

2145-23

Spring College on Computational Nanoscience

17 - 28 May 2010

Computational Photonics: Forces and Quantum Fluctuations

S. JOHNSON MIT, Applied Mathematics Cambridge, MA USA Computational Nanophotonics: Forces and Fluctuations

> Steven G. Johnson MIT Applied Mathematics

[here, forces from *oscillating* fields (light), *not* electrostatic forces]

Radiation Pressure

[Maxwell, 1871]

photon has momentum $\hbar\omega/c$ (classically, **E**×**H** / c^2 = momentum density)

Observations of Radiation Pressure

[observed since 1901]

very *small* scales:

FRP

50 μm

 (Q_m, ω_m)

laser cooling of atoms

radiation-pressure cooling of microdisk resonators via opto-mechanical coupling

[Schliesser et al., *PRL* 97, 243905 (2006)]

(for detecting tiny displacements, gravitational waves, etc.)

very *large* scales:

important in determining stellar structure

we also want forces from *confined* light (not free-space propagation) to enhance/control interactions

Gradient Forces and Evanescent Coupling

gradient force evanescent coupling in optical tweezers between two waveguides radiation optical pressure axis dominates in between waveguides wave front is a nonzero Maxwell λ stress tensor $\sim E^2 + B^2$ colloidal ~ force/area gradient particle force dominates interaction between focused two waveguides is key... laser beam physics.nyu.edu/~dg86 S force ~ $-\nabla(-\mathbf{p}\cdot\mathbf{E})$ $\sim \alpha \nabla (|\mathbf{E}|^2)/2$

for particle polarizability α

Evanescent-Coupling Forces from frequency shifts

evanescent coupling between two waveguides

equivalently:

finite *s* affects mode frequency ω , $\Delta s =$ change in photon energy $\hbar \omega$, hence a force

force/length = -(# photons/length) d(hw)/ds = -(U / hw) d(hw)/ds = -U/w dw/ds

for a total energy/length U (can also be derived classically)

[Povinelli et al., Opt. Express 13, 8286 (2005)]

Attraction and Repulsion Between Waveguides

[Povinelli et al., Opt. Lett. 30, 3042 (2005)]

mechanical displacement calculation (SOI air-bridge waveguides) optical force calculations

Recent Experimental Realizations

waveguide/substrate force

waveguide/microdisk force

[Eichenfield et al. Nature Photonics 1, 416 (2007)]

Computing forces via stress tensors

Frequency-domain approach:

- 1) put in planar current source \mathbf{J} at $\boldsymbol{\omega}$ to generate incident wave.
- 2) compute resulting **E**, **H**
- 3) integrate Maxwell stress tensor over bounding box to get force at ω

$$F_{i} = \oint \sum_{j} \left[E_{i}E_{j} + H_{i}H_{j} - \delta_{ij} \frac{\left|\mathbf{E}\right|^{2} + \left|\mathbf{H}\right|^{2}}{2} \right] dA_{j}$$

4) repeat for each desired ω... yuck

example system:

Computing whole spectrum at once

Time-domain approach:

- put in planar current source J as a short pulse to generate incoming pulse.
- 2) record resulting $\mathbf{E}(t)$, $\mathbf{H}(t)$ on bounding box
- 3) Fourier transform to obtain $E(\omega)$, $H(\omega)$ on bounding box
- 4) integrate Maxwell stress tensor over bounding box to get force at each ω

$$F_{i} = \oint \sum_{j} \left[E_{i}E_{j} + H_{i}H_{j} - \delta_{ij} \frac{\left|\mathbf{E}\right|^{2} + \left|\mathbf{H}\right|^{2}}{2} \right] dA_{j}$$

example system:

Classical Optical Force on Membrane

What happens when there is no input power, no light, no net charge

 \Rightarrow no electomagnetic force?

No, there *is* an EM force.

Fluctuation-Induced Interactions

Attractive forces between otherwise neutral atoms

Fluctuation-Induced Interactions

Attractive forces between otherwise neutral atoms

Casimir–Polder force (separations >> resonant wavelength)

$$U \sim -\frac{1}{d^7} \qquad \Longrightarrow \qquad F \sim -\frac{1}{d^8}$$

Casimir Effect

macroscopic objects (many interacting dipoles)

Hendrik Casimir (1948)

$$F/A = -\frac{\hbar c \pi^2}{240d^4}$$

Geometry & materials important: Electromagnetic field must satisfy boundary conditions at material interfaces.

attractive, monotonically decreasing

pressure ~ 1 atm at
$$d=50$$
nm

Experiments

- Van Blockland, Overbeek 1978 first clear qualitative observation
- Lamoreaux 1997 first high-precision

[Chan *et. al.*, *Science* **91**, (2001)]

Applications

Microelectromechanical Systems

stiction problems!

study complicated geometries: reduce stiction? new effects?

how?

Selected pre-2007 theoretical work

Nanophotonics

classical electromagnetic effects can be altered by λ -scale structures

optical insulators

novel devices

[Schliesser et al., *PRL* **97**, 243905 (2006)]

Ways forward (2007–Present)

- Problem: how to practically evaluate forces in arbitrary cases.
- Many semi-analytic approaches in last 5–10 years [Emig/Jaffe/Kardar/Rahi, Lambrecht/Marachevsky, ...]
- Another approach: exploit mature, scalable methods from classical EM [Rodriguez/McCauley/Reid/White/Johnson]

How to relate quantum fluctuations to classical nanophotonics?

Fluctuation–Dissipation Theorem

Goal: compute electromagnetic fluctuation-induced forces current fluctuations ⇔ EM field fluctuations

total energy

$$U = \int_{0}^{\infty} d\omega \int_{V} d^{3}\mathbf{x} \langle U(\mathbf{x},\omega) \rangle \qquad F_{i} = \int_{0}^{\infty} d\omega \bigoplus_{S} \sum_{j} \langle T \rangle_{ij} dS_{j}$$
energy
energy
density $\langle U(\mathbf{x}) \rangle_{\omega} \sim \sum_{i} \langle E_{i}(\mathbf{x})^{2} \rangle_{\omega} \qquad \text{stress} \\ \text{tensor} \langle T(\mathbf{x},\omega) \rangle_{ij} \sim \varepsilon(\mathbf{x},\omega) \left[\langle E_{i}E_{j} \rangle_{\omega} - \frac{1}{2} \delta_{ij} \langle E_{i}E_{i} \rangle_{\omega} \right]$

Fluctuation-Dissipation Theorem

$$\left\langle E_{i}(\mathbf{x})E_{j}(\mathbf{x}')\right\rangle_{\omega} = \hbar\omega^{2}\operatorname{Im}G_{ij}(\omega,\mathbf{x}-\mathbf{x}')$$
$$\left\langle H_{i}(\mathbf{x})H_{j}(\mathbf{x}')\right\rangle_{\omega} = -\hbar\omega^{2}(\nabla\times)_{il}(\nabla\times)_{jm}\operatorname{Im}G_{lm}(\omega,\mathbf{x}-\mathbf{x}')$$

classical "photon" Green's function $\left[\nabla \times \nabla \times -\omega^2 \varepsilon(\mathbf{x},\omega)\right] G_{ij}(\omega,\mathbf{x}-\mathbf{x}') = \delta(\mathbf{x}-\mathbf{x}')\hat{e}_j$ electric response to current source

$$\int = \delta(\mathbf{x} - \mathbf{x}') E(\mathbf{x})$$

Computing Green's Functions

Solve Maxwell's equations in a localized basis:

standard problem in classical electromagnetism!

solving some PDEs:

$$\frac{\partial \mu \mathbf{H}}{\partial t} = -\nabla \times \mathbf{E}$$
$$\frac{\partial \varepsilon \mathbf{E}}{\partial t} = \nabla \times \mathbf{H} - \mathbf{J}$$

boundary element methods

[H. Reid, Jacob White (MIT)]

finite difference

choice of basis functions (depends on problem) - ultimately, solving linear eq.

Green's Functions via finite differences

$$\left[\nabla \times \nabla \times -\omega^2 \varepsilon\right] G_{ij}(\omega, \mathbf{x}, \mathbf{x}') = \delta(\mathbf{x} - \mathbf{x}') \hat{e}_j$$

Linear matrix equation $A\mathbf{x} = b$

Casimir Energy Density

—at every point in space (pixel) and at every frequency ω , solve for the Green's function

(employ direct or iterative solvers, depending on system size)

- = Green's function
- $= \mathbf{E}$ at \mathbf{x} from current at \mathbf{x}
- = solving one linear system

 $A\mathbf{x} = b$

N degrees of freedom, solving Green's = O(N) time [e.g. via multigrid method] need at every **x** (N points) = $O(N^2)$ time

Casimir Stress Tensor

want **force**, not energy

 $\delta(\mathbf{x}-\mathbf{x'})e^{i\omega t}$

surface surrounding body S

stress tensor $\sim \langle \mathbf{E}^2 \rangle + \langle \mathbf{H}^2 \rangle$ terms

stress tensor method

= Green's function evaluated only on the surface are we done yet? << *N* times $\langle \langle O(N^2)$ work $O(N^{2-1/d})$... (actually, can do better with additional tricks)

Problems with real frequency

stress tensor method

$$F = \int_{0}^{\infty} d\omega \oiint \langle \vec{\mathbf{T}} \rangle \cdot d\vec{\mathbf{A}}$$
$$\langle \mathbf{T} \rangle \propto \langle E^{2} \rangle + \langle B^{2} \rangle$$

 $\delta(\mathbf{x}-\mathbf{x'})e^{i\omega t}$

surface surrounding body S

Casimir integrand $f(\omega)$ (after surface, spatial integration)

$$F = \int_{0}^{\infty} d\omega f(\omega)$$

turns out $f(\omega)$ is ill-behaved...

- wildly oscillatory
- contributions up to Nyquist frequency
- comes from wave interference & resonances...

Complex frequency: Wick rotation

Im $\omega = i\xi$

vacuum Green's function:

exponentially decaying non-oscillatory no resonance/interference

Wick rotation (contour integration):
real ω to imaginary $\omega \rightarrow i\xi$
— move contour away from poles

Time domain

want response integrated over many frequencies:

time domain equivalent...

$$\frac{\partial \mu \mathbf{H}}{\partial t} = -\nabla \times \mathbf{E}$$

$$\frac{\partial \varepsilon \mathbf{E}}{\partial t} = \nabla \times \mathbf{H} - \mathbf{J}$$

time-evolve ME

$$\rightarrow \mathbf{E} \text{ in response}$$

to $\mathbf{J} = \delta(t)\delta(\mathbf{x} - \mathbf{x}')$

however...there's a wrinkle...

Why?

Entire frequency response in a single shot

FDTD solvers widespread (off the shelf), highly efficient, and extremely versatile *e.g. anisotropic dielectrics, many boundary conditions, highly parallelizable*

[Rodriguez, McCauley *et al. PRA* **80** 012115 (2009)] [McCauley, Rodriguez *et al. PRA* **81** 012119 (2010)]

MEEP: http://ab-initio.mit.edu/wiki/index.php/Meep

Wick Rotation?

Green's function inverts: $\nabla \times \nabla \times -\omega^2 \varepsilon(\omega, x)$

 ω and ϵ only appear together!

complex contour deformation

⇒ change from ω to $\omega f(\omega)$ is equivalent to changing material to $f(\omega)^2 \varepsilon(\omega f(\omega), x)$ (+ Jacobian factor in frequency integral)

Can get all the advantages of complex-frequency but for real frequency/time with transformed materials

Wick Rotations in the Time Domain

Wick rotations

 $\omega \rightarrow i\xi$

Gain media

exponentially growing solutions if negative at **all** frequencies

Try different contour?

$$\omega \to \xi \sqrt{1 + \frac{i\sigma}{\xi}} \quad (1 + \frac{i\sigma}{\xi}) \mathcal{E} = \text{conductive medium}$$

time domain: real-frequency response in dispersive medium

$$\frac{\partial \mu \mathbf{H}}{\partial t} = -\nabla \times \mathbf{E}$$
$$\frac{\partial \varepsilon \mathbf{E}}{\partial t} = \nabla \times \mathbf{H} - \sigma \varepsilon \mathbf{E} - \mathbf{J}$$

most off-the-shelf FDTD software already supports conductive media

[Rodriguez, McCauley et al. PNAS 106 6883 (2010)]

... many interesting things to compute ...

... almost any geometry you can imagine is unstudied ...

What about repulsive forces?

Theorem: [Kenneth, 2006]

in a mirror-symmetric metal/dielectric [$\epsilon(iw) \ge 1$] structure, the Casimir force is always attractive

... but what about asymmetric structures?

lots of interesting structures, e.g. with lateral forces, even Casimir "ratchets"

[Emig, arXiv cond-mat/0701641 (2007)]

True Casimir Repulsion Between Metallic Objects in Vacuum

Casimir Forces in Fluids

Repulsive forces (between dielectrics in fluids)

Known: dielectric configuration satisfying $\varepsilon_{\alpha}(i\xi) \leq \varepsilon_{fluid}(i\xi) \leq \varepsilon_{\beta}(i\xi)$ then Casimir force repulsive [Dzyaloschinski, Lifshitz, Pitaevskii, 1956]

Stable non-touching bonding

[A. W. Rodriguez, A. McCauley, et. al. PRL 104 160402 (2010)]

finis

[papers: <u>http://math.mit.edu/~stevenj</u> students/postdocs: A. Rodriguez, A. McCauley, H. Reid collaborators: F. Capasso & M. Loncar (Harvard), J. White & R. Jaffe & M. Kardar (MIT), T. Emig (Köln), D. Dalvit (LANL)]

- MEMS devices + nanophotonics opening new regimes of optical-force interactions/devices & many problems are relatively unexplored.
- In electromagnetism, where powerful off-the-shelf solvers are widely available, fine details of computations are often less important than how you formulate the problem