

2145-2

Spring College on Computational Nanoscience

17 - 28 May 2010

Chemically stabilized gold nanoclusters - building blocks of nano-matter?

Hannu HAKKINEN Nanoscience Center, Dept. of Physics and Chemistry University of Jyvaskyla Finland

Shell closing	Experiment		Theory (this work)	
	Cluster	Gap	Cluster compound	Gap
8e (1S ² 1P ⁶)			Au ₁₁ (PH ₃) ₇ (SMe) ₃	1.5 eV
8e			Au ₁₁ (PH ₃) ₇ Cl ₃	2.1 eV
8e			Au ₁₃ (PH ₃) ₁₀ Cl ₂ ³⁺	1.8 eV
8e			Au ₂₅ (SMe) ₁₈ -	1.2 eV
34e (8e + 1D ¹⁰ 2S ² 1F ¹⁴)	Au34 ⁻ (a)	1.0 eV	Au ₃₉ Cl ₆ (PH ₃) ₁₄ ⁻	0.8 eV
58e (34e + 2P ⁶ 1G ¹⁸)	Au58 ⁻ (b)	0.6 eV	Au ₁₀₂ (p-MBA) ₄₄	0.5 eV
58e			Au ₁₀₂ (SMe) ₄₄	0.5 eV

ſ

