms make boundary excitations "non-localizable" TI in $d \iff$ topological protection from localization in d - 1

Bott periodicity: $\pi_d(R_p) = \pi_0(R_{p+d})$, periodicity 8

Periodic table of Topological Insulators

Symmetry classes				Topological insulators				
p	H_p	R_p	S_p	$\pi_0(R_p)$	d=1	d=2	d=3	d=4
0	AI	BDI	CII	\mathbb{Z}	0	0	0	\mathbb{Z}
1	BDI	BD	AII	\mathbb{Z}_2	\mathbb{Z}	0	0	0
2	\mathbf{BD}	DIII	DIII	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
3	DIII	AII	BD	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
4	AII	\mathbf{CII}	BDI	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
5	\mathbf{CII}	\mathbf{C}	\mathbf{AI}	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
6	\mathbf{C}	\mathbf{CI}	\mathbf{CI}	0	0	\mathbb{Z}	0	\mathbb{Z}_2
7	\mathbf{CI}	\mathbf{AI}	\mathbf{C}	0	0	0	\mathbb{Z}	0
0'	A	AIII	AIII	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
1'	AIII	\mathbf{A}	\mathbf{A}	0	\mathbb{Z}	0	\mathbb{Z}	0

IQHE

Spin QHE, Thermal QHE in unconventional superconductors 2D (Q Spin HE) and 3D systems with strong SO interaction

2D \mathbb{Z}_2 TIs: Quantum Spin Hall Effect

Kane, Mele'05; Sheng, Sheng, Ting, Haldane'05; Bernevig, Zhang '06

Symmetry class AII (symplectic): time-reversal invariance $T^2 = -1$

Simple model: two copies of QHE, magnetic field B for spin \uparrow and -B for spin \downarrow $\sigma_{xy}(\uparrow) = e^2/h \qquad \sigma_{xy}(\downarrow) = -e^2/h$ \longrightarrow spin Hall conductivity $\sigma_{xy}(\uparrow) - \sigma_{xy}(\downarrow) = 2e^2/h$

generic spin-orbit interaction

- \longrightarrow spin not conserved anymore but Kramers degeneracy holds
- \longrightarrow one propagating edge mode in each direction
- backscattering forbidden: topological protection!

Earlier results on symplectic-class wires with odd number of channels: one mode remains delocalized

Zirnbauer '92; ADM, Müller-Groeling, Zirnbauer '94; Takane '04 realization: carbon nanotubes with long-range disorder Ando, Suzuura '02 Absence of localization in a symplectic wire with odd number of channels

 $\det r = (-1)^N \det r^T \implies \text{no localization if } N \text{ is odd } ! ! !$

Quantum Spin Hall Effect in graphene with SO interaction

Kane, Mele'05

QSHE in CdTe/HgTe/CdTe quantum wells: Theory

Bernevig, Hughes, Zhang'06

$$H_{ ext{eff}}(k) = egin{pmatrix} h(k) & 0 \ 0 & -h^*(k) \end{pmatrix}$$

$$h(k)=\left(egin{array}{cc} m(k) & Ak_-\ Ak_+ & -m(k) \end{array}
ight)$$

$$k_{\pm}=k_x\pm ik_y$$

$$m(k) = M + B(k_x^2 + k_y^2)$$

HgTe: inverted band structure

 $\longrightarrow M < 0 \text{ for } d > d_c$

 \longrightarrow TI

QSHE in CdTe/HgTe/CdTe quantum wells: Experiment

Molenkamp group '07

I — normal insulator, d = 5.5 nm

II, III, IV — inverted quantum well structure, d = 7.3 nm \longrightarrow topological insulator

3D Topological Insulators

have 2D topologically protected delocalized modes at the surface

surface of a 3D TI = single-valley graphene

3D Topological Insulators

Tight-binding model on a diamond lattice with spin-orbit interaction

4 0;(111) 0;(111) Ε0 -4 M_2 Μı M_2 M_3 Μı M_3 Γ Г Г L $1;(1\overline{1}\overline{1})$ 1;(111) 4 Ε0 -4

Fu, Kane, Mele '07

3D Topological Insulator: $Bi_{1-x}Sb_x$

Hasan group '08

Other realizations: BiTe, BiSe

2D Dirac surface states of a 3D TI: Disorder and interaction

Surface of 3D \mathbb{Z}_2 TI:

single 2D massless Dirac mode (more generally: odd number)

 \longleftrightarrow single-valley graphene !

With disorder: Topological protection from localization, RG flow towards supermetal

What is the effect of **Coulomb interaction**?

assume not too strong interaction $r_s=\sqrt{2}e^2/\epsilon v_F\lesssim 1$

- \implies no instabilities, no symmetry-breaking
- \implies topological protection from localization persists

But interaction may destroy the supermetal phase!

Coulomb interaction in symplectic class AII: RG

cf. Althsuler, Aronov '79; Finkelstein '83

$$eta(g) = rac{dg}{d \ln L} = rac{N}{2} - 1 + (N^2 - 1) \mathcal{F}$$

weak antilocalization - ee-singlet + ee-multiplet

N - # of flavors (spin, valleys, etc)

Graphene: N = 4 (2 valleys, 2 spins)

 \longrightarrow WAL wins \longrightarrow supermetal survives

 $p-q, \varepsilon-\omega$ p, ε p, ε $p, \varepsilon - \Omega$ $p, \varepsilon - \Omega$

Surface of a 3D TI: N = 1

$$\longrightarrow \ eta(g) = -1/2 < 0 \ \longrightarrow \ ext{ee-interaction wins}$$

 \longrightarrow conductance decreases upon RG

→ Coulomb repulsion destroys supermetal phase

Interaction-induced quantum criticality in 3D TI

- Interaction \longrightarrow tendency to localization at $g \gg 1$
- Topology \longrightarrow protection from strong localization (no flow towards $g \ll 1$)

 \rightarrow novel quantum critical point should emerge at $g \sim 1$

analogous to QHE, but here induced by interaction

$\boldsymbol{\beta}$ functions for symplectic class: Interaction and Topology

2D TIs: QSHE phase diagram

In the presence of disorder, TI and normal insulator phases are separated by the supermetal phase

transitions TI–supermetal and supermetal–NI are in the coventional symplectic MIT universality class

Onoda, Avishai, Nagaosa '07; Obuse et al '07

Effect of Coulomb interaction on phase diagram — ?

2D TIs: QSHE phase diagram (cont'd)

Coulomb interaction "kills" the supermetal phase, thus restoring a direct transition between two insulator phases

 \rightarrow quantum critical point of Quantum Spin Hall transition

\mathbb{Z}_2 edge in the presence of Coulomb interaction

Edge of 2D TI: single propagating mode in each direction Impurity backscattering prohibited (symplectic time reversal invariance) Coulomb interaction \longrightarrow Luttinger liquid, conductance e^2/h

Xu, Moore '06; Wu, Bernevig, Zhang '06: Umklapp processes (uniform or random) $\partial \mathcal{D}_2 / \partial \ln L = (3 - 8K)\mathcal{D}_2 \qquad K - Luttinger liquid parameter$

$${
m Coulomb} \; 1/{
m r} \; {
m interaction:} \qquad K(q) = \left(1 + 2lpha \ln rac{q_0}{q}
ight)^{-1/2} \qquad lpha = e^2/\pi^2 \epsilon h v_F$$

 $\longrightarrow ~~ {\cal D}_2 ~{
m processes} ~{
m negligible} ~{
m up} ~{
m to} ~{
m the} ~{
m scale} ~~ L_0 \sim q_0^{-1} \exp {rac{80}{9lpha}}$

What happens with TI beyond this scale is an interesting question but purely academic for not too strong interaction:

$$r_s = 1 \longrightarrow L_0 \sim 10^{60} \, {
m nm} \, > \, {
m size \ of \ Universe}$$

 $r_s = 6$ (Molenkamp experiment) $\longrightarrow L_0 \sim 10 \text{ m}$

Thus, TI phase persists in the presence of not too strong Coulomb interaction

Interaction-induced quantum critical points of \mathbb{Z}_2 TIs

We thus have two novel 2D quantum critical points:

- on surface of 3D TI
- 2D QSH transition

They share many common properties:

- symplectic symmetry
- \mathbb{Z}_2 topological protection
- interaction-induced criticality
- conductivity of order unity (probably universal)

This suggests that these two critical points may be equivalent

Outline

- Anderson localization theory: Symmetries and topologies
- Graphene and 2D Dirac fermions
- Conductivity at Dirac point: Absence of localization for chiral disorder *and* topological delocalization for long-range disorder
- Topological insulators (TIs): General classification
- 2D and 3D \mathbb{Z}_2 TIs in time-reversal-invariant systems with spin-orbit interaction
- Coulomb interaction in TIs: quantum criticality at the surface of 3D TI *and* quantum spin Hall transition 2D TI to normal insulator