

2145-36

Spring College on Computational Nanoscience

17 - 28 May 2010

Mechanical Properties at the Nanoscale (Making and Breaking of Atomic Bonds: Fracture and Tribocontacts)

Peter GUMBSCH

Fraunhofer-Inst. fuer Werkstoffmechanik Freiburg Germany

Making and Breaking of Atomic Bonds: Fracture and Tribocontacts

Peter Gumbsch

Michael Moseler, Lars Pastewka

Application-oriented research with industry

- -- research in direct interaction with partners in industry
- -- often has direct relevance to products,
 - which may already be on the market
- -- gives direct value to your work this is very rewarding!
- -- industry never pays for all the basic research needed to solve the problem
- -- unfortunately, teir problems are not well posed for scientific investigation
- -- industry oriented research is a very valuable source of scientific questions
- -- Fraunhofer funding

industry : public grants : base funding – 40:30:30

Making and Breaking of Chemical Bonds, Tribology

greek τριβω: I rub

-- the science and technology of interacting surfaces in relative motion

-- the science and technology of friction, lubrication, and wear

wear rates ~nm/h M. Scherge, et al., Wear 260(2006)458

How can physics based modelling and simulation possibly contribute to the understanding of such complicated processes?

Carbon: building block for nanostructures

Diamond-like carbon (DLC)

A dense, partially sp³ bound, metastable phase of non-crystalline carbon (with or without H contents)

Diamond coated ceramic sliding ring seal

After a Fraunhofer-Project and the BMBF-Projekt DiaCer, EagleBurgmann developed their DiamondFaces® technology to protect mechanical seals for pumps from wear.

- 2007 EagleBurgmann introduced DiamondFaces® (www.diamondfaces.com)
- 2008 DiamondFaces® wins the Product Innovation Award 2008 (Frost & Sullivan) and the InnovationAward 2008 (FlowControl)

DiamondFaces® mechanical seal from EagleBurgmann

EagleBurgmann.

DiamondFaces®

Making and Breaking of Atomic Bonds in Carbon Tribocontacts

- Fracture: brittle cleavage fracture, anisotropy, embedding
- Fracture: dynamic fracture, LOTF
- Fracture: bond breaking in simple models
- Tribology: topography of DLC
- **Tribology**: running-in of DLC (in progress)
- Tribology: polishing of diamond, wear

Taking into account the multiple length scales

Taking into account the multiple length scales

Cleavage of Silicon and Diamond

What are the cleavage planes of a crystal? smallest barrier vs lowest surface energy

Why are there preferred propagation directions? what are they...

25 mm

Crack length, c

Bond breaking barriers – crack tip simulations in diamond

- Outer atoms fixed at positions given by anisotropic linear elasticity
- Inner atoms relaxed with DFT

Silicon: R. Pérez, P. Gumbsch, PRL 84 (2000) 5347, R. Pérez, P. Gumbsch, Acta mater. 48 (2000) 4517

Diamond: L. Pastewka, P. Pou, R. Pérez, P. Gumbsch, M. Moseler, PRB 78 (2008) 161402, 1-4

(111) plane shows "easy" propagation for both directions

Cleavage of Diamond

	(110)[001]	(110)[1-10]
Bond breaking	Continuous (mimics continuum mechanics)	Discontinuous (rearrangements of few atoms at crack tip)
Lattice trapping	Small	Large (0.9-1.3)
Variation with system size	Decreased	No change
Propagation	Easy	Difficult

DFT

Brenner

L. Pastewka, P. Pou, R. Pérez, PG, M. Moseler, PRB 78 (2008) 161402

excellent potential, used in hundreds of simulations J. Phys.: Condens. Matter **14** 783 (2002)

Screening: Geometrical formulation

ratio of the two axis of the ellipse

$$C = rac{2(X_{ik} + X_{jk}) - (X_{ik} - X_{jk})^2 - 1}{1 - (X_{ik} - X_{jk})^2}$$

 $X_{ik} = \left(rac{r_{ik}}{r_{ij}}
ight)^2$
I by k $f_C^{(ij)} o S^{(ij)} f_C^{(ij)}$

M. I. Baskes, J. E. Angelo and C. L. Bisson, Modelling Simul. Mater. Sci. Eng. 2, 505 (1994)

Back to the crack

DFT

Brenner + Screening

L. Pastewka, P. Pou, R. Pérez, P. Gumbsch, M. Moseler, Phys. Rev. B 78 (2008) 161402

Getting the amorphous phase right Deficiencies of REBO

Experiments: C. Casiraghi et al., *Phys. Rev. B* **72**, 085401 (2005) **DFT:** D. G. McCulloch et al. *Phys. Rev. B* **61**, 2349 (2000)

The importance of topography

(B.N.J. Persson, Sliding Friction, Springer 1998)

Design of surface:

L=1.8 m

Very smooth: R/L=0.2 ‰

Lubricant : Gypsum mortar

Ultrasmooth: R/L=10⁻⁵

Atomic force microscope

R=0.1nm L=10µm

Ultrasmoothness: R/L=10⁻⁵

Evolution of the topography

C impinges on ta-C with 100 eV 0 -0.1 ¬P ↓ ↓ -0.3 0.1 0.2 0.3 0.4 0.5 Û r (nm)

Atomistic simulation of film growth

The smoothing of a rough DLC film 4000 C-atoms with 100 eV hit a film with an area 7.05nm x 2.35nm

The constitutive law

Particle current:

$$\mathbf{j}(\mathbf{x}) = -\nu \nabla h(\mathbf{x})$$

Mesoscale description with stochastic differential equations

Continuity eq.

$$\partial h(\mathbf{x},t)/\partial t = -\Omega \nabla \cdot \mathbf{j}(\mathbf{x},t) + \eta(\mathbf{x},t)$$

$$\langle \eta(\mathbf{x},t), \eta(\mathbf{x}',t') \rangle = r \Omega^2 \delta(\mathbf{x} - \mathbf{x}') \delta(t - t')$$

$$\mathbf{j}(\mathbf{x},t) = -\nu \nabla h(\mathbf{x},t)$$

r: deposition rate, Ω : average atomic volume

Stanley&Barabasi, Fractal concepts in Surface Growth

The Edwards-Wilkinson equation

M. Moseler, PG, et al., Science 309 (2005) 1545-1548

Polishing diamond is hard

Biggest diamond ever found: the 3106 carat Cullinan. Polished by three diamond cutters, each working 14 hours a day for eight months straight!

The tricks of the trade

- Diamond: the hardest material
- Exact mechanisms are not understood
- Scaife: cast iron wheel with embedded diamond grits
- {111} is hard to polish (small wear rates, bad surface quality)
- {001} has 4 soft directions (high wear) in <100>
- {011} has 2 soft directions (high wear) in <100>
- Grits in the iron matrix are oriented in soft direction
- AFM studies for hard directions: abrasion
- soft directions: plastic flow

What are the dominant wear processes?

What explains the anisotropy?

J.Hird, J.Field, Proc. R. Soc. Lond. A (2004) 460, 3547

Mechanochemical reactions, diamond polishing

Bildquelle: http://www.costerdiamonds.com

Polishing of diamond

diamond (110) surface, motion in <001> velocity 50 m/s, normal load 5 GPa screened Brenner potential

The anisoptropy

Anisoptropy: amorphous Nanolayer

Mechanical wear

Experiments find amorphous carbon dust after diamond polishing

Chemical wear

Conclusions (1)

Bond breaking processes are somewhat difficult to built into empirical potentials – screening seems to do a good job for bond order potentials

Tribology, friction and wear are becoming accessible to modelling and simulation

- understand cleavage anositropy of silicon and diamond
- understand ultra-flatness of amorphous carbon (ta-C) films
- wear of diamond (dia-C) is a consequence of a (athermal) mechanically driven amorphization

brittle to ductile transition

fracture toughness (loading rate, temperature, ...)

dislocation, the carrier of plastic deformation

2D Model -> Scaling

*Roberts, 1996; Lin and Thomson, 1986

scaling behaviour

The scaling behavior of the experimental T-K^{crit-}curves is described by an Arrhenius-type law [Equation (6.4)] with an apparent activation energy of $U_{BDT} = 0.19 \text{ eV}$.

[A. Hartmaier and PG, Phys. Rev. B 71 (2005) 024108]

BDT and Dislocation Nucleation in Experiments

Dislocation-Crack Interaction

Questions:

Mechanisms of dislocation nucleation at crack front

Mechanisms of dislocation interaction with crack front

Methods:

Dislocation impinging into stationary crack

Propagating crack hitting obstacle (e.g. dislocation)

fcc Ni-EAM, MD (starting at 0K)

$\boldsymbol{\gamma}$ orientation

Typical processes for stationary crack

Stimulated dislocation emission

partial cross slip above crack front

Cross slip of screw segments of incoming dislocations (Fleischer-mechanism)

(partial) crack opening or closing, local crack reorientation

Alternative explanation for V-sources

arrested crack front

Gally & Argon '00: backward oriented emission of screw dislocations Local reorientation of crack front due to emission of blunting dislocations

Conclusions (2)

Fracture is a true multi-scale problem

Brittle fracture but also dislocation nucleation from crack tips are atomistic in nature -> stimulated emission

Dependence of fracture toughness on temperature and strain rate correlates with mobility of dislocations in the field of the crack scaling relation, master curve

5th International Conference Multiscale Materials Modeling MMM2010, Oct. 4-8 2010, Freiburg, Germany also featuring symposia on Tribology and Micromechanics

many projects on friction and fracture phD students, PostDocs welcome peter.gumbsch@kit.edu

