

2145-22

Spring College on Computational Nanoscience

17 - 28 May 2010

Computational Photonics: Cavities and Resonant Devices

S. JOHNSON MIT, Applied Mathematics Cambridge, MA USA

Computational Nanophotonics: Cavities and Resonant Devices

Steven G. Johnson MIT Applied Mathematics

Resonance

Why Resonance?

an oscillating mode trapped for a long time in some volume

- long time = narrow bandwidth ... filters (WDM, etc.) - 1/Q = fractional bandwidth
- resonant processes allow one to "impedance match" hard-to-couple inputs/outputs
- long time, small V ... enhanced wave/matter interaction

 lasers, nonlinear optics, opto-mechanical coupling, sensors, LEDs, thermal sources, ...

How Resonance? need mechanism to trap light for long time

[llnl.gov]

metallic cavities: good for microwave, dissipative for infrared

[Xu & Lipson (2005)]

ring/disc/sphere resonators:
a waveguide bent in circle,
bending loss ~ exp(-radius)

[Akahane, Nature 425, 944 (2003)]

(planar Si slab)

Microcavity Blues

For cavities (*point defects*) frequency-domain has its drawbacks:

- Best methods compute lowest-ω eigenvals, but N^d supercells have N^d modes below the cavity mode — expensive
- Best methods are for Hermitian operators, but losses requires non-Hermitian

Time-Domain Eigensolvers

(finite-difference time-domain = FDTD)

Simulate Maxwell's equations on a discrete grid, + absorbing boundaries (leakage loss)

• Excite with broad-spectrum dipole (1) source

 $\Delta \omega$

decay rate in time gives loss

FDTD: finite difference time domain

Finite-difference-time-domain (FDTD) is a method to model Maxwell's equations on a **discrete time & space grid** using finite centered differences

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
 $\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$

 $\mathbf{D} = \varepsilon \mathbf{E}$ $\mathbf{B} = \mu \mathbf{H}$

K.S. Yee 1966

A. Taflove & S.C. Hagness 2005

FDTD: Yee leapfrog algorithm

2d example:

1) at time t: Update D fields everywhere using spatial derivatives of H, then find $\mathbf{E} = \varepsilon^{-1}\mathbf{D}$ (ε constant) $\mathbf{E}_{\mathbf{x}} += \frac{\Delta t}{\varepsilon \Delta y} \left(\mathbf{H}_{\mathbf{Z}}^{j+0.5} - \mathbf{H}_{\mathbf{Z}}^{j-0.5} \right)$ $\mathbf{E}_{\mathbf{y}} = \frac{\Delta t}{\varepsilon \Delta x} \left(\mathbf{H}_{\mathbf{Z}}^{i+0.5} - \mathbf{H}_{\mathbf{Z}}^{i-0.5} \right)$

2) at time t+0.5: Update H fields everywhere using spatial derivatives of E (µ constant)

$$\mathbf{H}_{z} = \frac{\Delta t}{\mu} \left(\underbrace{\mathbf{E}_{x}^{j+1} - \mathbf{E}_{x}^{j}}_{\Delta y} + \underbrace{\mathbf{E}_{y}^{i} - \mathbf{E}_{y}^{i+1}}_{\Delta x} \right)$$

Why Absorbers?

Finite-difference/finite-element volume discretizations need to artificially truncate space for a computer simulation.

In a wave equation, a hard-wall truncation gives reflection artifacts.

An old goal: "absorbing boundary condition" (ABC) that absorbs outgoing waves.

Problem: good ABCs are hard to find in > 1d.

Perfectly Matched Layers (PMLs)

Bérenger, 1994: design an *artificial* absorbing layer that is analytically reflectionless

Works *remarkably well*.

Now **ubiquitous** in FD/FEM wave-equation solvers.

Several derivations, cleanest & most general via "complex coordinate stretching" [Chew & Weedon (1994)]

PML Starting point: propagating wave

• Say we want to absorb wave traveling in +x direction in an x-invariant medium at a frequency $\omega > 0$.

fields ~
$$f(y,z)e^{i(kx-\omega t)}$$

(usually, k > 0)

PML step 1: Analytically continue

Fields (& wave equation terms) are *analytic* in x, so we can evaluate at complex x & still solve same equations

PML step 2: Coordinate transformation

Weird to solve equations for complex coordinates \tilde{x} , so do coordinate transformation back to real x.

$$\tilde{x}(x) = x + \int_{-\infty}^{x} \frac{i\sigma(x')}{\omega} dx'$$
(allow x-dependent
PML strength σ)
$$\frac{\partial}{\partial x} \stackrel{(1)}{\longrightarrow} \frac{\partial}{\partial \tilde{x}} \stackrel{(2)}{\longrightarrow} \left[\frac{1}{1 + \frac{i\sigma(x)}{\omega}}\right] \frac{\partial}{\partial x}$$
fields $\sim f(y,z)e^{i(kx-\omega t)} \rightarrow f(y,z)e^{i(kx-\omega t)-\frac{k}{\omega}\int_{-\infty}^{x} \sigma(x') dx'}$

nondispersive materials: $k/\omega \sim \text{constant}$ \Rightarrow decay rate independent of ω

PML Step 3: Effective materials

In Maxwell's equations, $\nabla \times \mathbf{E} = i\omega\mu\mathbf{H}$, $\nabla \times \mathbf{H} = -i\omega\varepsilon\mathbf{E} + \mathbf{J}$, coordinate transformations are *equivalent* to transformed *materials* (Ward & Pendry, 1996: "transformational optics")

$$\{\varepsilon,\mu\} \rightarrow \frac{J\{\varepsilon,\mu\}J^T}{\det J}$$

x PML Jacobian $J = \begin{pmatrix} (1 + i\sigma / \omega)^{-1} \\ 1 \\ 1 \end{pmatrix}$ for isotropic starting materials: effective conductivity $\{\varepsilon, \mu\} \rightarrow \{\varepsilon, \mu\} \begin{pmatrix} (1 + i\sigma / \omega)^{-1} \\ 1 + i\sigma / \omega \end{pmatrix}$

 $\left(\frac{\partial x}{\partial \tilde{x}}\right)$

PML = effective anisotropic "absorbing" ε , μ

Understanding Resonant Systems

[Schliesser et al., *PRL* **97**, 243905 (2006)]

- Option 1: Simulate the whole thing exactly
 - many powerful numerical tools
 - limited insight into a single system
 - can be difficult, especially for weak effects (nonlinearities, etc.)
- Option 2: Solve each component separately, couple with explicit perturbative method (one kind of "coupled-mode" theory)

Option 3: abstract the geometry into its most generic form

 ...write down the *most general* possible equations
 ...constrain by fundamental laws (conservation of energy)
 ...solve for universal behaviors of a whole class of devices
 ...characterized via specific parameters from option 2

"Temporal coupled-mode theory"

- Generic form developed by Haus, Louisell, & others in 1960s & early 1970s
 - Haus, Waves & Fields in Optoelectronics (1984)
 - Reviewed in our *Photonic Crystals: Molding the Flow of Light*, 2nd ed., ab-initio.mit.edu/book
- Equations are generic ⇒ reappear in many forms in many systems, rederived in many ways (e.g. Breit–Wigner scattering theory)
 - full generality is not always apparent

(modern name coined by S. Fan @ Stanford)

TCMT example: a linear filter

Temporal Coupled-Mode Theory for a linear filter

Temporal Coupled-Mode Theory for a linear filter

Lorentzian peak, as predicted.

An apparent *miracle*:

 $\sim 100\%$ transmission at the resonant frequency

cavity decays to input/output with *equal rates* \Rightarrow At resonance, reflected wave input port destructively interferes with backwards-decay from cavity & the two *exactly cancel*.

Some interesting resonant transmission processes

Wireless resonant power transfer [M. Soljacic, MIT (2007)] witricity.com

Resonant LED emission luminus.com

(C) i r Tront coating silicon back coating

(narrow-band) resonant absorption in a thin-film photovoltaic [e.g. Ghebrebrhan (2009)]

[S. Fan et al., Phys. Rev. Lett. 80, 960 (1998)]

Dimensionless Losses: $Q = \omega_0 \tau/2$

quality factor Q = # optical periods for energy to decay by $exp(-2\pi)$

energy ~
$$\exp(-\omega_0 t/Q) = \exp(-2t/\tau)$$

in frequency domain: 1/Q = bandwidth

More than one Q...

worst case: high-Q (narrow-band) cavities

Nonlinearities + Microcavities?

weak effects $\Delta n < 1\%$

very intense fields
& sensitive to small changes

A simple idea: for the same input power, nonlinear effects are stronger in a microcavity

That's not all! nonlinearities + microcavities = qualitatively new phenomena

Nonlinear Optics

Kerr nonlinearities $\chi^{(3)}$: (polarization ~ E^3)

- Self-Phase Modulation (SPM)
 - = change in refractive index(ω) ~ $|\mathbf{E}(\omega)|^2$
- Cross-Phase Modulation (XPM)

= change in refractive index(ω) ~ $|\mathbf{E}(\omega_2)|^2$

- Third-Harmonic Generation (THG) & down-conversion (FWM) = $\omega \rightarrow 3\omega$, and back $\omega \rightarrow \omega$
- etc...

Second-order nonlinearities $\chi^{(2)}$: (polarization ~ E^2)

- Second-Harmonic Generation (SHG) & down-conversion = $\omega \rightarrow 2\omega$, and back
- Difference-Frequency Generation (DFG) = $\omega_1, \omega_2 \rightarrow \omega_1 \omega_2$
- etc...

Nonlinearities + Microcavities?

weak effects $\Delta n < 1\%$

very intense fields
& sensitive to small changes

A simple idea:

for the same input power, nonlinear effects are stronger in a microcavity

That's not all! nonlinearities + microcavities = qualitatively new phenomena

let's start with a well-known example from 1970's...

Linear response:

Lorenzian Transmisson

Filter + Kerr Nonlinearity?

Bistable (hysteresis) response (& even multistable for multimode cavity) Power threshold ~ V/Q² (in cavity with V ~ $(\lambda/2)^3$, for Si and telecom bandwidth power ~ mW)

TCMT for Bistability

[Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002).]

TCMT + Perturbation Theory

SPM = small change in refractive index ... evaluate $\Delta \omega$ by 1st-order perturbation theory

$$\alpha_{ii} = \frac{1}{8} \frac{\int d^3 \mathbf{x} \, \varepsilon \chi^{(3)} \, |\mathbf{E}_i \cdot \mathbf{E}_i|^2 + |\mathbf{E}_i \cdot \mathbf{E}_i^*|^2}{\left[\int d^3 \mathbf{x} \, \varepsilon \, |\mathbf{E}_i|^2 \right]^2}$$

 \Rightarrow all relevant parameters (ω , τ or Q, α) can be computed from the resonant mode of the linear system

Accuracy of Coupled-Mode Theory

[Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002).]

Optical Bistability in Practice

[Xu & Lipson, 2005]

Q ~ 10,000 V ~ 300 optimum Power threshold ~ 10 mW

THG in Doubly-Resonant Cavities

[publications from our group: H. Hashemi (2008) & A. Rodriguez (2007)]

e.g. ring resonator with proper geometry *Not easy* to make at micro-scale — must precisely tune ω_3 / ω_1 — materials must be ok at ω_1 and $3\omega_1$

But ... what if we could do it? ... what are the consequences?

Coupled-mode Theory for THG third harmonic generation

$$\frac{da_{1}}{dt} = \left(i\omega_{1}\left(1-\alpha_{11}|a_{1}|^{2}-\alpha_{13}|a_{3}|^{2}\right)-\frac{1}{\tau_{1}}\right)a_{1}-i\omega_{1}\beta_{1}(a_{1}^{*})^{2}a_{3}+\sqrt{\frac{2}{\tau_{s,1}}}s_{+}\right)$$

$$\frac{da_{3}}{dt} = \left(i\omega_{3}\left(1-\alpha_{33}|a_{3}|^{2}-\alpha_{31}|a_{1}|^{2}\right)-\frac{1}{\tau_{3}}\right)a_{3}-i\omega_{3}\beta_{3}a_{1}^{3}+\sqrt{\frac{2}{\tau_{s,3}}}s_{+}\right)$$

$$\frac{SPM}{SPM} = \frac{SPM}{SPM} = \frac{SPM$$

[Rodriguez et al. (2007)]

Detuning for Kerr THG

[Hashemi et al (2008)]

because of SPM/XPM, the input power changes resonant w

compensate by pre-shifting resonance so that at $P_{in} = P_{crit}$ we have $\omega_3 = 3 \omega_1$

. . .

Stability and Dynamics? *brief review*

Steady state-solution: a_1 oscillating at ω_1 , a_3 at ω_3 — rewrite equations in terms of $A_1 = a_1 e^{i\omega_1 t}$ $A_3 = a_3 e^{i\omega_3 t}$

then steady state = A_1 , A_3 constant = fixed-point

cartoon phase space $(A_1, A_3 \text{ are actually complex})$

for simplicity, assume SPM = XPM coefficients: $\alpha_{11} = \alpha_{33} = \alpha_{13} = \alpha_{31} = \alpha$

THG Stability Phase Diagram

Bifurcation vs. SPM/XPM

Limit Cycles

cartoon phase space (A_1 , A_3 are actually complex)

Stability Phase Diagram

Summary: a rich set of behaviors is possible by coupling resonances, with powerful numerical & analytical tools...

to be continued...

Further reading:

Photonic Crystals book: <u>http://jdj.mit.edu/book</u> (covers coupled-mode theory etc.)

Free FDTD software: <u>http://jdj.mit.edu/meep</u> & tutorials

PML notes:

http://math.mit.edu/~stevenj/18.369/pml.pdf