

The Abdus Salam International Centre for Theoretical Physics

2145-24

Spring College on Computational Nanoscience

17 - 28 May 2010

Electric Transport in Carbon Nanotubes and Graphene at High Field

F. MAURI IMPMC, Univ. Pierre et Marie Curie Paris France

Transport, current saturation and hot phonons at high bias in metallic nanotubes and graphene

N. Vandecasteele, M. Lazzeri, <u>F. Mauri</u> Institut de Minéralogie et de Physique des Milieux condensés, Université Paris 6

A. Barreiro, J. Moser, A. Bachtold CIN2(CSIC-ICN) Barcelona, Spain

Motivations

Metallic Carbon nanotubes:

- -Highest current density (~10⁹ A/cm²)
- -Interconnects for tomorrow electronics but saturation of the current at high bias:
- What is the origin of the saturation?
- Can we improve the nanotube performances?
- Graphene at high bias: maximum current density? Graphene interconnects?

OUTLINE

•metallic carbon nanotubes:

- -transport measurements at high bias
- -scattering processes (DFT vs. experiments)
- -Boltzmann for phonons and electrons, hot phonons
- -cooling hot-phonons to improve performances

•graphene:

- -transport measurements
- -Boltzmann for phonons and electrons
- -analysis of scattering lengths

OUTLINE

PART 1: Transport at high field in metallic nanotubes

- -transport measurements at high bias
- -scattering processes (DFT vs. experiments)
- -Boltzmann for phonons and electrons, hot phonons
- -cooling hot-phonons to improve performances

PART 2: Transport at high field in <u>doped</u> graphene -experimental results on high-mobility graphene devices -Boltzmann modeling of high field transport in graphene

PART 3: Transport in graphene at high field near the charge neutrality point

-Boltmann (semiclassical) vs. quantum (tunneling) transport

-Zener current in ballistic and disordered graphene: theory and experiment

metallic tubes on substrate

- length in short tubes
- electron scattering length: lacksquare

300 nm – 1600 nm

due to defects and acoustic phonons

- resistance depends on length
- electron scattering length:

10-15 nm

due to optical phonons ~ 0.2 eV

Graphene and tube: electrons and phonons

Metallic tubes: electronic structure

graphene

metallic tubes

In nanotubes the electron and phonon states are well described by those of graphene with $\mathbf{k} \cdot \mathbf{C}_{\mathbf{h}} = 2\pi \mathbf{i}$, (i integer)

Metallic tubes: (m-n)=3 i, (I integer)

Semicond. tubes:(m-n) \neq 3 i, (i integer)

extracted from experimental low-field conductivity

saturation current in tubes

elastic scattering negligible,

$$I = 4\int \frac{dk}{2\pi} ev_{k} = 4\int \frac{dk}{2\pi} e \frac{d\varepsilon_{k}}{\hbar dk} = \frac{4e}{2\pi\hbar} \int d\varepsilon = \frac{4e}{2\pi\hbar} \hbar \omega_{\text{phonon}}$$

saturation current in tubes

elastic scattering negligible,

$$I = \frac{4e}{2\pi\hbar} \hbar \omega_{\text{phonon}} = 24\mu\text{A}, \text{ with } \hbar \omega_{\text{phonon}} = 0.15 \text{meV}$$

Phonon lifetime in graphite/graphene

[Lazzeri, Piscanec, Mauri, Ferrari, Robertson, Phys. Rev. B 73, 155426 (2006)]

Fermi velocity

Graphene EPC at Γ

	EPC ² (eV/A) ²
DFT	45.6
Raman line width	45.5

•Similar result from analysis of phonon dispersions near Γ (Kohn anomaly)

Phonon lifetimes in nanotubes

Raman spectrum of graphite

Raman spectrum of tubes

- The G peak splits in G⁺ and G⁻
- G⁻ broad and downshifted in metallic tubes

The 2-fold degenerate E_{2g} mode of graphite splits in metallic tubes:

- G+ transverse mode, perp. to the tube axes, not coupled to electrons
- G- longitudinal mode, parall. to the tube axes, coupled to electrons

Raman G peak linewidth in nanotubes

[Lazzeri, Piscanec, Mauri, Ferrari, Robertson, Phys. Rev. B 73, 155426 (2006)]

phonons-phonons (anharmonicity) interaction from DFT

[Bonini, Lazzeri, Marzari, Mauri, Phys. Rev. Lett. 99, 176802 (2007)]

Time resolved terahertz spectroscopy [PRL 95, 187403 (05)] on graphite: $\tau_{anharmonic} \sim 7ps$

Scattering times for nanotubes with a diameter of 2 nm

- bottleneck: relaxation from optical to acoustic phonon
- heating of optical phonons is expected

We use the scattering times in Boltzmann semiclassical transport theory for both electrons and phonons [Lazzeri, Mauri, Phys. Rev. B 165419 (2006)]

- We compute the IV curve of metallic nanotube transistors with:
 - cold phonons: supposing that optical phonons are thermalized at room temperature
 - hot phonons: allowing for the possibility that optical phonons are heated by the electrons

results (300 nm long nanotube)

- under transport optical phonons are very hot
- other phonons (non coupled to electrons) are cold: tube *not in thermal equilibrium*!
- we can boost performances with a heat sink

a heat sink: isotopic disorder ¹²C_x¹³C_{1-x} [Vandecasteele, Lazzeri, Mauri, **102**, 196801 (2009)]

- isotopic disorder scatters phonons but not electrons
- is the disorder-decay-time shorter than τ_{th} (3-5 ps)?

a heat sink: isotopic disorder ¹²C_x¹³C_{1-x} [Vandecasteele, Lazzeri, Mauri, **102**, 196801 (2009)]

• is the disorder-decay-time shorter than τ_{th} (3-5 ps)?

yes

a heat sink: isotopic disorder ¹²C_x¹³C_{1-x} [Vandecasteele, Lazzeri, Mauri, **102**, 196801 (2009)]

 improvement in the performances (decrease of differential resistivity)

Conclusions part 1

metallic carbon nanotubes

- •full saturation is possible, since $l_{el} \sim 1000 \text{ nm} >> l_{ph} \sim 100 \text{ nm}$ •at high bias, since $\tau_{epc} << \tau_{anharmonic}$, phonons become hot and increase the resistance
- •isotopic disorder reduces the hot phonons and the resistance

PART 2:

Transport at high field in doped graphene

graphene at high bias in high mobility samples (~10⁴cm²V⁻¹s⁻¹)

[Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103, 076601 (2009)]

- differential resistance increases by current never fully saturates
- current 350 μ A/350nm ~ 1 μ A/nm. In nanotubes 20 μ A/(π 2nm) ~ 3 μ A/nm

tube: saturation current

elastic scattering negligible, $l_{el} \ll l_{ph}$ (from expt. $l_{el} \sim 1.6 \,\mu\text{m}$) $I = \frac{4e}{2\pi\hbar} \hbar \omega_{\text{phonon}} = 24 \,\mu\text{A}$, with $\hbar \omega_{\text{phonon}} = 0.15 \,\text{meV}$

graphene: saturation current [Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL **103**, 076601 (2009)]

- •if phonon emission instantaneous once the threshold is reached and elastic scattering negligible
- •this model overestimates the current in graphene

Boltzmann theory for electrons and phonons

[Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103, 076601 (2009)]

•intrinsic parameters: electron-phonon and phonon-phonon (anharmonic) scattering length from DFT (and GW) calculations

•extrinsic parameters: elastic scattering length modeled as in [Hwang, Das Sarma, PRB 77, 195412 (2008)]. Free parameters (density of charged and neutral defects) fitted to reproduce the low-bias experimental conductivity. Two models (C and C δ) equally good at low bias.

Boltzmann theory for electrons and phonons

[Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103, 076601 (2009)]

•Boltzmann reproduces partial saturation seen in expt.

no hot phonon (optical phonons thermalized with other phonons), but we do not exclude self-heating [Nanolett. 9, 1833 and 10,466]
electron distribution different from full

saturation

Scattering lengths in graphene

[Barreiro,Lazzeri,Moser,Mauri,Bachtold, PRL 103, 076601 (2009)]

•saturation starts for the value of $V_{4\text{pt}}$ for which $l_{\Omega} = l_{el}$

•saturation is complete if the phonon emission is instantaneous, $l_{\rm ph} << l_{\Omega}$, and the elastic scattering is negligible, $l_{\Omega} << l_{\rm el}$. This is impossible in graphene since $l_{\rm el} << l_{\rm ph}$

why is the elastic scattering more important in graphene than in tubes? k' because of pseudospin conservation $\theta_{\mathbf{k}\mathbf{k'}}$ [Ando et al., J. Phys. Soc. Jpn. 67, 2857 (1998)]: scattering $\propto |V(\mathbf{k} - \mathbf{k'})|^2 \cos^2(\theta_{\mathbf{kk'}}/2)$ k = 0 if $\theta_{\mathbf{k}\mathbf{k}'} = \pi$ in metallic nanotubes $\theta_{kk'} = \pi$

Conclusions part 1 & 2

metallic carbon nanotubes

•full saturation is possible, since $l_{el} \sim 1000 \text{ nm} >> l_{ph} \sim 100 \text{ nm}$ •at high bias, since $\tau_{epc} << \tau_{anharmonic}$, phonons become hot and increase the resistance

•isotopic disorder reduces the hot phonons and the resistance

graphene

•no full saturation, since $l_{el} \sim 100 \text{ nm} << l_{ph} \sim 600 \text{ nm}$ •current per lateral length 1µA/nm no hot-phonons since elastic •scattering challenges and reduces the electron-phonon scattering

• higher currents are possible by reducing $m{l}_{
m el}$ or by increasing $V_{
m g}$

PART 3: Transport at high field near the charge neutrality point

Zener (Klein) tunneling in graphene

$$\hbar \frac{d\mathbf{k}}{dt} = -e\mathbf{E} \qquad k_{\perp} = \text{constant}$$

 $\Delta = 2\hbar v_{\rm F} k_{\perp}$

Zener tunneling is present for any value of the electric field

Zener tunneling in graphene: ballistic

transmission (per lateral length) along a 1μ m long graphene channel with TB model and Non-Equilibrium Green-functions

Zener tunneling in graphene: ballistic

electric current (I) per lateral length (l_w)

$$\frac{I(V)}{l_{w}} = \frac{4e}{2\pi\hbar} \int_{\varepsilon_{F}-eV}^{\varepsilon_{F}} d\varepsilon \,\mathcal{T}(\varepsilon,V)$$

-with
$$V_g$$
=0 (ε_F =0) only Zener $I \propto V^{1.5}$

-with $V_g > 5$ Volt ($\varepsilon_F > 0$) non-tunneling current dominates

Zener tunneling in graphene with defects

$$\frac{I(V)}{l_{w}} = \frac{4e}{2\pi\hbar} \int_{\varepsilon_{F}-eV}^{\varepsilon_{F}} d\varepsilon \,\mathcal{T}(\varepsilon,V)$$

-defects kill the non-tunneling current but enhance the Zener one

-now even at finite doping

$$I \propto V^{\alpha}$$
 with $\alpha > 1$

Zener tunneling in graphene experiment

Undoped sample ($V_g=0$)

-high mobility sample (μ =7000cm²V⁻¹s⁻¹)

 $I \propto V$

-after 10KeV e-bombardment: low mobility (µ=260cm²V⁻¹s⁻¹) $I \propto V^{1.2}$

Zener tunneling in graphene experiment

22 undoped devices ($V_g=0$) exponent α vs. mobility

Zener tunneling in graphene experiment

conclusions part 2 [PRL 103, 076601 (2009)]

- in graphene, no full saturation, since $l_{el} \sim 100 \text{ nm} << l_{ph} \sim 600 \text{ nm}$
- no hot-phonons since elastic scattering challenges and reduces the electron-phonon scattering
- current per lateral length 1μ A/nm
- higher currents are possible by reducing l_{el} or by increasing V_g

conclusions part 3 [arXiv:1003.2072]

• in high mobility (ballistic) samples the transport is dominated by Zener tunneling only at the exact charge neutrality point

• in low mobility (disordered) samples defects reduce (filter) the non-tunneling current and made visible the Zener tunneling also at finite (low) doping