
2145-22

Spring College on Computational Nanoscience 

S. JOHNSON

17 - 28 May 2010

MIT, Applied Mathematics 
Cambridge, MA 

USA

 
 

 

Computational Photonics: Cavities and Resonant Devices

 



Computational Nanophotonics:�
Cavities and Resonant Devices

Steven G. Johnson
MIT Applied Mathematics



420 nm

[ Notomi et al. (2005). ]

Resonance
an oscillating mode trapped for a long time in some volume

(of light, sound, …)
frequency ω0

lifetime τ >> 2π/ω0
quality factor Q = ω0τ/2

energy ~ e–ω0t/Q

modal
volume V

[ Schliesser et al.,
PRL 97, 243905 (2006) ]

[ Eichenfield et al. Nature Photonics 1, 416 (2007) ]

[ C.-W. Wong,
APL 84, 1242 (2004). ]



Why Resonance?
an oscillating mode trapped for a long time in some volume

• long time = narrow bandwidth … filters (WDM, etc.)
    — 1/Q = fractional bandwidth

• resonant processes allow one to “impedance match”
   hard-to-couple inputs/outputs

• long time, small V … enhanced wave/matter interaction
    — lasers, nonlinear optics, opto-mechanical coupling, 
         sensors, LEDs, thermal sources, … 



How Resonance?
need mechanism to trap light for long time

[ llnl.gov ]

metallic cavities:
good for microwave,
dissipative for infrared

ring/disc/sphere resonators:
a waveguide bent in circle,
bending loss ~ exp(–radius)

[ Xu & Lipson
     (2005) ]

10µm

 [ Akahane, Nature 425, 944 (2003) ]

photonic bandgaps
(complete or partial

+ index-guiding)

VCSEL
[fotonik.dtu.dk]

(planar Si slab)



Microcavity Blues
For cavities (point defects)
frequency-domain has its drawbacks:

• Best methods compute lowest-ω eigenvals,
   but Nd supercells have Nd modes
   below the cavity mode — expensive

• Best methods are for Hermitian operators,
   but losses requires non-Hermitian



Time-Domain Eigensolvers�
(finite-difference time-domain = FDTD)

Simulate Maxwell’s equations on a discrete grid,
+ absorbing boundaries (leakage loss)

• Excite with broad-spectrum dipole (  ) source

Δω

Response is many
sharp peaks,

one peak per mode
complex ωn [ Mandelshtam,

J. Chem. Phys. 107, 6756 (1997) ]

tricky
signal processing

decay rate in time gives loss



Finite-difference-time-domain (FDTD) is a method to model Maxwell’s 
equations on a discrete time & space grid using finite centered differences

Hy
Ey Ex

Hx
Ez

Hz

K.S. Yee 1966

A. Taflove & S.C. Hagness 2005

∇ × E = − ∂B
∂t

∇ ×H =
∂D
∂t

+ J

D = εE B = µH

FDTD: finite difference time domain



1)   at time t: Update D fields everywhere
      using spatial derivatives of H, then find E=ε-1D (ε 

constant)
Ex += ∆t 

ε ∆y ( Hz
j+0.5 –  Hz

j-0.5
 )

Ey -= ∆t 
ε ∆x( Hz

i+0.5 –  Hz
i-0.5

 )

2) at time t+0.5: Update H fields everywhere using 
spatial derivatives of E (μ constant) 

Hz +=  ∆t 
µ ( Ex

j+1– Ex
j+ Ey

i
– Ey

i+1)
∆x∆y

Hz

Ex

Ey

Ex

Ey
Hz

FDTD: Yee leapfrog algorithm
2d example:



Why Absorbers?
Finite-difference/finite-element volume discretizations
need to artificially truncate space for a computer simulation.

In a wave equation,
a hard-wall truncation
gives reflection artifacts.

An old goal: “absorbing 
boundary 
condition” (ABC) that 
absorbs outgoing waves.

Problem: good ABCs 
are hard to find in > 1d.



Perfectly Matched Layers (PMLs)
Bérenger, 1994: design an artificial absorbing layer

    that is analytically reflectionless

Works remarkably well.

Now ubiquitous in FD/FEM
wave-equation solvers.

Several derivations, cleanest
& most general via “complex
coordinate stretching”
        [ Chew & Weedon (1994) ]



PML Starting point: propagating wave
• Say we want to absorb wave traveling in +x direction
   in an x-invariant medium at a frequency ω > 0.

 
fields  f (y, z)ei kx−ω t( )

(only x in wave
 equation is via

 terms.)
∂ / ∂x

(usually, k > 0)



PML step 1: Analytically continue
Fields (& wave equation terms) are analytic in x,
so we can evaluate at complex x & still solve same equations

 

x = x +
iσ
ω
x

 
fields  f (y, z)ei kx−ω t( ) → f (y, z)e

i kx−ω t( )− k
ω
σ x

unchanged
(no reflection)

unchanged
(no reflection)



PML step 2: Coordinate transformation
Weird to solve equations for complex coordinates x,
so do coordinate transformation back to real x.

~

 

x(x) = x + iσ ( ′x )
ω

d ′x
x

∫

 

∂

∂x
→

∂

∂x
→

1

1+ iσ (x)
ω

















∂

∂x

 
fields  f (y, z)ei kx−ω t( ) → f (y, z)e

i kx−ω t( )− k
ω

σ ( ′x )d ′x
x

∫

(allow x-dependent
PML strength σ)

nondispersive materials: k/ω ~ constant
⇒ decay rate independent of ω

1 2



PML Step 3: Effective materials
In Maxwell’s equations,
coordinate transformations are equivalent to transformed materials

(Ward & Pendry, 1996: “transformational optics”)

∇ × E = iωµH, ∇ ×H = −iωεE + J,

x PML Jacobian

J =
1+ iσ /ω( )−1

1
1

















{ε,µ}→ J{ε,µ}JT

det J

{ε,µ}→ {ε,µ}
(1+ iσ /ω )−1

1+ iσ /ω
1+ iσ /ω

















for isotropic starting materials:

PML = effective anisotropic “absorbing” ε, µ

effective
conductivity

 

∂x
∂x









Understanding Resonant Systems

[ Schliesser et al.,
PRL 97, 243905 (2006) ]

• Option 1: Simulate the whole thing exactly
— many powerful numerical tools
— limited insight into a single system
— can be difficult, especially for

                 weak effects (nonlinearities, etc.)

• Option 2: Solve each component separately,
couple with explicit perturbative method
(one kind of “coupled-mode” theory)

• Option 3: abstract the geometry into its most generic form
 …write down the most general possible equations
        …constrain by fundamental laws (conservation of energy)
     …solve for universal behaviors of a whole class of devices

… characterized via specific parameters from option 2



“Temporal coupled-mode theory”
•  Generic form developed by Haus, Louisell, & others in 

1960s & early 1970s
–  Haus, Waves & Fields in Optoelectronics (1984)
–  Reviewed in our Photonic Crystals: Molding the Flow of Light, 

2nd ed., ab-initio.mit.edu/book

•  Equations are generic ⇒ reappear in many forms in many 
systems, rederived in many ways (e.g. Breit–Wigner scattering 
theory)
–  full generality is not always apparent

(modern name coined by S. Fan @ Stanford)



TCMT example: a linear filter

420 nm

[ Notomi et al. (2005). ]
[ C.-W. Wong,

APL 84, 1242 (2004). ]

[ Takano et al. (2006) ] 

[ Ou & Kimble (1993) ]

= abstractly:
       two single-mode i/o ports 
            + one resonance

resonant cavity
frequency ω0, lifetime τ

po
rt 

1 port 2



Temporal Coupled-Mode Theory�
for a linear filter

ainput output
s1+
s1– s2–

resonant cavity
frequency ω0, lifetime τ |s|2 = power

|a|2 = energy

da
dt

= −iω0a −
2
τ
a + 2

τ
s1+

s1− = −s1+ +
2
τ
a, s2− =

2
τ
a

assumes only:
• exponential decay
   (strong confinement)�
• linearity
• conservation of energy
• time-reversal symmetry









can be
relaxed



Temporal Coupled-Mode Theory�
for a linear filter

ainput output
s1+
s1– s2–

resonant cavity
frequency ω0, lifetime τ |s|2 = flux

|a|2 = energy

transmission T
= | � s2– |2 / | � s1+ |2 

1

ω0

T = Lorentzian filter

=

4
τ 2

ω −ω0( )2 + 4
τ 2

ω



Resonant Filter Example

Lorentzian peak, as predicted.

An apparent miracle:

~ 100% transmission
at the resonant frequency

cavity decays to input/output with equal rates
⇒ At resonance, reflected wave

destructively interferes
with backwards-decay from cavity

& the two exactly cancel.



Some interesting resonant 
transmission processes

Wireless resonant power transfer
[ M. Soljacic, MIT (2007) ]

witricity.com

Resonant
LED emission

luminus.com

(narrow-band) 
resonant
absorption in
a thin-film
photovoltaic

[ e.g. Ghebrebrhan (2009) ]

input
power

output
power
~ 40% eff.



Another interesting example: Channel-Drop Filters

[ S. Fan et al., Phys. Rev. Lett. 80, 960 (1998) ]

Perfect channel-dropping if:

Two resonant modes with:
• even and odd symmetry
• equal frequency (degenerate)
• equal decay rates

Coupler

waveguide 1

waveguide 2

(mirror plane)



Dimensionless Losses: Q

1

ω0

T = Lorentzian filter

=

4
τ 2

ω −ω0( )2 + 4
τ 2

ω

FWHM
1
Q
=
2
ω0τ

…quality factor Q

quality factor Q = # optical periods for energy to decay by exp(–2π)

energy ~ exp(–ω0t/Q) = exp(–2t/τ) 

in frequency domain: 1/Q = bandwidth

from temporal
coupled-mode theory:

Q = ω0τ / 2



More than one Q…

Qw

A simple model device (filters, bends, …):

Qr

Q
1

Qr
1

Qw
1= +

Q = lifetime/period
    = frequency/bandwidth

We want: Qr >> Qw

1 – transmission ~ 2Q / Qr

worst case: high-Q (narrow-band) cavities

losses
(radiation/absorption)

TCMT ⇒



Nonlinearities + Microcavities?
weak effects
∆n < 1%

very intense fields
& sensitive to small changes

A simple idea:
for the same input power, nonlinear effects
are stronger in a microcavity

That’s not all!
nonlinearities + microcavities
 = qualitatively new phenomena



Nonlinear Optics
Kerr nonlinearities χ(3):  (polarization ~ E3)

• Self-Phase Modulation (SPM)
= change in refractive index(ω) ~ |E(ω)|2

• Cross-Phase Modulation (XPM)
= change in refractive index(ω) ~ |E(ω 2) |2

• Third-Harmonic Generation (THG) & down-conversion (FWM)
= ω → 3ω, and back

• etc…
ω

ω

ω

3ω

ω

ω

ω’s

Second-order nonlinearities χ(2):  (polarization ~ E2)
• Second-Harmonic Generation (SHG) & down-conversion

= ω → 2ω, and back
• Difference-Frequency Generation (DFG) = ω1, ω2 → ω1-ω2 
• etc…



Nonlinearities + Microcavities?
weak effects
∆n < 1%

very intense fields
& sensitive to small changes

A simple idea:
for the same input power, nonlinear effects
are stronger in a microcavity

That’s not all!
nonlinearities + microcavities
 = qualitatively new phenomena

let’s start with a well-known example from 1970’s…



A Simple Linear Filter

in out

Linear response:
Lorenzian Transmisson



Filter + Kerr Nonlinearity?

in out

Linear response:
Lorenzian Transmisson shifted peak?

+ nonlinear
index shift
= ω shift

Kerr nonlinearity:
∆n ~ |E|2



stable

stable
unstable

Optical Bistability

Bistable (hysteresis) response
(& even multistable for multimode cavity)

Logic gates, switching,
rectifiers, amplifiers,

isolators, …

[ Felber and Marburger., Appl. Phys. Lett. 28, 731 (1978). ]

Power threshold ~ V/Q2
(in cavity with V ~ (λ/2)3,

for Si and telecom bandwidth 
power ~ mW)

[ Soljacic et al.,
PRE Rapid. Comm. 66, 055601 (2002). ]



TCMT for Bistability
[ Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002). ]

ainput outputs1+ s2–
resonant cavity

frequency ω0, lifetime τ, 
SPM coefficient α  ~ χ(3)


(from perturbation theory) 

|s|2 = power
|a|2 = energy

da
dt

= −i(ω0 −α a 2 )a − 2
τ
a +

2
τ
s1+

s1− = −s1+ +
2
τ
a, s2− =

2
τ
a

gives cubic equation
for transmission

… bistable curve



TCMT + Perturbation Theory

SPM = small change in refractive index
  … evaluate ∆ω by 1st-order perturbation theory 

⇒  all relevant parameters (ω, τ or Q, α) can be computed
  from the resonant mode of the linear system



Accuracy of Coupled-Mode Theory

semi-analytical

numerical

[ Soljacic et al., PRE Rapid. Comm. 66, 055601 (2002). ]



Optical Bistability in Practice

420 nm

[ Notomi et al. (2005). ]
[ Xu & Lipson, 2005 ]

Q ~ 30,000
V ~ 10 optimum

Power threshold ~ 40 µW

10µm

Q ~ 10,000
V ~ 300 optimum

Power threshold ~ 10 mW



THG in Doubly-Resonant Cavities

input/output channel
cavity
ω1

ω3=3ω1

Q1

Q3

χ(3)

Not easy to make at micro-scale
— must precisely tune ω3 / ω1
— materials must be ok at ω1 and 3ω1

But … what if we could do it?
       …  what are the consequences?

e.g. ring resonator
with proper geometry

[ publications from our group: H. Hashemi (2008) & A. Rodriguez (2007) ]



Coupled-mode Theory for THG
third harmonic generation

THG

down-
conversion

SPM XPM

SPM XPM

[ Rodriguez et al. (2007) ]



α=0: Critical Power for Efficient THG
TH

G
 c

on
ve

rs
io

n 
ef

fic
ie

nc
y THG

reflection
at ω1

input power Pin at ω1

Pcrit ~ V/Q2

~ mW for Si, 
telecom bandwidth
    & λ-scale cavity

third-harmonic generation in doubly-resonant χ(3) (Kerr) cavity

[ Rodriguez
et al. (2007) ]



Detuning for Kerr THG
ω

ca
v /

 ω
in


[ Hashemi et al (2008) ]

because of SPM/XPM,
the input power
changes resonant w
…
compensate by
pre-shifting resonance
so that at Pin = Pcrit
we have ω3= 3 ω1



Stability and Dynamics?�
brief review

Steady state-solution: a1 oscillating at ω1, a3 at ω3
— rewrite equations in terms of A1 = a1 eiω1t
        A3 = a3 eiω3t
then steady state = A1, A3 constant = fixed-point

A1

A3

cartoon phase space (A1, A3 are actually complex)

fixed pointfixed point
stable unstable



for simplicity, assume SPM = XPM coefficients:�
α11 = α33 = α13 = α31 = α



THG Stability Phase Diagram

unstable 100%-efficiency —
lower-efficiency stable solutions

SPM+XPM / THG

[ Hashemi et al (2008) ]



Bifurcation vs. SPM/XPM

/

TH
G

 e
ffi

ci
en

cy


stable

stable
unstable

[ Felber, 1978 ]

[ Hashemi et al (2008) ]



Limit Cycles
Steady state-solution: a1 oscillating at ω1, a3 at ω3

— rewrite equations in terms of A1 = a1 eiω1t
        A3 = a3 eiω3t
then steady state = A1, A3 constant = fixed-point

A1

A3

cartoon phase space (A1, A3 are actually complex)

fixed point
fixed point

stable

unstable

               limit cycle
= stable oscillating solution



Stability Phase Diagram

unstable 100%-efficiency —
lower-efficiency stable solutions

+ limit cycles

[ Hashemi et al (2008) ]



TH
G

 e
ffi

ci
en

cy


An Optical Kerr-THG Oscillator�
[ analogous to self-pulsing in SHG; Drummond (1980) ]

[ Hashemi et al 
     (2008) ]



to be continued…

Photonic Crystals book: http://jdj.mit.edu/book
(covers coupled-mode theory etc.)

Free FDTD software: http://jdj.mit.edu/meep
        & tutorials

PML notes:
    http://math.mit.edu/~stevenj/18.369/pml.pdf

Further reading:

Summary: a rich set of behaviors is possible by coupling
 resonances, with powerful numerical & analytical tools…


