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Nanowires and nanopatterned graphene –
computational methods and physical phenomena

Antti-Pekka Jauho
Dept. of Micro and Nanotechnology, DTU, Denmark

Dept. of Applied Physics, Aalto University, Finland

• Some comments on nonequilibrium Green’s functions

• Nanowires (electric, thermal transport)

• Antidots on graphene; graphene edges and nanoribbons; 
carbon atomic chains and spintronics; chemical vs
structural disorder



• Review of NEGF; the basic equations for transport properties, 
underlying assumptions and caveats

• Uses and misuses of the Meir-Wingreen formula

• An application: density functional method for nonequilibrium
electron transport

Methods for ab initio calculations of transport in 
nanoscale systems



Philosophy:  

• small system coupled to ideal, large contacts

• in infinite past, the subsystems are separated with respective chemical
potentials (Caroli et al. 1970-72)

• the couplings between subsystmes are turned on adiabatically, and a 
nonequilibrium state in the central region is established

• Keldysh contour enters because final state is not known (S(- , ) unknown)

• nonperturbative, self-consistent calculation of the system parameters may
be necessary

• This is not unique – can think of other ways of approaching the problem



The basic equations (examples of Hamiltonians)



Calculation of the current

The current operator (just compute [NL , H]):

Current leaving the left contact (requires noninteracting (mean-field –
for example BCS would be OK) contacts):

Static limit Meir-Wingreen formula

WJM,JWM 
PRB 
1993,1994



The basic equations (comments)
• this is just a paradigm – one still needs to evaluate the fully interacting
Green functions of the central region (in one way or another!):

• displacement currents not included require separate treatment

• interpretation – write MW formula in an alternative form:

• first term: current from left contact to central region

• second term: current from central region to left contact



The basic equations (comments cont’d)

• In general, one needs to solve the coupled Keldysh-Dyson equations:

Limitations & things to worry about:

• physical criteria for selecting what is contact, and what is central region 
(i.e, where are the non-mean field interactions allowed to operate)?

• charge neutrality of the system?

• energy relaxation in the noninteracting leads (no such Hamiltonians
present in the formulation)?

• adiabatic turning-on of the contacts – not necessarily realized in 
experiments! (e.g., alternative ”non-partitioning” formulation due to 
Stefanucci et al., following early work of Cini)



Applications of the Meir-Wingreen formula
(i)  For a mean-field theory (technically, self-energies in the interacting
region are one-point functions – DFT belongs to this category!) a direct
calculation gives:

• an excellent formula (see, e.g., Datta’s books, or Haug-Jauho 2nd 
edition) – but not the whole truth

• forms the basics for a huge number of calculations (for example, most 
results described in these lectures), even on commercial/industrial
level

• emphatically not applicable for inelastic transport, or for GW, or etc.



2.  Applications (cont’d)

(ii) Conservation rules:  write

Then (using Keldysh equation)

and current conservation

which is a useful check on numerics, and for consistency of chosen
approximations.  (N.B. This formula is familiar for people working with
kinetic theory (BE): integrated collision term must vanish!)

leads to



3.  DFT for nonequilibrium electron transport

• Standard methods for electronic structure calculations assume a finite, 
or a periodic geometry

• Standard methods assume that the electronic system is in equilbrium

• Molecular electronics requires something entirely different:

(a) small, translationally noninvariant subsystem

(b) coupling to semi-infinite leads

(c) nonequilibrium state in the subsystem

To use DFT in nonequilibrium, one must assume that the Kohn-Sham orbitals can
be used to calculate the current. (Possible extensions: use TDDFT, or current-
density-functional theory)

Given this (unproven) assumption, one can use NEGF to construct a nonequlibrium
electron density, which can be fed back in the DFT loop.  The price is an extra
iterative subloop, but the convergence can be tested, and improved, by an 
appropriate choice of exchange-correlation functional, and/or basis set.



3.  DFT for nonequilibrium electron transport (summary of 
TranSIESTA method)

This approach can be applied to many systems – bearing in mind its limitations.
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Part II Heat and electrical conductance in quantum 
structures

Electronic transport phenomena in nanostructures are important 
both for basic science as well as for applications.  In recent years it 
has become clear that thermal transport also plays an important role 
in many nanoscale systems.  In this part of my lectures I provide a 
background to these phenomena, and describe two different yet 
interrelated cases: (i) Modelling of thermoelectric effects in 
(realistic) Silicon nanowires, and (ii) Theory of radiative heat
transport between mesoscopic bodies.  Though operating at very 
different temperature and length scales, these two examples share 
certain common features, and can be analyzed with similar 
theoretical tools.
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Why are nanowires interesting?

• They can be fabricated with a number of different methods

• They can be used for many things:

1. Interconnects in nanoelectronics

2. Ultrasensitive sensors (chemical,  electronic, mechanical…)

3. Spintronic applications

4. Thermoelectric components

5. They have fascinating physical properties (mechanical, 
electrical, optical, thermal, and even ”nonstandard properties”)



• Atomic metal                    
wires/contacts
(DFT + NEGF + SCBA)

• Molecular conductors
(DFT + NEGF + LOE)

““NumberNumber of of ApproximationsApproximations””

““NumberNumber of Atomsof Atoms””

101

102

106

• Supra-molecular conductors
(TB + Quantum diff./Kubo)

• Numerically exact
solution (DMRG/noneqBA)

What are nanowires? 

movie
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An example of inelastic transport: vibrations in an 
atomic gold wire (Agraït et al)

Frederiksen et al PRL 
2004, PRB 2007: 
SCBA, 1st principles el-
vib coupling, treat
phonon heating with a 
rate-equation
approach.  State-of-
art: see Engelund et al 
PRB 2009
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Transport in Disordered Si Nanowires
•A nanowire with 10 nm diameter and length in the micron scale 

has ~106-107 atoms
•Imperfect systems: impurities, defects etc.
•Fully first principles methods become very tedious due to 
O(N3) scaling
•Need for approximate methods:

- Influence of impurities in bulk 
and on the surface; localization,
impurity distribution?

- Defects, roughness
- Barcodes

III-V steeple-chase NW from Lund University
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• Parameters for a tight-binding Hamiltonian are evaluated from first 
principles using the SIESTA code, and thus contain microscopic information on 
geometrical relaxation, defects, dopants, etc. and e-e interactions on DFT 
level.
• SIESTA solves the electronic scattering properties within a super-cell, and 
the sample is assembled from these building blocks
•The conductance of the sample (with given disorder) is evaluated with the 
(generalized) Landauer formula, where the transmission probability is obtained 
with a Green functions computed with a recursive technique



TKK Construction of a disordered nanowire

Surface position
Bulk position

Each element is 
treated ”exactly”
within DFT, i.e., 
atomistic positions 
within central unit 
cell + 2 neighbors
fully relaxed.  No
dopant-dopant
interactions (upper 
limit for doping 
density)

Supercell
data: typically
nine wire unit 
cells, i.e., 837 
atoms; length
50.4 Å

Some calcs
with 11 wire 
cells.



TKK

Electronic transport in a Si-nanowire with H-
adatoms

Blue curve: Ohmic behavior

Red curve: Indication of 
localization (a long story….)
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Results: Si-nanowire with H-vacancies

Blue:    E=-0.3 eV
Green: E=-0.15 eV
Red:     E=-0.03 eV
<dH>=2.8nm
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Thermal conductance of SiNW

Thermal conductance is  important:
• Nano-electronic devices: Need high κ
• Thermo-electric applications: Need low κ
( Thermoelectric figure of merit ZT=S2Tσ/κ.  Challenge: 
maximize ZT.)



TKK

Nature, 451, 163, (2008)

Nature, 451, 169, (2008)

Nature, 10 January 2008, News and views:
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Examples of SNW’s:

Silicon nanowires orientations:
• VLS growth
• Lithographic/Etch process
•<100>, <110>, <111>, <112>

Y. Wu, Y. Cui, L. Huynh, C. Barrelet, D. Bell, C. Lieber, Nano Lett. 4, 433 (2004).
Y. Wu, J. Xiang, C. Yang, W. Lu, C. M. Lieber, Nature, 430, 61, (2004)



TKK Theory on anisotropic transport 
– state of the art:

•Electronic properties vs. orientation
•Several theoretical studies (Tight-binding, DFT, GW)
•Band structure, band gap, effective masses [1-4]
•Transport [5]

[1] X.Zhao, C. M. Wei, L. Yang, M.Y. Chou, Phys. Rev. Lett., 92, 236805, (2004)
[2] Y. M. Niquet, A. Lherbier, N. H. Quang, M. V. Fernández-Serra, X. Blase, and C. 
Delerue, Phys. Rev. B 73, 165319 (2005).
[3] R. Rurali, B. Aradi, T. Frauenheim, and A. Gali, Phys. Rev. B 76, 113303 (2007).
[4] T. Vo, J. Williamson, and G. Galli, Phys. Rev. B 74, 045116 (2006).
[5] A. Svizhenko, P. Leu, and K. Cho, Phys. Rev. B 76, 125417 (2007).

Phonon transport vs. orientation has received less
attention



TKK This work:

•Heat conductance in small nanowires (with and w/o 
defects)
•Diameters 1-5 nm.
•Orientations <100>, <110>, <111>
•Harmonic approximation: only linear forces, Fij = -kxij

•Dynamical matrix: 

- “Spring constants” between atom I and J in 
directions m and n
- DFT. Time consuming. Only very small wires, D~1 
nm!
- Empirical potentials: Fast!



Phonon band structures

Cross section

Side view of unit cell 
(transport along z-axis)

Four acoustic modes:
•Mode 1,2: Flexural, w~q2

•Mode 3: Torsional, w~q
•Mode 4: Dilatational, w~q

Bulk optical band

<100>                 <110>              <111>



Thermal current

Thermal conductance dJ/d(∆T)

Transmission function 

Retarded Green’s function (harmonic approximation)

Thermal conductance from Landauer formula

... ...
Left lead Right leadCentral

TL=T+ΔT/2 TR=T-ΔT/2



• Thermal conductance

• Transmission function in ideal ballistic limit:

: Number of bands at



Transmission function

• Areas (diam~4 nm):
A<100> = 8.9 nm2

A<110> = 11.2 nm2

A<111> = 9.0 nm2.

T<5 K
• Dashed lines: T=5, 20, 100 K



Conductivity vs. area

• Conductivity: 

• Dashed lines:

At T=300 K, <110> 
wires have 50-75% 
larger k than <100> 
and <111> wires!

T. Markussen et al. Nano Letters 8, 3771-3775  (2008).



Role of vacancies

• Here we present some recent results for both
surface and bulk vacancies (PRB 79, 035415 (2009))

• The improved thermoelectric properties in the two
experiments was attributed to phonon scattering
against vacancies

Example of a 
surface vacancy



Results – benchmarking 
phenomenology



Results – bulk vs surface

Trend: surface
vacancies scatter
less efficiently than
bulk vacancies!

Thus, 
experimentalists: 
find a fabrication
method with lots of 
bulk vacancies!



Idea: stop phonons but let electrons
flow!  

How to realize in practice: fine-tune
dos!

Arrange so that
extra dos due to 
scatterers is away
from band-edges.

Both of these structures
exist!

ZT=S2Tσ/κ



Charge transmission

Phonon transmission

Figure of merit as a 
function of coverage

alkyls

nanotrees



Summary – Part I

• DEFT/NEGF formalism can be used to study transport properties of 
real nanowires

•The heavy computational load can be diminished by using
phenomenological models to scale single-impurity calculations to long-
wire calculations

•The method has predictive power and is useful in designing
experiments and fabrication technologies
• An example of a physical results: crystalline orientation for <110> has 
50-75% larger κ than <100> and <111>.  The result is expected to hold 
for other materials than just Si.
• An example of a  suggestion for further enhancment of ZT: use
”nanodecoration”

•The method can be used together with ”fancier” theoretical concepts
to study basic physics phenomena
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Part 2 – smaller and colder…
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Heat conductance quantum 
per ballistic mode

Why 16 quanta? (1 dilatational+1 torsional+2 flexural)•(4 arms) = 16
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Schmidt et al (PRL, 2004):  At very low temperatures one must also take
into account the photon thermal conductance, which may become the 
dominant mechanism for small samples.  The photon heat conductance is 
Gγ=rπ2kBT/3h, where r is a ”matching factor”.
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Estimate cross-over by equating photon and phonon contributions: Tcr≈ 50 
mK/(V/μm3)1/3

At low temperatures there is a crossover:
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Generalize to two resistors, mutually coupled
via superconducting links, interrupted by 
SQUIDS (thus no conventional heat 
conduction), and individually coupled to heat a 
sink at T0 via electron-phonon interaction.

Heat flux due to electron-phonon coupling:

Photon heat flux (Pendry 1983): Tunable impedance (via dc SQUID)

Matched circuit (max value):
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To=60, 75, 105, 157, 167 mK.  Solid line: theory fit.

Ext. heat leak

Inset: primary data for 
T0=75mK, at different
power levels
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We pose the question:

Can one build thermal quantum circuits that perform some
advanced functions, such as transistor action, or rectification, 
based on photonic heat conduction?

We study the following generic circuit:

The left and right reservoirs are
assumed to behave as linear 
dissipative elements, and they
couple only through the middle
element.

This setup bears a close analogy with the approach by Caroli et al (or the 
modern version due to Meir and Wingreen): noninteracting elementary
excitations couple via tunneling barriers to an interacting central region.



TKK

Meir-Wingreen formula (PRL 1992) gives the tunneling current through an 
interacting mesoscopic region (here, for proportionate coupling):

Teemu Ojanen & APJ (PRL 100, 155902 (2008)) show that the photonic heat 
current is given by (here, proportionate admittances)

nL(ω)- nR(ω) = thermal windowfL(ω)- fR(ω) = voltage window

SI(ω)- SI(-ω) = noise power density for 
central region connected to reservoirs

-i(Gr-Ga) = spectral function of the 
central region=dos in central region

Y(ω), reservoir admittance, prop. to 
mode density in reservoir

Г(ω), coupling to leads, proportional to 
density-of-states in leads

Photonic transportElectronic transport



TKK Final result for a single LC-resonator, valid for 
arbitrary reservoir admittances:

It can be shown that the upper limit for conductance is

Use a dc SQUID to tune the 
properties of the central region.  
This will modify the heat current
through the system.

Photon heat 
transistor!
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Application 2: Rectification in a nonlinear quantum circuit (arXiv:0812.3634)

Rectification:

Previous studies of thermal rectification:

(i) Classical/quantum nonlinear chain is coupled asymmetrically to linear 
reservoirs (Terraneo et al PRL 88, 094302 (2002), Li et al PRL 98, 18401 
(2004), Hu et al PRL 97, 124302 (2006), Zeng et al PRB 78, 024305 
(2006))

(ii) Nonlinear reservoirs are coupled through a harmonic oscillator (Segal, 
PRL 100, 105901 (2008))

Here, we demonstrate photonic thermal rectification in a fully quantum 
mechanical and experimentally realizable system.  (Rectification 7 % has been
observed for phonons in nanotubes,  Chang et al, Science 314, 1121 (2006))



TKK Consider the model (come back to physical realization later)

Use again (now need to keep the asymmetry)

We work in a mean-field approximation (NB – this needs to be examined):

where

This leads to a renormalized noninteracting problem,
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The self-consistent equations are

The numerical solution  poses no fundamental difficulty. 9 parameters:

Dyson:

Keldysh:



TKK Model: resistor, capacitance, inductor in series
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Note 
competition: 
large 
rectification
requires high
temperatures, 
however this
leads to small 
overall 
current.
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For large ωL
the 
rectification
may change
sign as a 
function of 
temperature!
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Approximate this with

Physical realization: superconducting loop (L) with a Josephson
junction (EJ, C):

EC=e2/2C       EL=( /2e)2/2L
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Conclusions:

• A conductance formula is proposed for radiative heat transfer 
between mesoscopic bodies

• Tunable middle circuit allows a transistor action

• A nonlinear middle circuit (e.g., superconducting loop with a 
Josephson junction) leads to rectification, and potentially a sign 
change for it

• The hard part of the calculation is the evaluation of noise
spectrum in the presence of the coupling to em-environment

There are many potential applications for different central region: squeezed
states, entangled states, cavities, multiple modes, capacitive coupling etc…
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End of Part II.
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Antidot lattices in graphene – physics, models, devices

PRL 100, 136804 (2008), see also Nature Research Highlights, April 17, 
2008; review in NJP (2009) (special issue on graphene) arXiv:0907.0122

Work done in collaboration with T.G. Pedersen, M. Brandbyge, J. Fürst, J. 
Pedersen, T. Markussen,  N. A. Mortensen, and K. Pedersen



TKK Some acid rain remarks by A. K. Geim, 
Science 324, 1530 (2009):  (the skpeticism
of an experimentalist against fancy theory)

…. as for the experiment, only Klein tunneling has been
verified in sufficient detail….

…. transport properties have turned out to be much more 
complicated than theoretical quantum electrodynamics…

…. no consensus about the scattering mechanism that
currently limits the mobility…

…. little understanding about the transport properties
near the charge neutrality point…

…. no evidence about many of the predicted interaction
effects…
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Throughout in this work we use simple models (tight-binding, 
finite elements, density-functional theory).

The complications arise because we attempt to model systems 
with nanopatterned extra features of experimentally achievable
sizes, for which even DFT calculations are getting computationally
very expensive (unit cells with rather low symmetry contain
thousands of atoms).

In a sense, all our conclusions are ”trivial” – what is important is 
that the parameters are ”hard”, and conclusions can be directly
compared to experiment.

Also: this is a win-win situation: if single-particle (or DFT) 
theories fail, then the real fun starts with many-body physics.



TKK A short back-up on antidot physics (a very popular
system in 80-90’s, e.g., Weiss oscillations): 

Antidot lattices on 2DEG (Nano Lett 5, 2515 (2005); 
Phys. Rev. B 77, 045325 (2008))

Our suggestion: 
use a designed
defect leads to a 
state with a spin
S

Coupling
can be
controlled
by gate 

Solid-state, scalable qubit?
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Energetics for GaAs structures

Perfect antidot lattice –
notice the gap eff.  For 

=75nm, the gap is approx. 
3 meV.

A missing antidot generates
states in the gap (Inset: | |2

for ground and 1st excited
state)

d: antidot
size

: antidot
lattice
period
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Two adjacent ”missing 
antidots” can be used
to construct a gate-
controlled qubit.

This is technologically very
demanding (requires antidot
lattice spacing of a few
nanometers (best realized
structures as of date have 
spacing in hundreds of nm’s) 
– therefore – enter:

GRAPHENE!

Tunneling matrix t element as a function of the width of 
the opening w, for three antidot lattices. t = (E+-E-)/2
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Our proposal: construct a regularly perforated
graphene sheet (PRL 100, 136804 (2008)):
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Band structure and density-of-states

For a {7,3} structure
one finds a band gap
of 0.73 eV

Tight-binding
description, allowing
for a modified hopping
integral at edges
(obtained from DFT), 
according to Son et 
al., PRL 97, 216803 
(2006)
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Extrapolate to realistic lattice spacings:

With V(x,y) being the antidot
potential, one needs to solve

Example: 10 nm lattice
spacing, Nremoved=Ntotal/4 
gives Egap= 0.23 eV

Realistic structures have a small ratio
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Consider now defect states:

Exchange coupling can be
computed from:

For example, {12,7} structure has J≈ 50 μeV

Computational unit cells

Single defect Double defect
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Experimental status I  

Single hole in graphene: Girit et al. Science 323, 
1705 (2009) (March 27th)

These detailed
images allow
meaningful
modeling!

Let us see film 
provided by Girit et 
al.



69 DTU Nanotech, Technical University of Denmark

Sidetrack 1: Can one improve the quality of the 
edge? – Perhaps: Jia et al Science 323, 1701 (2009)

• Current makes the edges 
change shape

el
ec

tro
ni

c
cu

rr
en

t

• Change depends on 
direction of current



70 DTU Nanotech, Technical University of Denmark

Why is that? – localized vibrational modes!

Localized modes exist 
along the finite armchair 
edges in graphene
systems with mixed 
edges

The dynamical matrix 
is calculated by finite-
difference 
SIESTA(DFT)*

*Soler et al., J. of 
Phys.-Cond. Mat., 2002, 
14, 2745



71 DTU Nanotech, Technical University of Denmark

What are these localized modes? 
– armchair edge modes

150 200 250
Energy(meV)

0

0.01

0.02

0.03

0.04

D
O

S
(1

/m
eV

)

B
u

lk
 b

an
d

 e
d

ge

zigzag
armchair
pass. zigzag
pass. armchair

The modes are similar 
in energy (and mode 
vector) to an armchair 
edge mode outside the 
bulk band

The vibrational DOS is 
calculated by finite-
difference calculations 
combined with 
recursion*

*Engelund et al., Phys. 
Rev. B, 2009. 80, 
045427



72 DTU Nanotech, Technical University of Denmark

Effective temperature as a function of voltage

The localized modes can 
reach destabilising
temperatures at low bias.

The mode temperature is 
estimated by a simple model 
combined with Transiesta(NEGF-
DFT) parameters*,**

*Frederiksen et al., Phys Rev. B, 
2007, 75, 205413

**Brandbyge et al., Phys Rev. B, 
2002, 65, 165401



03/06/2010Armchair edges in graphene73 DTU Nanotech, Technical University of Denmark

Localized modes exist along armchair edges which 
accumulate energy when a current flows.

This allows the weakly bound C-C dimers to 
evaporate.  Further, we can make predictions of 
which edge geometries are likely to evaporate 
first.

Engelund et al PRL 104, 036807 (2010) movie
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Sidetrack 2: formation of carbon chains in TEM

Jin et al. PRL 102, 205501 (2009) Chuvilin et al NJP 11, 083019 (2009)
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Atomic carbon chains can be spin-filters!

Fürst et al arXiv:0909.1756
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Sidetrack 3: GNR’s sensitivity to structural vs.

chemical disorder (Saloriutta et al.)
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ZGNR

AGNR

ZGNR: structural disorder dominant (edge channels disturbed)

AGNR: chemical disorder dominant

Blue: without O; Red: with O

Conclusion: 
ZGNR 
appear less
suited for 
chemical
sensors.



TKK Antidot lattices on graphene: 
Where are we experimentally?

Eroms et al. arXiv.0109.840 (graphene
on oxidized Si; low mobility)

Shen et al. APL 93, 122102 (2008) 
(graphene on SiC; no density meas.)
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TKK



TKK



TKK

Scale bar: 100 nm
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TKK
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Further calculations: Optical properties (PRB 77, 
24531 (2008))

!!
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Excitons for gapped graphene (PRB 79, 113406 (2009)) 
(the gap could be due to ”anything”)

Elliot formula:

Effective
hamiltonian:
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Recent DFT studies: geometry relaxation and spin
effects (arXiv:0904.1396; PRB 80, 115117 (2009))

{4,2}Ο {6,5}∆

Main challenge: DFT is 
getting expensive –
thousands of atoms in 
unit cell.  Therefore, use
a cheaper DFTB! 

Calculated band gaps Trend: relaxation increases gap

Green: C 
White: H
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DFT studies II: geometry relaxation and spin effects

a,b: degenerate midgap states; c: nondegenerate midgap state of {6,5}

d: highest filled band of {6,3.6}  (All states at Г-point)

Dots: DFT on DFTB relaxation
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Blue: surplus of majority spin

White: surplus of minority spin

Magnetization of perforations

Lieb’s Theorem: total magnetic moment is 
M=NA-NB for bipartite lattice with A and 
B atoms.

Zigzag: for angle 0 or 60 all atoms at 
edge belong to same sublattice, while for 
angle 120 or 180 they belong to different
sublattices.  Thus: hexagonal hole is 
nonmagnetic whicle triangular hole is 
magnetic. A lot more to say about this!!
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Device proposals (unpublished work by J. Fürst): 
transport through an array of triagonal perforations

-2 -1 0 1 2
E-E

F
 (eV)

0

1

2

3

4

T
ra

ns
m

is
si

on

Spin up
Spin down

Clearly a bandgap,and
a splitting of spin
transmission. A spin-
filter?

Computational super-cell
(repeated in y-direction)

y

x



Graphene Anti-Dots: Good Electron Transistor? (GADGET)



Transistor setup

...
...

Left Right

ε0=0 ε0=0ε0=eVg

Vg

0

V



• Hole-hole distance: 30 Å
• Hole radius ~ 13 Å



Bigger systems look more robust...

*

• Hole-hole distance: 38 Å
• Hole radius ~ 17 Å



Transistor: T vs Gate voltage

• Hole-hole distance: 38 Å
• Hole radius ~ 17 Å
• E = 0.02 eV

. o



TKK Square antidot lattices – does symmetry matter?



TKK Square antidot lattices – does symmetry matter?



TKK Square antidot lattices – does symmetry matter?

Empirical rule based on Clar sextets:  If N(hexagon) < 1/3 
N(sextet), the band gap is ”large”.

Take-home message: perhaps square lattices are not best candidates
for devices, because 5/6 of them have small band gaps.
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Thank you for your attention!

Summary:

• Antidot lattices on graphene are very interesting (at least, 
theoretically)

• Feasible hole sizes are large -> computational challenge

• Relaxation, disorder, and magnetism are important

• Optical characterization and study of collective effects appear as 
primary first tasks

• (Magneto) Transport measurements would be highly intersting

• Possibility for new devices – but it ain’t easy.
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Derivation of the radiative thermal conductance formula

Note the inductive coupling between reservoirs and the central region, whose
Hamiltonian is not yet needed.  The energy flow is

Using the Keldysh approach, one can derive an e-o-m for the path-ordered
nonequilibrium GF, and Langreth analytic continuation rules give

where D’s are free Bose correlators. The thermal current becomes

where the noise power for the reservoir L is
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Def. of noise power for operator A:

Thus:

Plug these in:

Recall Fluctuation-Dissipation Theorem (for equilibrium reservoirs)

Finally, assume proportionality of reservoir admittances

which, after L/R symmetrization, gives the result stated two slides ago.
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Application 1: Mesoscopic Photonic Heat Transistor (PRL 100, 155902)

Assume the central region consists of a single LC-resonator:

The required correlation functions are (note anomalous propagators!)

These satisfy
NB: this is a non-
interacting problem 
and hence be solved
exactly!
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