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Integer quantum Hall effect (QHE)
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Integer quantum Hall effect (QHE)
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Density of States

* No spin-flip scattering - two IQH transitions corresponding to Zeeman-split
Landau level
* How does the picture change with spin-flip scattering?



Chalker-Coddington Model

Electrons in strong magnetic field in smooth disorder potential

Rapid cyclotron motion + slow chiral motion of guiding center along the
quasiclassical trajectories

Height of potential close to the Fermi-level — quantum tunneling

Network model: chiral motion on links + quantum scattering
on the nodes

Predicts a single delocalized state at critical energy —
transition between QH plateaus



Chalker-Coddington Model

Chiral network: random phases on links, quantum scattering at nodes




Scattering by nuclear spins in QHE
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I. Vagner, T. Maniv, Physica B (1995)
Y. Q. Li, J. H. Smet, in “Spin physics in semiconductors” (2008)

* Initially unpolarized nuclear spins
* Neglect Kondo correlations between electrons: max(7,E.) > T,

* Single electron propagating through the network
* Spin-flip scattering by nuclear spins

Many-particle problem: attempt to reduce to a single particle one



Scattering by nuclear spins in QHE

Spin-scattering is effective only close to the saddle-points
of disorder potential

* Spin-scattering is approximately elastic (change of energy of the nucleus negligible)

* Finite scattering matrix element — finite overlap between the wave function
of the spin-up state, spin-down state, and the nucleus
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Scattering matrix at node: no spin-flip
scattering

Nodes — saddle-points of potential by disorder

H. A. Fertig and B. I. Halperin, PRB (1987).
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Scattering matrix at a node with spin-flip
scattering

 Separation of fast cyclotron motion and slow center of mass motion
* Neglect transitions between different Landau levels by spin scattering

Interaction with nuclear spin: H=J o -1

Basis states at each node: (17.1,)[T.4, )[4 1) 44)

States |T.T.):[V.¥y) do not take part in spin-flip scattering

Spin-flip scattering of states (]T6¢N>,\¢8TN>)



Scattering matrix with spin scattering

Basis of singlet — triplet states
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Two-particle Schrodinger Equation
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Exact solution: generalization of solution by Fertig and Halperin
on a two-particle wave function




Scattering matrix with spin-scattering
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Exact solution in a single node
* Four eigenstates and eigenenergies
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Scattering matrix: many nodes
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' U — some unitary (SU(2)) matrix



Many-particle — Two-particle

Many-particle wave function ‘I’(r,RI)

Many-particle basis l//f(l')H s
1

Spatial localization depends on v, (r)

gn >0ut .

gn+l>in — Un

There is a unitary matrix Un eSU2)

Un depends on the states of nuclei

For non-polarized nuclei the matrix {J can be chosen at random



Many-particle — Two-particle

Evolution of the wave function by propagation through a given path in
the network:
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Use §n+1> =U, §n> to replace multiple nuclear spins by an effective single nuclear
spin propagating through the network.
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Effective model: Propagation of a bi-spinor

There is a bi-spinor |o,.1,) that propagates through the chiral

network

There is a random matrix U acting on a nuclear spin at each
link
Simplification: choose U = 6* or1, with probability 1/2.

There is a spin-dependent scattering at each node.

Result of numerical simulation:
Finite energy regions of delocalized states
around critical energies



Delocalized states around guantum Hall
transition
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Delocalization by spin-flips on links

‘TT>, &, &)
‘¢¢>, g, te)
@, = cz‘N«> + cl‘¢T>, & )

¢2:cl‘T¢>—cz‘¢T>, &, te,).

£

1,54 Insulator

Insulator

1,04

0,54

Insulator
0,0+

Insulator
'0.5—

-1,0+ Insulator

''''''''''''''''''''

00 02 04 06 08 10 12 14 16 18 20

5

* No spin-flips on links

- transition and reflection matrices are diagonal

0 0 ¢
0 0 0

* Spin flip on link

t, =1(&;)

- the states are mixed by the matrix

¢ —G
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Change of mixing of states with

Insulator

Insulator

Insulator

Insulator

Insylator

T T I T
4 16 18 20

1 T T
08 10 1.2
&

T T T
00 02 04 O,

o -
L8
+=
[=2)
w

€
Ib) A=05 =
084 Insulator
i
04 y-v A éﬁ
' "‘ — Metal s !

0,04

0.4

ah B
& pum Metal
=
b=
]

AA

Insulator .
o B

Insulator

T < T L T y T .. T Y T L T .3 1

00 02 04 06 08 10 1.2 14 16

o

* Small O : Only the closest in energy states are mixed

* Largep : All states are mixed



1D Version: analogy to D-class
* Suppose no spin-flip on links

* Reduce the Hilbert space (TT,T\L)r

* No mixing of state on links - U(1) model, two critical energies

* Matrix & at each link (maximal mixing of states) = transfer matrix with an
eigenvalue 1, all states delocalized
(analogously to class D: J. Chalker et al. PRB 1997).



Conclusions

Chiral network model for a bi-spinor with spin-flip scattering
at nodes and random flip of nuclear spin on links

There are finite energy regions of delocalized (metallic) states
— change of the QH phase diagram

Model can be relevant to a number of physical situations

— QHE with scattering by nuclear spins and magnetic impurities in
semiconductors

— QHE in mono-domain ferromagnets
— Mixtures of cold atom gases



