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Computational Nanophotonics:�
Forces and Fluctuations

Steven G. Johnson
MIT Applied Mathematics



 [ here,�
forces from oscillating fields (light),�

not electrostatic forces ]



Radiation Pressure�
[ Maxwell, 1871 ]

photon has momentum hω/c
(classically, E×H / c2 = momentum density)

incident photon

reflected photon
gains 2 ×

photon momentum
⇒ radiation pressure∆(photon momentum)

+ ∆(mirror momentum)
= 0

(mirror)



Observations of Radiation Pressure�
[ observed since 1901 ]

important in determining
stellar structure

[ image: NASA ]

very large scales:
very small scales:

[ image: nist.gov ]

laser cooling
of atoms

radiation-pressure cooling of 
microdisk resonators

via opto-mechanical coupling

[ Schliesser et al., PRL 97, 243905 (2006) ]

(for detecting tiny displacements,
gravitational waves, etc.)



we also want forces�
from confined light�

(not free-space propagation)�
to enhance/control interactions



Gradient Forces�
and Evanescent Coupling

gradient force
in optical tweezers

physics.nyu.edu/~dg86

force ~ –∇(–p⋅E)
~ α∇(|E|2)/2

for particle polarizability α 

evanescent coupling
between two waveguides

in between waveguides 
is a nonzero Maxwell 

stress tensor
~ E2 + B2

~ force/area

interaction between
two waveguides is key…

s



Evanescent-Coupling Forces�
from frequency shifts

evanescent coupling
between two waveguides

in between 
waveguides is a 

nonzero Maxwell 
stress tensor

~ E2 + B2

~ force/area

s

equivalently: 
finite s affects mode frequency ω, 
∆s = change in photon energy hω, 

hence a force

force/length
= –(# photons/length) d(hω)/ds 

= –(U / hω) d(hω)/ds
= –U/ω dω/ds

for a total energy/length U
(can also be derived classically)

[ Povinelli et al., Opt. Express 13, 8286 (2005) ]



Attraction and Repulsion 
Between Waveguides�

[ Povinelli et al., Opt. Lett. 30, 3042 (2005) ]

di
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nm
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(λ=1.55µm, power = 100mW)

mechanical displacement calculation
(SOI air-bridge waveguides)

optical force calculations

symmetric/antisymmetric modes
haveattractive/repulsive force



Recent Experimental Realizations 
waveguide/substrate force

[ Li et al. Nature 456, 480 (2008) ]

measure displacement
via phase-velocity
change due to substrate

waveguide/microdisk force

[ Eichenfield et al. Nature Photonics 1, 416 (2007) ]



Computing forces via stress tensors

100nm

SiO2

Si

Si

200nm a = 1µm

incident light

d

E

100nm

example system:

Frequency-domain approach:

planar current source J

1)  put in planar current 
source J at ω to generate 
incident wave.

2) compute resulting E, H

4) repeat for each desired ω 
… yuck

3) integrate Maxwell stress 
tensor over bounding box 
to get force at ω

 

Fi = EiEj + HiH j − δ ij
E 2

+ H 2

2











dAj

j
∑∫∫



Computing whole spectrum at once

100nm

SiO2

Si

Si

200nm a = 1µm

incident light

d

E

100nm

example system:

Time-domain approach:

pulse current source J

1)  put in planar current 
source J as a short pulse to 
generate incoming pulse.

2)  record resulting E(t), 
H(t) on bounding box

4) integrate Maxwell stress 
tensor over bounding box to 
get force at each ω

 

Fi = EiEj + HiH j − δ ij
E 2

+ H 2

2











dAj

j
∑∫∫

3) Fourier transform to obtain 
E(ω), H(ω) on bounding box
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wavelength (µm)

“repulsive” (upwards)

“attractive”
(downwards)

100nm

SiO2

Si

Si

200nm a = 1µm

incident light

d

E

100nm

Classical Optical Force on Membrane



What happens when there is�

no input power,�
no light,�

no net charge�
…�

⇒ no electomagnetic force?�

No, there is an EM force.



Fluctuation-Induced Interactions

d

p1

Attractive forces between otherwise neutral atoms

thermal/quantum
fluctuating dipole: p2

induced dipole

van der Waals force
(close proximity)

€ 

U ~ − 1
d6

€ 

F ~ − 1
d7



Fluctuation-Induced Interactions

Casimir–Polder force
(separations >> resonant wavelength)

d

p1 p2

€ 

U ~ − 1
d7

Attractive forces between otherwise neutral atoms

€ 

F ~ − 1
d8

fluctuating dipole:
induced dipole

finite speed = wave effects



Casimir Effect
macroscopic objects  

(many interacting dipoles)

E

d

Geometry & materials important:
Electromagnetic field must satisfy 
boundary conditions at material 
interfaces.

Hendrik Casimir (1948)

  

€ 

F /A = −
cπ 2

240d4

d

perfect metal plates

attractive, monotonically decreasing

pressure ~ 1 atm at d=50nm



[U. Mohideen et. al.
 PRL, 81 (1998)]

[Chan et. al., 
Science 91, (2001)] 

 

Microelectromechanical Systems
•  Van Blockland, Overbeek 1978                    

 first clear qualitative observation 

•  Lamoreaux 1997 – first high-precision 

stiction 
problems!

study complicated geometries:
reduce stiction? new effects?

how?

Experiments             Applications



Selected pre-2007 theoretical work
1950 

Casimir force  
between plates 

1960 

Stress-tensor method 
for dielectric slabs 

2006 

Cylinder-plate for 
perfect metals  

2000 

Various perturbative 
methods developed   

[Casimir, H. B. G, 
Acta. Phys. (1948)] 

[Lifshitz, Pitaveskii, & Dzyaloshinskii
Statistical Physics: Part 2, 1956]  

repulsive forces via                       
electric & magnetic conductor

[Boyer, Acta. Phys. (1974)]

multi-layer 
generalizations

[Emig, Jaffe, Kardar, Scardicchio
     PRL 96, 080403 (2006)]

cylinder-plate
repulsive forces in fluids

perfect-metal 
plates

repulsive forces �
via excited atoms

[Sherkunov, 2005]

1970  2003 

corrugated plates

[Emig, Kardar. et. al.,
PRL 87, 260402 (2001)]

Casimir pistons

[ Hertzberg, Cavalcanti 
(2004), Kardar, Jaffe,

and others ]



[ D. Norris, UMN (2001) ]

optical insulators

trapping/guiding
light in vacuum

unusual effects,
novel devices

V

[ Schliesser et al.,
PRL 97, 243905 (2006) ]

[ Eichenfield et al.
 Nature Photonics 
1, 416 (2007) ]

classical electromagnetic effects can be
altered by λ-scale structures

coupled to
mechanical
force/vibration

many recent advances in nanofabrication

Nanophotonics



Ways forward�
(2007–Present)

• Problem: how to practically evaluate forces in arbitrary cases.

• Many semi-analytic approaches in last 5–10 years
[ Emig/Jaffe/Kardar/Rahi, Lambrecht/Marachevsky, … ]

• Another approach: exploit mature, scalable methods from classical EM
[ Rodriguez/McCauley/Reid/White/Johnson ]

How to relate quantum fluctuations to classical nanophotonics?



d

current fluctuations  EM field fluctuations

J  = δ(x-x’)

€ 

∇ ×∇ ×−ω 2ε(x,ω)[ ]Gij (ω,x − x ' ) = δ(x − x ' ) ˆ e j

classical “photon” Green’s function electric response 
to current source

E(x)

€ 

U(x)
ω
~ Ei(x)

2
ω

i
∑

€ 

U = dω d3x U(x,ω)
V
∫

0

∞

∫
energy 
density 

total energy   force 

€ 

T(x,ω) ij ~ ε(x,ω) EiE j ω
−
1
2
δij EiEi ω

 

  
 

  

€ 

Fi = dω
0

∞

∫ T ij dS j
j
∑

S
∫∫

stress 
tensor 

  

€ 

Ei(x)E j (x
' )

ω
= ω 2 ImGij (ω,x − x

' )

  

€ 

Hi(x)H j (x
' )

ω
= −ω 2(∇×)il (∇×) jm ImGlm (ω,x − x

' )

Fluctuation-Dissipation 
Theorem

Goal: compute electromagnetic fluctuation-induced forces 

Fluctuation–Dissipation Theorem



€ 

∂µH
∂t

= −∇ ×E

∂εE
∂t

=∇ ×H − J
finite element 

Solve Maxwell’s equations in a localized basis:
standard problem in classical electromagnetism!

finite difference 
solving some PDEs:

choice of basis functions 
(depends on problem)
– ultimately, solving linear eq.

boundary element methods 
(integral equa@ons) 

[H. Reid, Jacob White (MIT)]

Computing Green’s Functions



€ 

∂µH
∂t

= −∇ ×E

∂εE
∂t

=∇ ×H − J

€ 

∂f (x, t)
∂x

=
fn+1
m − fn−1

m

2Δx
derivatives →

€ 

∇ ×∇ ×−ω 2ε[ ]Gij (ω,x,x ' ) = δ(x − x ' ) ˆ e j

Decoupling Maxwell’s equations [J = δ(x-x’)]

€ 

Ax = b
Linear matrix equation 

Yee grid
(1966)

Green’s Functions via finite differences



N degrees of freedom,
solving Green’s = O(N) time
[e.g. via multigrid method]
need at every x (N points)

= O(N2) time

U = trace of Green’s function
    = integral of mean energy density
       by fluctuation-dissipation theorem
                      [ e.g. Tomas, PRA (2002) ]

 

 dw d3x d(w
2ε)

dwvolume
∫∫∫

0

∞

∫ E(x)2

= Green’s function
= E at x from current at x
= solving one linear system

δ(x-x’)eiωt

—at every point in space (pixel) and at every 
frequency ω, solve for the Green’s function

(employ direct or iterative solvers, depending 
on system size)

€ 

Ax = b

Casimir Energy Density



  

€ 

F = dω
 
Τ 

S
∫∫

0

∞

∫ ⋅ d
 
Α 

stress tensor method
δ(x-x’)eiωt

surface surrounding body S

stress tensor

= Green’s function
      evaluated only on the surface
        << N times
        << O(N2) work
              O(N2-1/d ) … (actually, can do better with additional tricks)

 
 E2 + H2  terms

are we done yet?

Casimir Stress Tensor
want force, not energy



  

€ 

F = dω
 
Τ 

S
∫∫

0

∞

∫ ⋅ d
 
Α 

€ 

Τ ∝ E 2 + B2

stress tensor method δ(x-x’)eiωt

surface surrounding body S

€ 

F = dω
0

∞

∫ f (ω)

Casimir integrand f(ω)
(after surface, spatial integration) 

turns out f(ω) is ill-behaved…

• wildly oscillatory 
• contributions up to
  Nyquist frequency

• comes from wave
  interference &
  resonances…

frequency ω (c/d)

fo
rc

e 
in
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gr

an
d

Problems with real frequency



Wick rotation (contour integration): 
   real ω to imaginary ω → iξ 
— move contour away from poles

Im ω = iξ

Re ω

0 at ∞ 

= 

causality ⇒ poles only in lower-half plane

€ 

Gω ~
eiωr / c

r
→Giξ ~

e−ξr / c

r

vacuum Green’s function:

exponentially decaying
non-oscillatory
no resonance/interference

fre
qu

en
cy

 in
te

gr
an

d
Im ω = ξ (c/d)

well-behaved
exponentially 
decaying

decay scale 
~ 1/d

d

Complex frequency: Wick rotation



€ 

∂µH
∂t

= −∇ ×E

∂εE
∂t

=∇ ×H − J

time-evolve ME
→ E in response 
to J = δ(t)δ(x-x’)

pulse 
δ(t) at x’

E(x,ω)

Fourier transform 
scaDered  
field 

Entire frequency response in a single shottime domain equivalent…
Why?

FDTD solvers widespread (off the shelf), 
highly efficient, and extremely versatile
      e.g. anisotropic dielectrics, many boundary       
            conditions, highly parallelizable

MEEP: http://ab-initio.mit.edu/wiki/index.php/Meep

[Rodriguez, McCauley et al. PRA 80 012115 (2009)]
[McCauley, Rodriguez et al. PRA 81 012119 (2010)]

want response
integrated over
many frequencies:

however…there’s a wrinkle…

Time domain



Wick Rotation?

Green’s function inverts:∇ ×∇ × −ω 2ε(ω , x)
ω and ε only appear together!

⇒ change from ω to ω f(ω) is
     equivalent to changing material to f(ω)2 ε(ω f(ω), x)
(+ Jacobian factor in frequency integral)

Can get all the advantages of complex-frequency but
for real frequency/time with transformed materials

complex contour deformation



Wick Rotations in the Time Domain

ω → iξ

€ 

ε →−ε
Wick rotations Gain media

exponentially growing solutions
if negative at all frequencies

Try different contour?

€ 

ω →ξ 1+
iσ
ξ

€ 

1+
iσ
ξ

 

 
 

 

 
 ε

€ 

∂µH
∂t

= −∇ ×E

∂εE
∂t

=∇ ×H −σεE − J

time domain: real-frequency response in dispersive medium

= conduc@ve medium 

[Rodriguez, McCauley et al. PNAS 106 6883 (2010)]

most off-the-shelf FDTD software
already supports conductive media



… many interesting things to 
compute …�

… almost any geometry you can 
imagine is unstudied …



What about repulsive forces?

Theorem:
[ Kenneth, 2006 ]

in a mirror-symmetric
metal/dielectric [ε(iw) ≥ 1] structure,
the Casimir force is always attractive

… but what about
asymmetric structures?

lots of interesting
structures, e.g. with

lateral forces,
even Casimir “ratchets”

[ Emig, arXiv
cond-mat/0701641 (2007) ]



True Casimir Repulsion Between 
Metallic Objects in Vacuum 

field lines do not interact with plate

oxide

metal
array of pillars on oxide: 
still a repulsive force

[ arxiv.org:1003.3487 ]



Casimir Forces in Fluids

repulsive

attractive
h

Bromobenzene

g Metal

silica

h = 400nm

Δx

[ A. McCauley, A. W.  Rodriguez, PRA 97 160401 (2008) ]

gravity and 
geometry

eccentric geometries

Repulsive forces
(between dielectrics in fluids)

[A. W. Rodriguez, J. Munday, et. al. 
PRL 101 190404 (2008) ]

geometry-enabled in-plane 
suspension
— preferred orientation       
     (torque calculations) 

Known: dielectric configuration satisfying
εα(iξ) ≤ εfluid(iξ) ≤ εβ(iξ) then Casimir force repulsive

[ Dzyaloschinski, Lifshitz, Pitaevskii, 1956]



[A. W. Rodriguez, A. McCauley, et. al. PRL 104 160402 (2010) ]

nanoparticle diclusters

Stable non-touching bonding



finis�
[ papers: http://math.mit.edu/~stevenj �

students/postdocs: A. Rodriguez, A. McCauley, H. Reid�
collaborators: F. Capasso & M. Loncar (Harvard),�

                J. White & R. Jaffe & M. Kardar (MIT),�
          T. Emig (Köln), D. Dalvit (LANL) ]

• MEMS devices + nanophotonics opening
   new regimes of optical-force interactions/devices

& many problems are relatively unexplored.

• In electromagnetism, where powerful
  off-the-shelf solvers are widely available,
  fine details of computations are often
  less important than how you formulate the problem


