

2145-28

Spring College on Computational Nanoscience

17 - 28 May 2010

Electric Transport in Carbon Nanotubes and Graphene

Philip KIM Dept. of Physics, Columbia University New York U.S.A.

Electric Transport in Nanotubes and Graphene

Philip Kim Department of Physics Columbia University

Electronic Band Structure of Graphene

Graphene Lattice Symmetry: Pseudo Spinor

Dirac Fermions in Graphene : "Helicity"

DiVincenzo and Mele, PRB (1984); T. Ando, JPSJ (1998); McEuen at al, PRL (1999)

Single Wall Carbon Nanotube

.... since 1991

300000000000000

Extremely Long Mean Free Path in Nanotubes

See also S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science 280, 1744-1746 (1998)

Extremely Long Mean Free Path of Nanotubes: Role of Pseudo Spin

scattering becomes inefficient since it requires pseudo spin flipping.

Electron Mean Free Path of Nanotube

Lines are fit to

$$R(L) = R_c + \frac{h}{4e^2} + \frac{h}{4e^2} \frac{L}{l_e}$$
$$\frac{h}{4e^2} = 6.45 \text{ k}\Omega$$

Non-ideal contact resistance $R_c < 2 \text{ k}\Omega$

Characterization of Nanotube Structures by Rayleigh Light Scattering

Nanotube Growth over trenches

Rayleigh Scattering Characterization

Brus, Heinz, Hone, O'Brien groups, Science 306,1540 (2004)

Temperature Dependent Resistivity

B. Chandra M. Purewal, P, Kim and J. Hone

Carbon Electronics: Challenges

Pros: High mobility High on-off ratio (nanotubes) High critical current density

Con: graphene Controlled growth IBM, Avouris group 1µm **Nanotube Ring Oscillators**

Artistic dream (DELFT)

Graphene Sample Preparation

http://www.sciam.com/article.cfm?id=diy-graphene-how-to-make-carbon-layers-with-sticky-tape

GTech, IBM, NRL, HRL, Purdue, ...

Chemical Vapor Deposition

SKKU, MIT, Austin, ...

Field Effective Transport in Single Layer Graphene

2D Gas in Quantum Limit : Conventional Case

Density of States

Landau Levels in Magnetic Field

Quantum Hall Effect in Graphene

Zhang et al (2005), Novoselov et al. (2005)

Berry's Phase and Magneto Oscillations

Landau orbit near the Fermi level

Room Temperature Quantum Hall Effect

$$E_n = \pm \sqrt{2e\hbar v_F^2} |n| B$$

 $E_1 \sim 100 \text{ meV} @ 5 \text{ T}$

Typical sample on SiO₂ mobility: ~ 15,000 cm²/Vsec

Quantum Hall Effect in Suspended Graphene

Creation of Energy Gap in Graphene

Confinement of Dirac Particles: Nanoribbons, Quantum Dot

(Columbia, IBM, ...)

(Manchester, ETH, ...)

Breaking Symmetry: Biased Bilayer Graphene

(Manchester, DELFT, Berkeley, Columbia, ...)

• Chemical Treatment: Graphane, Graphene Oxide

(Manchester, Rutgers, ...)

Graphene Nanoribbons: Confined Dirac Particles

10 nm < *W* < 100 nm

Dirac Particle Confinement

Graphene nanoribbon theory partial list

K. Nakada, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 54, 17954 (1996).
K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Phys. Rev. B 59, 8271 (1999).
Y. Miyamoto, K. Nakada, M. Fujita, Phys. Rev. B 59, 9858 (1999).
M. Ezawa, Phys. Rev. B 73, 045432 (2006).
N. M. R. Peres, A. H. Castro Neto, and F. Guinea, Phys. Rev. B 73, 195411 (2006)
L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 (2006).
Y. Ouyang, Y. Yoon, J. K. Fodor, and J. Guo, Appl. Phys. Lett. 89, 203107 (2006).
Y.-W. Son, M. L. Cohen, S. G. Louie, Nature 444, 347 (2006)
Y.-W. Son, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
V. Barone, O. Hod, G. E. Scuseria, Nano Lett 6 2748 (2006).
D. A. Areshkin, D. Gunlycke, C. T. White, Nano Lett. 7, 204 (2007).

Scaling of Energy Gaps in Graphene Nanoribbons

Graphene Nanoribbons Edge Effect

Crystallographic Directional Dependence

Son, et al, PRL. 97, 216803 (2006)

Rough Graphene Edge Structures

Localization of Edge Disordered Graphene Nanoribbons

Variable Range Hopping in Graphene Nanoribbons

Nature of Transport Gap in Graphene Nanoribbons

Han et al., Phys. Rev. Lett. (2010)

 $k_B T^*$: Hoping length to the localized states in gapped regime

Top Gated Graphene Nanoribbon FET

Graphene Electronics

Conventional Devices

Band gap engineered Graphene nanoribbons

Graphene quantum dot

(Manchester group)

Nonconventional Devices

Graphene Veselago lense

Graphene Spintronics

Son et al. Nature (07)

Graphene psedospintronics

Trauzettel et al. Nature Phys. (07)

Cheianov et al. Science (07)

Transport Ballistic Graphene Heterojunction

See also Shavchenko et al and Goldhaber-Gordon's recent PRL

Fabry-Perot Oscillations in Ballistic Graphene Heterojunction

Pseudo Spin Control with Magnetic Field

Levitov et al. (2008)

Temperature Dependence

Nanotube on SiO₂ substrate

Optical phonons in substrates

The Effects of Substrate Phonon Mode Scattering on Transport in Carbon Nanotubes

Vasili Perebeinos, Slava V. Rotkin, Alexey G. Petrov, and Phaedon Avouris Nano Lett., 2009, 9 (1), 312-316 • DOI: 10.1021/nl8030086 • Publication Date (Web): 04 December 2008 Downloaded from http://pubs.acs.org on January 21, 2009

Transport in graphene Chen et al. Nature Phys (2008)

Optical phonons SiO2 substrate is much softer ! (~ 30-50 meV)

Substrate Phonon Scattering Analysis

Perebeinos et al. Nano Lett. 9, 312 (2009)

$$\rho_{Total} = \rho_{static} + \alpha_{acoustic} T + \alpha_{SPP} (n_B(\hbar w_2) + \beta n_B(\hbar w_{4,5}))$$

$$F_v^2 = \frac{\hbar w_{SO,v}}{2\pi} \left(\frac{1}{\varepsilon_w + 1} - \frac{1}{\varepsilon_0 + 1} \right) \qquad \beta = \frac{(F_4^2 + F_5^2)}{F_2^2} \qquad n_B(\hbar w_v) = \frac{1}{(e^{\frac{\hbar w_v}{k_B T}} - 1)}$$

hexa-Boron Nitride: Ideal Dielectric

Comparison of h-BN and SiO₂

	Band Gap	Dielectric Constant	Optical Phonon Energy	Structure
BN	3.6 - 7.1 eV	~4	>150 meV	Layered crystal
SiO2	8.9 eV	3.9	59 meV	Amorphous

Mechanical Exfoliation of BN

• Mechanically cleavable

• Atomically flat

Precision Transfer Technique

3. Align graphene over target using a micro-manipulator. PMMA is brought into contact with target and annealed.

Graphene on h-BN is Flat!

Transport in Graphene/h-BN

- \bullet Enhanced mobility on BN versus SiO_2 for the same flake
- Very narrow DP peak: reduced inhomogeneity.
- Reduced chemical reactivity (no appreciable doping by H/Ar annealing)

Bilayer graphene on Boron Nitride

Conclusions

Relativistic QM: High Energy Physics

Quasi Relativistic QM: Low Energy Physics

Dirac Equation: $\tilde{H} = c^* \vec{\sigma} \cdot \vec{p}$

Acknowledgement

Special Thanks to: Melinda Han Yuri Zuev Yue Zhao Andrea Young Mitsuhide Takekoshi Dmitri Efetov Fereshte Ghahari Young Jun Yu Namdong Kim Kirill Bolotin Vikram Deshpande Paul Cadden-Zimansky

Collaboration:

Stormer, Pinczuk, Heinz, Hone, Brus, Nuckolls, Flynn, KS Kim, GC Yi, BH Hong, A Chen

Wave Function Collimation in Diffusive Transport

Rayleigh Light Scattering of Individual Tubes

Structure can be analyzed from the Rayleigh Scattering Spectrum

Resistivity of (26, 11) Nanotubes

