The Abdus Salam Varieties

31 May - 11 June, 2010

Hilbert Coefficients of Parameters

HILBERT COEFFICIENTS OF PARAMETERS

SHIRO GOTO

Contents

1. When $\mathrm{e}_{Q}^{1}(A)<0$? 1
2. Homological degrees 15
3. When is the set $\Lambda_{1}(A)$ finite? 21
4. How about $\mathrm{e}_{Q}^{2}(A)$? - uniform bounds for the sets $\Lambda_{i}(A)(1 \leq i \leq d)$ 28
5. A method to compute $\mathrm{e}_{Q}^{1}(A)$ 36
6. Constancy of $\mathrm{e}_{Q}^{1}(A)$ with the common \bar{Q} 41
7. The case where $\bar{Q}=\mathfrak{m}$ 50
8. A structure theorem for local rings possessing $\mathrm{e}_{Q}^{1}(A)=-1$ 52
9. Appendix: when $\overline{\mathrm{e}}_{I}^{1}(R) \geq 0$? 56
References 63

1. When $\mathrm{e}_{Q}^{1}(A)<0$?

The purpose of my lecture is to report the recent progress in the analysis of Hilbert coefficients of parameters. My research is based discussions [11], [12], and [18] with L. Ghezzi, J. Hong, K. Ozeki, T. T. Phuong, and W. V. Vasconcelos. Especially, the very recent progress is strongly inspired by Vasconcelos [40]; so the results of my lecture are joint works with them.

My lecture consists of 8 sections and the table of contents is the following.
(1) When $\mathrm{e}_{Q}^{1}(A)<0$?
(2) Homological degrees.
(3) When is the set

$$
\Lambda_{1}(A)=\left\{\mathrm{e}_{Q}^{1}(A) \mid Q \text { is a parameter ideal in } A\right\}
$$

finite?

[^0](4) How about $\mathrm{e}_{Q}^{2}(A)$ - uniform bounds for the sets
$$
\Lambda_{i}(A)=\left\{\mathrm{e}_{Q}^{i}(A) \mid Q \text { is a parameter ideal in } A\right\}
$$
with $1 \leq i \leq \operatorname{dim} A$.
(5) A method to compute $\mathrm{e}_{Q}^{1}(A)$.
(6) Constancy of $\mathrm{e}_{Q}^{1}(A)$ with the same integral closure \bar{Q}.
(7) The case where $\bar{Q}=\mathfrak{m}$.
(8) A structure theorem of local rings with $\mathrm{e}_{Q}^{1}(A)=-1$.
(9) Appendix: when $\mathrm{e}_{I}^{1}(R) \geq 0$?

In what follows, let A be a Noetherian local ring with maximal ideal \mathfrak{m} and $d=$ $\operatorname{dim} A>0$. Let $\ell_{A}(M)$ denote, for an A-module M, the length of M. Then, for each \mathfrak{m}-primary ideal I in A, we have integers $\left\{\mathrm{e}_{I}^{i}(A)\right\}_{0 \leq i \leq d}$ such that the equality

$$
\ell_{A}\left(A / I^{n+1}\right)=\mathrm{e}_{I}^{0}(A)\binom{n+d}{d}-\mathrm{e}_{I}^{1}(A)\binom{n+d-1}{d-1}+\cdots+(-1)^{d} \mathrm{e}_{I}^{d}(A)
$$

holds true for all $n \gg 0$. We call these integers $\mathrm{e}_{I}^{i}(A)$ the Hilbert coefficients of A with respect to I. In particular, the leading coefficient $\mathrm{e}_{I}^{0}(A)$ is called the multiplicity of A with respect to I and plays an important role in the analysis of singularity of A and I.

For example, let me consider the case where $I=Q$ is a parameter ideal in A. So, we assume that $Q=\left(a_{1}, a_{2}, \cdots, a_{d}\right)$ is an ideal of A generated by a system $a_{1}, a_{2}, \cdots, a_{d}$ of parameters. Then as is well-known,

$$
\ell_{A}(A / Q) \geq \mathrm{e}_{Q}^{0}(A)
$$

and we have definitions and characterizations of several kinds of local rings in terms of multiplicity of parameters. Let me remind some of them, which I maintain throughout this lecture. Let $H_{\mathfrak{m}}^{i}(*)(i \in \mathbb{Z})$ denote the i-th local cohomology functor of A with respect to \mathfrak{m}. We put $\mathrm{h}^{i}(A)=\ell_{A}\left(\mathrm{H}_{\mathfrak{m}}^{i}(A)\right)$ for all $i \in \mathbb{Z}$.

Definitions and characterizations 1.1. (1) A is a Cohen-Macaulay ring if and only if $\ell_{A}(A / Q)=\mathrm{e}_{Q}^{0}(A)$ for some (and hence for any) parameter ideal Q in A. When this is the case, $\mathrm{H}_{\mathfrak{m}}^{i}(A)=(0)$ for all $i \neq d$.
(2) ([37]) We say that A is a Buchsbaum ring, if $\ell_{A}(A / Q)-\mathrm{e}_{Q}^{0}(A)$ is constant and independent of the choice of parameter ideals Q in A. When this is the case,

$$
\mathfrak{m} H_{\mathfrak{m}}^{i}(A)=(0)
$$

for all $i \neq d$. Therefore, the local cohomology modules $\mathrm{H}_{\mathfrak{m}}^{i}(A)$ are finite-dimensional vector spaces over A / \mathfrak{m}. (The converse is not true in general, that is, A is not necessarily a Buchsbaum ring, even if $\mathfrak{m H}{ }_{\mathfrak{m}}^{i}(A)=(0)$ for all $i \neq d$.)
(3) $([35,36])$ We say that A is a generalized Cohen-Macaulay ring, if

$$
\sup _{Q}\left[\ell_{A}(A / Q)-\mathrm{e}_{Q}^{0}(A)\right]<\infty,
$$

where Q runs over parameter ideals in A. This condition is equivalent to saying that $\mathrm{H}_{\mathfrak{m}}^{i}(A)$ are finitely generated A-modules for all $i \neq d$. (So, sometimes I call these local rings to have FLC; finite local cohomology modules.) When this is the case, we have

$$
\sup _{Q}\left[\ell_{A}(A / Q)-\mathrm{e}_{Q}^{0}(A)\right]=\sum_{j=0}^{d-1}\binom{d-1}{j} \mathrm{~h}^{j}(A):=\mathbb{I}(A)
$$

which we call the Buchsbaum invariant (or the Stückrad-Vogel invariant) of A.

So, every Cohen-Macaulay local ring is Buchsbaum and Buchsbaum local rings are generalized Cohen-Macaulay. These definitions and characterizations are given in terms of multiplicity of parameters.

Question 1.2. How about $\mathrm{e}_{Q}^{1}(A)$? Namely, can we say anything about the structure of local rings in terms of vanishing or non-vanishing of $\mathrm{e}_{Q}^{1}(A)$ for parameters? In general we have $\mathrm{e}_{Q}^{1}(A) \leq 0([28])$.

As for Question 1.2, Wolmer V. Vasconcelos firstly posed the following conjecture at the conference in Yokohama 2008.

Conjecture 1.3 ([10, 39]). Assume that A is unmixed, that is $\operatorname{dim} \widehat{A} / P=d$ for all $P \in$ Ass \widehat{A}, where \widehat{A} denotes the \mathfrak{m}-adic completion of A. Then A is a Cohen-Macaulay local ring, once $\mathrm{e}_{Q}^{1}(A)=0$ for some parameter ideal Q of A.

Later I shall affirmatively settle this conjecture (Theorem 1.8). Before that, let me prove the inequality $\mathrm{e}_{Q}^{1}(A) \leq 0([28])$. This result was firstly discovered by Mandal and Verma [28] and it is also one of consequences of Theorem 1.8. After a proof of [11, Corollary 2.11] (Corollary 1.14 in this lecture) was reported in my seminar, F. Hayasaka discovered an alternate proof of it based on the following Theorem 1.4. He proved Theorem 1.4 in a more general setting, that is the case where Q is a parameter module and the multiplicity is the Buchsbaum-Rim multiplicity. Let me include a brief proof in the case of ideals.

Theorem $1.4\left(\left[21\right.\right.$, Theorem 1.1]). Let $Q=\left(a_{1}, a_{2}, \cdots, a_{d}\right)$ be a parameter ideal in A. Then

$$
\ell_{A}\left(A / Q^{n+1}\right) \geq \mathrm{e}_{Q}^{0}(A)\binom{n+d}{d}
$$

for all $n \geq 0$. If $\ell_{A}\left(A / Q^{n+1}\right)=\mathrm{e}_{Q}^{0}(A)\binom{n+d}{d}$ for some $n \geq 0$, then A is a CohenMacaulay ring, so that

$$
\ell_{A}\left(A / Q^{n+1}\right)=\mathrm{e}_{Q}^{0}(A)\binom{n+d}{d}
$$

for all $n \geq 0$.

Proof. Let $B=A\left[X_{1}, X_{2}, \cdots, X_{d}\right]$ be the polynomial ring and let $M=\mathfrak{m} B+$ $\left(X_{1}, X_{2}, \cdots, X_{d}\right)$ in B. Let $f_{i}=X_{i}-a_{i}(1 \leq i \leq d)$ and put $\mathfrak{q}=\left(f_{1}, f_{2}, \cdots, f_{d}\right) B$. Then $f_{1}, f_{2}, \cdots, f_{d}$ is a regular sequence in B, as $B=A\left[f_{1}, f_{2}, \cdots, f_{d}\right]$. We look at the A-algebra map

$$
\varphi: B \rightarrow A
$$

defined by $\varphi\left(X_{i}\right)=a_{i}$ for all $1 \leq i \leq d$. Then $\mathfrak{q}=\operatorname{Ker} \varphi$. We put $C=B_{M}$ and extend φ to the homomorphism $\psi: C \rightarrow A$

Then $\operatorname{Ker} \psi=\mathfrak{q} C$ and we have the identifications

$$
A / Q^{n+1}=B /\left[\mathfrak{q}^{n+1}+\left(X_{1}, X_{2}, \cdots, X_{d}\right)\right]=C /\left[\mathfrak{q}^{n+1} C+\left(X_{1}, X_{2}, \cdots, X_{d}\right) C\right]
$$

for all $n \geq 0$, whence $X_{1}, X_{2}, \cdots, X_{d}$ is a system of parameters for $C / \mathfrak{q}^{n+1} C$. Let

$$
\text { Assh } C / \mathfrak{q} C=\left\{\mathfrak{p} \in \operatorname{Supp}_{C} C / \mathfrak{q} C \mid \operatorname{dim} C / \mathfrak{p}=\operatorname{dim} C / \mathfrak{q} C\right\} .
$$

Then, thanks to the associative formula of multiplicity together with the fact that $f_{1}, f_{2}, \cdots, f_{d}$ is a regular sequence in C, we get

$$
\begin{aligned}
\ell_{A}\left(A / Q^{n+1}\right) & =\ell_{C}\left(C /\left[\mathfrak{q}^{n+1} C+\left(X_{1}, X_{2}, \cdots, X_{d}\right) C\right]\right) \\
& \geq \mathrm{e}_{\left(X_{1}, X_{2}, \cdots, X_{d}\right) C}^{0}\left(C / \mathfrak{q}^{n+1} C\right) \\
& =\sum_{\mathfrak{p} \in \mathrm{Assh}_{C} C / \mathfrak{q} C} \ell_{C_{\mathfrak{p}}}\left(C_{\mathfrak{p}} / \mathfrak{q}^{n+1} C_{\mathfrak{p}}\right) \cdot \mathrm{e}_{\left(X_{1}, X_{2}, \cdots, X_{d}\right) C}^{0}(C / \mathfrak{p}) \\
& =\sum_{\mathfrak{p} \in \mathrm{Assh}_{C} C / \mathfrak{q} C}\binom{n+d}{d} \ell_{C_{\mathfrak{p}}}\left(C_{\mathfrak{p}} / \mathfrak{q} C_{\mathfrak{p}}\right) \cdot \mathrm{e}_{\left(X_{1}, X_{2}, \cdots, X_{d}\right) C}^{0}(C / \mathfrak{p}) \\
& =\binom{n+d}{d} \sum_{\mathfrak{p} \in \operatorname{Assh}_{C} C / \mathfrak{q} C} \ell_{C_{\mathfrak{p}}}\left(C_{\mathfrak{p}} / \mathfrak{q} C_{\mathfrak{p}}\right) \cdot \mathrm{e}_{\left(X_{1}, X_{2}, \cdots, X_{d}\right) C}^{0}(C / \mathfrak{p}) \\
& =\binom{n+d}{d} \mathrm{e}_{\left(X_{1}, X_{2}, \cdots, X_{d}\right) C}^{0}(C / \mathfrak{q} C)(\text { by the associative formula }) \\
& =\binom{n+d}{d} \mathrm{e}_{Q}^{0}(A)
\end{aligned}
$$

for all $n \geq 0$. Let $n \geq 0$ be now a fixed integer. We then have

$$
\ell_{A}\left(A / Q^{n+1}\right)=\binom{n+d}{d} \mathrm{e}_{Q}^{0}(A)
$$

if and only if

$$
\ell_{C}\left(C /\left[\mathfrak{q}^{n+1} C+\left(X_{1}, X_{2}, \cdots, X_{d}\right) C\right]\right)=\mathrm{e}_{\left(X_{1}, X_{2}, \cdots, X_{d}\right) C}^{0}\left(C / \mathfrak{q}^{n+1} C\right),
$$

which is equivalent to saying that $C / \mathfrak{q}^{n+1} C$ is a Cohen-Macaulay local ring. Because $\mathfrak{q}^{n+1} C$ is a perfect ideal of C (recall that $\mathfrak{q}=\left(f_{1}, f_{2}, \cdots, f_{d}\right)$ is generated by a B-regular sequence $f_{1}, f_{2}, \cdots, f_{d}$), this condition is equivalent to saying thatthe local ring C is Cohen-Macaulay, that is our base ring A is Cohen-Macaulay.

As consequences of Theorem 1.4 we get the following.
Corollary 1.5. Let Q be a parameter ideal in A. Then the following assertions hold true.
(1) $([28]) \mathrm{e}_{Q}^{1}(A) \leq 0$.
(2) (cf. Corollary1.14) A is a Cohen-Macaulay ring if and only if $\mathrm{e}_{Q}^{i}(A)=0$ for all $1 \leq i \leq d$.

Proof. We have
$0 \leq \ell_{A}\left(A / Q^{n+1}\right)-\mathrm{e}_{Q}^{0}(A)\binom{n+d}{d}=-\mathrm{e}_{Q}^{1}(A)\binom{n+d-1}{d-1}+$ (terms of lower degree)
for all $n \gg 0$, whence $\mathrm{e}_{Q}^{1}(A) \leq 0$. The second assertion is clear.
Later I will prove Corollary 1.5 in our own context.
Let me now be back to Vasconcelos' conjecture. To prove it, we need the following.
Lemma $1.6([15])$. If $d=1$, then $\mathrm{e}_{Q}^{1}(A)=-\mathrm{h}^{0}(A)$.
This easily follows from the fact that $A / \mathrm{H}_{\mathfrak{m}}^{0}(A)$ is a Cohen-Macaulay ring but the result itself plays a very important role in the analysis of $\mathrm{e}_{Q}^{1}(A)$.

Lemma 1.7 ([14]). Let A be a Noetherian local ring with maximal ideal \mathfrak{m} and $d=$ $\operatorname{dim} A \geq 2$, possessing the canonical module K_{A}. Suppose that

$$
\text { Ass } A \backslash\{\mathfrak{m}\}=\operatorname{Assh} A
$$

that is $\operatorname{dim} A / \mathfrak{p}=d$ for every $\mathfrak{p} \in \operatorname{Ass} A \backslash\{\mathfrak{m}\}$. Then the following assertions hold true.
(1) The local cohomology module $\mathrm{H}_{\mathfrak{m}}^{1}(A)$ is finitely generated.
(2) The set $\mathcal{F}=\left\{\mathfrak{p} \in \operatorname{Spec} A \mid \operatorname{dim} A_{\mathfrak{p}}>\operatorname{depth} A_{\mathfrak{p}}=1\right\}$ is finite.
(3) Let $a \in \mathfrak{m}$ and assume that $a \notin \bigcup_{\mathfrak{p} \in \operatorname{Assh} A} \mathfrak{p} \cup \bigcup_{\mathfrak{p} \in \mathcal{F}, \mathfrak{p} \neq \mathfrak{m}} \mathfrak{p}$. Then

$$
\operatorname{Ass}_{A} A /(a) \backslash\{\mathfrak{m}\}=\operatorname{Assh}_{A} A /(a)
$$

(4) Suppose that the residue class field A / \mathfrak{m} of A is infinite and let I be an \mathfrak{m}-primary ideal in A. Then one can choose an element $a \in I \backslash \mathfrak{m} I$ so that a is superficial with respect to I and

$$
\operatorname{Ass}_{A} A /(a) \backslash\{\mathfrak{m}\}=\operatorname{Assh}_{A} A /(a)
$$

Let me talk a little bit about the proof of Lemma 1.7. In Section 2 I will provide a smarter approach to Vasconcelos' conjecture, where we will need Lemma 1.7 no more.

Proof. Let $U=\mathrm{U}_{A}(0)$ denote the unmixed component of (0) in A. Then $\ell_{A}(U)<\infty$. As $U=(0):_{A} K_{A}$, we have the exact sequence

$$
0 \rightarrow U \rightarrow A \xrightarrow{\varphi} \operatorname{Hom}_{A}\left(K_{A}, K_{A}\right) \rightarrow C \rightarrow 0
$$

of A-modules, where $\varphi(a)=a \cdot 1_{K_{A}}$ for all $a \in A$. Notice that $\operatorname{depth}_{A} \operatorname{Hom}_{A}\left(K_{A}, K_{A}\right) \geq$ 2 , because $d \geq 2$ and we get

$$
\mathrm{H}_{\mathfrak{m}}^{1}(A) \cong \mathrm{H}_{\mathfrak{m}}^{0}(C) \subseteq C
$$

so that $\mathrm{H}_{\mathfrak{m}}^{1}(A)$ is a finitely generated A-module.
Let $\mathfrak{p} \in \operatorname{Spec} A$ and suppose that $\mathfrak{p} \neq \mathfrak{m}$, ht $_{A} \mathfrak{p}>1$, but depth $A_{\mathfrak{p}}=1$. Then, localizing at \mathfrak{p}, we get the exact sequence

$$
0 \rightarrow A_{\mathfrak{p}} \rightarrow \operatorname{Hom}_{A_{\mathfrak{p}}}\left(\left[K_{A}\right]_{\mathfrak{p}},\left[K_{A}\right]_{\mathfrak{p}}\right) \rightarrow C_{\mathfrak{p}} \rightarrow 0
$$

of $A_{\mathfrak{p}}$-modules. Recall that $\left[K_{A}\right]_{\mathfrak{p}}=K_{A_{\mathfrak{p}}}$, because $\left[K_{A}\right]_{\mathfrak{p}} \neq(0)$ and we have $\operatorname{depth}_{A} C_{\mathfrak{p}}=$ 0 , since $\operatorname{depth}_{A_{\mathfrak{p}}} \operatorname{Hom}_{A_{\mathfrak{p}}}\left(\left[K_{A}\right]_{\mathfrak{p}},\left[K_{A}\right]_{\mathfrak{p}}\right) \geq 2$ and depth $A_{\mathfrak{p}}=1$. Thus $\mathfrak{p} \in \operatorname{Ass}_{A} C$, so that

$$
\mathcal{F} \subseteq \operatorname{Ass}_{A} C \cup\{\mathfrak{m}\}
$$

whence \mathcal{F} is a finite set.
Let $a \in \mathfrak{m}$ such that $a \notin \bigcup_{\mathfrak{p} \in \operatorname{Assh} A} \cup \bigcup_{\mathfrak{p} \in \mathcal{F}, \mathfrak{p} \neq \mathfrak{m}} \mathfrak{p}$. Let $\mathfrak{p} \in \operatorname{Ass}_{A} A /(a) \backslash\{\mathfrak{m}\}$. Then (0) $:_{A} a \subseteq U$, because a is regular in A / U. Hence the element a is $A_{\mathfrak{p}}$-regular, so that $\operatorname{depth} A_{\mathfrak{p}}=1$. Because $a \in \mathfrak{p}$, we get $\mathfrak{p} \notin \mathcal{F}$ and so $\mathrm{ht}_{A} \mathfrak{p}=1$. Hence $\operatorname{dim} A / \mathfrak{p}=d-1$, because our local ring A is catenary; in fact, we have

$$
\operatorname{Spec} A=\operatorname{Supp}_{A} K_{A}=\left\{\mathfrak{p} \in \operatorname{Spec} A \mid \operatorname{dim} A_{\mathfrak{p}}+\operatorname{dim} A / \mathfrak{p}=d\right\}
$$

Thus

$$
\operatorname{Ass}_{A} A /(a) \backslash\{\mathfrak{m}\} \subseteq \operatorname{Assh}_{A} A /(a)
$$

as claimed.
Let me now prove Vasconcelos' conjecture with the following formulation, where the implication $(1) \Rightarrow(2)$ is a result of Narita ([30, Corollary 1]).

Theorem 1.8. Suppose that A is unmixed. Then the following conditions are equivalent.
(1) A is a Cohen-Macaulay ring.
(2) $\mathrm{e}_{I}^{1}(A) \geq 0$ for every \mathfrak{m}-primary ideal I in A.
(3) $\mathrm{e}_{Q}^{1}(A) \geq 0$ for some parameter ideal Q in A.
(4) $\mathrm{e}_{Q}^{1}(A)=0$ for some parameter ideal Q in A.

Proof. Let me prove (3) $\Rightarrow(1)$. We may assume that $d>1, A$ is complete, and the residue class field A / \mathfrak{m} of A is infinite. Let me choose $a \in Q \backslash \mathfrak{m} Q$ so that a is superficial with respect to Q and

$$
\operatorname{Ass}_{A} A /(a) \backslash\{\mathfrak{m}\}=\operatorname{Assh}_{A} A /(a) .
$$

(this choice is possible; see Lemma 1.7). We put $\bar{A}=A /(a)$. Then, since a is A-regular, we have

$$
\mathrm{e}_{Q}^{1}(\bar{A})=\mathrm{e}_{Q}^{1}(A) \geq 0 .
$$

Therefore, if $d=2$, then by Lemma 1.6 we see

$$
\mathrm{e}_{Q}^{1}(\bar{A})=-\mathrm{h}^{0}(\bar{A}) \geq 0,
$$

since $\operatorname{dim} \bar{A}=1$. Hence \bar{A} is a Cohen-Macaulay ring, so that A is Cohen-Macaulay, because a is A-regular.

Suppose now that $d>2$ and that our assertion holds true for $d-1$. Let $U=\mathrm{U}_{\bar{A}}(0)$ be the unmixed component of (0) in \bar{A} and put $B=\bar{A} / U$. Then, since $\ell_{A}(U)<\infty$ (we actually have $U=\mathrm{H}_{\mathfrak{m}}^{0}(\bar{A})$), we have

$$
\mathrm{e}_{Q}^{1}(B)=\mathrm{e}_{Q}^{1}(\bar{A})=\mathrm{e}_{Q}^{1}(A) \geq 0
$$

Consequently, since B is unmixed, B is a Cohen-Macaulay ring by the hypothesis of induction. Hence

$$
\mathrm{H}_{\mathfrak{m}}^{i}(\bar{A})=\mathrm{H}_{\mathfrak{m}}^{i}(B)=(0) \text { for all } 0<i<d-1
$$

We now look at the exact sequence

$$
(\#) \quad 0 \rightarrow \mathrm{H}_{\mathfrak{m}}^{0}(\bar{A}) \rightarrow \mathrm{H}_{\mathfrak{m}}^{1}(A) \xrightarrow{a} \mathrm{H}_{\mathfrak{m}}^{1}(A) \rightarrow \mathrm{H}_{\mathfrak{m}}^{1}(\bar{A}) \rightarrow \cdots
$$

of local cohomology modules, induced from the exact sequence

$$
0 \rightarrow A \xrightarrow[8]{a} A \rightarrow \bar{A} \rightarrow 0 .
$$

Then because $\mathrm{H}_{\mathfrak{m}}^{1}(\bar{A})=(0)$, we have $\mathrm{H}_{\mathfrak{m}}^{1}(A)=a \mathrm{H}_{\mathfrak{m}}^{1}(A)$, so that $\mathrm{H}_{\mathfrak{m}}^{1}(A)=(0)$, as $\mathrm{H}_{\mathfrak{m}}^{1}(A)$ is a finitely generated A-module. Hence $\mathrm{H}_{\mathfrak{m}}^{0}(\bar{A})=(0)$ by exact sequence $(\#)$, so that

$$
\mathrm{H}_{\mathfrak{m}}^{i}(\bar{A})=(0) \text { for all } i \neq d-1
$$

Thus A is a Cohen-Macaulay ring, because so is \bar{A} and a is A-regular.
In the above proof we do not use Corollary 1.5 (1).
Let Q be a parameter ideal in A and let

$$
\operatorname{gr}_{Q}(A)=\bigoplus_{n \geq 0} Q^{n} / Q^{n+1}
$$

denote the associated graded ring of Q. Let

$$
\mathrm{H}\left(\operatorname{gr}_{Q}(A), \lambda\right)=\sum_{n=0}^{\infty} \ell_{A}\left(Q^{n} / Q^{n+1}\right) \lambda^{n}
$$

be the Hilbert series of $\operatorname{gr}_{Q}(A)$. Then we have $f(\lambda) \in Z[\lambda]$ such that

$$
\mathrm{H}\left(\operatorname{gr}_{Q}(A), \lambda\right)=\frac{f(\lambda)}{(1-\lambda)^{d}} .
$$

With this notaton, since $f^{\prime}(1)=\mathrm{e}_{Q}^{1}(A)$, we have the following.
Corollary 1.9. Let Q be a parameter ideal in A and let

$$
\mathrm{H}\left(\operatorname{gr}_{Q}(A), \lambda\right)=\frac{f(\lambda)}{(1-\lambda)^{d}}
$$

be the Hilbert series of $\operatorname{gr}_{Q}(A)$, where $f(\lambda) \in \mathbb{Z}[\lambda]$. The A is a Cohen-Macaulay ring if and only if A is unmixed and $f^{\prime}(1)=0$.

We now ask what happens in the case where A is mixed. To answer this question, we need the following.

Observation 1.10. Let $U=\mathrm{U}_{A}(0)$ be the unmixed component of (0) in A and assume that $U \neq(0)$. We put

$$
t=\operatorname{dim}_{A} U(<d) \text { and } B=A / U
$$

Let Q be a parameter ideal in A. Then for every $n \geq 0$ we have the exact sequence

$$
0 \rightarrow U /\left[Q^{n+1} \cap U\right] \rightarrow \underset{9}{A / Q^{n+1}} \rightarrow B / Q^{n+1} B \rightarrow 0
$$

whence $\ell_{A}\left(A / Q^{n+1}\right)=\ell_{A}\left(B / Q^{n+1} B\right)+\ell_{A}\left(U /\left[Q^{n+1} \cap U\right]\right)$. Consequently, we have integers $\left\{\mathrm{s}_{Q}^{i}(U)\right\}_{0 \leq i \leq t}$ such that

$$
\ell_{A}\left(U /\left[Q^{n+1} \cap U\right]\right)=\sum_{i=0}^{t}(-1)^{i} \cdot s_{Q}^{i}(U)\binom{n+t-i}{t-i}
$$

for all $n \gg 0$. Notice that $\mathrm{s}_{Q}^{0}(U)=\mathrm{e}_{Q}^{0}(U)(>0)$. Hence
$\sum_{i=0}^{d}(-1)^{i} \mathrm{e}_{Q}^{i}(A)\binom{n+d-i}{d-i}=\sum_{i=0}^{d}(-1)^{i} \mathrm{e}_{Q}^{i}(B)\binom{n+d-i}{d-i}+\sum_{i=0}^{t}(-1)^{i} \mathrm{~s}_{Q}^{i}(U)\binom{n+t-i}{t-i}$
for all $n \gg 0$. Therefore, comparing the coefficients of $\binom{n+i}{i}$ in both sides, we get the following.

Fact 1.11.

$$
(-1)^{d-i} \mathrm{e}_{Q}^{d-i}(A)= \begin{cases}(-1)^{d-i} \mathrm{e}_{Q}^{d-i}(B)+(-1)^{t-i} \mathrm{~s}_{Q}^{t-i}(U) & (0 \leq i \leq t) \\ (-1)^{d-i} \mathrm{e}_{Q}^{d-i}(B) & (t<i \leq d)\end{cases}
$$

for $0 \leq i \leq d$.

Let me give an alternate proof of Corollary 1.5 (1).
Alternate proof of Corollary 1.5 (1). Let me use the same notation as in Observation 1.10. We may assume $d>1$ and A is complete. Suppose that $\mathrm{e}_{Q}^{1}(A)>0$. Then A is mixed by Theorem 1.8. Hence $U \neq(0)$ but $\mathrm{e}_{Q}^{1}(B) \leq 0$ by Theorem 1.8, since B is unmixed. Therefore if $t<d-1$, by Observation 1.11 we get

$$
0>-\mathrm{e}_{Q}^{1}(A)=-\mathrm{e}_{Q}^{1}(B) \geq 0
$$

which is absurd. Hence $t=d-1$, so that

$$
\begin{aligned}
0>-\mathrm{e}_{Q}^{1}(A) & =-\mathrm{e}_{Q}^{1}(B)+\mathrm{s}_{Q}^{0}(U) \\
& =-\mathrm{e}_{Q}^{1}(B)+\mathrm{e}_{Q}^{0}(U) \\
& \geq \mathrm{e}_{Q}^{0}(U)>0
\end{aligned}
$$

which is impossible. Thus $\mathrm{e}_{Q}^{1}(A) \leq 0$.

Definition 1.12. A given Noetherian local ring A of dimension $d \geq 0$ is called a Vasconcelos ring, either if $d=0$ or if $d>0$ and $\mathrm{e}_{Q}^{1}(A)=0$ for some parameter ideal Q in A.

Every Vasconcelos ring of dimension at most 1 is Cohen-Macaulay.
Here is a characterization of Vasconcelos rings.
Theorem 1.13. Suppose that $d=\operatorname{dim} A \geq 2$. Then the following conditions are equivalent.
(1) A is a Vasconcelos ring.
(2) $\mathrm{e}_{Q}^{1}(A)=0$ for every parameter ideal Q in A.
(3) $\widehat{A} / \mathrm{U}_{\widehat{A}}(0)$ is a Cohen-Macaulay ring and $\operatorname{dim}_{\widehat{A}} \mathrm{U}_{\widehat{A}}(0) \leq d-2$, where $\mathrm{U}_{\widehat{A}}(0)$ denotes the unmixed component of (0) in the \mathfrak{m}-adic completion \widehat{A} of A.
(4) The \mathfrak{m}-adic completion \hat{A} of A contains an ideal I such that \widehat{A} / I is a CohenMacaulay ring and $\operatorname{dim}_{\widehat{A}} I \leq d-2$.

When this is the case, \widehat{A} is a Vasconcelos ring, $\mathrm{H}_{\mathrm{m}}^{d-1}(A)=(0)$, and the canonical module $\mathrm{K}_{\widehat{A}}$ of \widehat{A} is a Cohen-Macaulay \widehat{A}-module.

In Theorem 1.13 condition (3) is free from parameter ideals. Hence $\mathrm{e}_{Q}^{1}(A)=0$ for every parameter ideal Q in A, once $\mathrm{e}_{Q}^{1}(A)=0$ for some parameter. This is what the theorem says.

Proof of Theorem 1.13. Let me maintain the notation in Observation 1.10.
$(1) \Rightarrow(3)$ We may assume A is complete and $U \neq(0)$. If $t=d-1$, then by Observation 1.11 we get

$$
0=-\mathrm{e}_{Q}^{1}(A)=-\mathrm{e}_{Q}^{1}(B)+\mathrm{e}_{Q}^{0}(U)>0 .
$$

Hence $t<d-1$, so that by Observation 1.11 we get

$$
0=-\mathrm{e}_{Q}^{1}(A)=-\mathrm{e}_{Q}^{1}(B)
$$

whence B is a Cohen-Macaulay ring.
$(3) \Rightarrow(2)$ We may assume A is complete. By Observation 1.11 we have $-\mathrm{e}_{Q}^{1}(A)=$ $-\mathrm{e}_{Q}^{1}(B)=0$ for every parameter ideal Q in A.
(4) \Rightarrow (3) We will show $I=U$. Notice that $\operatorname{dim} \widehat{A} / I=d$, since $\operatorname{dim}_{\widehat{A}} I<d$. Similarly, because $\operatorname{dim}_{\widehat{A}} I<d$, we have $I \widehat{A}_{\mathfrak{p}}=(0)$ for every $\mathfrak{p} \in$ Assh \widehat{A}, whence $I \subseteq U$. Suppose that $U / I \neq(0)$ and choose $\mathfrak{p} \in \operatorname{Ass}_{\widehat{A}} U / I$. Then since $\mathfrak{p} \in \operatorname{Ass}_{\widehat{A}} \widehat{A} / I$, we get $\mathfrak{p} \in \operatorname{Assh} \widehat{A}$, so that

$$
U \widehat{A}_{\mathfrak{p}}=I \widehat{A}_{\mathfrak{p}}=(0),
$$

which is impossible. Thus $I=U$.
The original proof of Corollary 1.5 (2) is as follows.
Corollary 1.14. Let Q be a parameter ideal in A and assume that $\mathrm{e}_{Q}^{i}(A)=0$ for all $1 \leq i \leq d$. Then A is a Cohen-Macaulay ring.

Proof. We may assume A is complete. Since A is a Vasconcelos ring, by Theorem 1.13 $B=A / U$ is a Cohen-Macaulay ring. We must show $U=(0)$. If $U \neq(0)$, then by Observation 1.11 we get

$$
0=(-1)^{d-t} \mathrm{e}_{Q}^{d-t}(A)=(-1)^{d-t} \mathrm{e}_{Q}^{d-t}(B)+\mathrm{e}_{Q}^{0}(U)=\mathrm{e}_{Q}^{0}(U)>0
$$

which is impossible.
We note an example of Vasconcelos rings which is not Cohen-Macaulay.
Example 1.15. Let R be a regular local ring with maximal ideal \mathfrak{n} and $d=$ $\operatorname{dim} R \geq 2$. Let $X_{1}, X_{2}, \cdots, X_{d}$ be a regular system of parameters of R. Let $D=R /\left(X_{2}, X_{3}, \cdots, X_{d}\right)$ and look at the idealization

$$
A=R \ltimes D
$$

of D over R. Then A is a Noetherian local ring with maximal ideal $\mathfrak{m}=\mathfrak{n} \times D$, $\operatorname{dim} A=d$, and depth $A=1$. We have $\mathrm{H}_{\mathfrak{m}}^{i}(A)=(0)$ for all $i \neq 1, d$ but

$$
\mathrm{H}_{\mathfrak{m}}^{1}(A) \cong \mathrm{H}_{\mathfrak{n}}^{1}(D)
$$

Hence A is not unmixed (and not a generalized Cohen-Macaulay ring, since $\mathrm{H}_{\mathfrak{m}}^{1}(A)$ is not a finitely generated A-module). For each $0 \leq i \leq d$ we put

$$
\Lambda_{i}(A)=\left\{\mathrm{e}_{Q}^{i}(A) \mid Q \text { is a parameter ideal in } A\right\} .
$$

Then the following assertions hold true.
(1) $\Lambda_{i}(A)=\{0\}$ for all $1 \leq i \leq d$ such that $i \neq d-1$.
(2) $\Lambda_{0}(A)=\{n \mid 0<n \in \mathbb{Z}\}$ and $\Lambda_{d-1}(A)=\left\{(-1)^{d-1} n \mid 0<n \in \mathbb{Z}\right\}$.

Hence A is a Vasconcelos ring, if $d>2$. We furthermore have the following.
(3) Every parameter ideal of A is generated by a system of parameters which forms a d-sequence in A.
(4) $\operatorname{Proj}\left(\bigoplus_{n \geq 0} Q^{n}\right)$ is not a locally Cohen-Macaulay scheme for any parameter ideal Q in A.

Proof. Let $p: A \rightarrow R, p(a, x)=a$ be the projection. For each R-module M, let us denote by ${ }_{p} M$ the A-module M which is considered to be an A-module via p. We look at the exact sequence

$$
0 \rightarrow{ }_{p} D \xrightarrow{\iota} A \xrightarrow{p} R \rightarrow 0,
$$

where $\iota(x)=(0, x)$ for each $x \in D$. Let Q be a parameter ideal in A and put $\mathfrak{q}=Q R$. Then we get the exact sequence

$$
0 \rightarrow{ }_{p}\left[D / \mathfrak{q}^{n+1} D\right] \rightarrow A / Q^{n+1} \rightarrow R / \mathfrak{q}^{n+1} \rightarrow 0
$$

Therefore since D is a DVR, we have

$$
\begin{aligned}
\ell_{A}\left(A / Q^{n+1}\right) & =\ell_{R}\left(R / \mathfrak{q}^{n+1}\right)+\ell_{R}\left(D / \mathfrak{q}^{n+1} D\right) \\
& =e_{\mathfrak{q}}^{0}(R)\binom{n+d}{d}+\mathrm{e}_{\mathfrak{q}}^{0}(D)\binom{n+1}{1}
\end{aligned}
$$

for all $n \geq 0$. Hence

$$
(-1)^{i} \mathrm{e}_{Q}^{i}(A)= \begin{cases}\mathrm{e}_{\mathfrak{q}}^{0}(R) & (i=0), \\ \mathrm{e}_{\mathfrak{q}}^{0}(D) & (i=d-1), \\ 0 & (i \neq 0, d-1)\end{cases}
$$

for $0 \leq i \leq d$. We now take $Q=\left(X_{1}^{n}, X_{2}, \cdots, X_{d}\right)(n>0)$. Then $\mathrm{e}_{Q}^{0}(A)=n$ and $(-1)^{d-1} \mathrm{e}_{Q}^{d-1}(A)=n$. Hence assertions (1) and (2) follow.
(3) Let $f_{1}, f_{2}, \cdots, f_{d}$ be a system of parameters in A and write $f_{i}=\left(a_{i}, x_{i}\right)$ with $a_{i} \in R$ and $x_{i} \in D$. After renumbering, we may assume that

$$
\left(a_{1}, a_{2}, \cdots, a_{d}\right) \underset{13}{D=a_{1} D \quad(\neq(0)) .}
$$

Then $f_{1}, f_{2}, \cdots, f_{d}$ forms a d-sequence in A. In fact, let $1 \leq i \leq j \leq d$ and let $\varphi \in\left(f_{1}, f_{2}, \cdots, f_{i-1}\right): f_{i} f_{j}$. If $i=1$, then since f_{1} is A-regular, we get $f_{j} \varphi=0$. Suppose $i>1$ and look at the exact sequence

$$
0 \rightarrow{ }_{p}\left[D /\left(a_{1}, a_{2}, \cdots, a_{i-1}\right) D\right] \stackrel{\iota}{\rightarrow} A /\left(f_{1}, f_{2}, \cdots, f_{i-1}\right) \rightarrow R /\left(a_{1}, a_{2}, \cdots, a_{i-1}\right) R \rightarrow 0
$$

(recall that $a_{1}, a_{2}, \cdots, a_{i-1}$ forms a regular sequence in R). We then have for some $x \in D$ $\bar{\varphi}=\overline{(0, x)}$ in $A /\left(f_{1}, f_{2}, \cdots, f_{i-1}\right)$, where $\bar{*}$ denotes the image in $A /\left(f_{1}, f_{2}, \cdots, f_{i-1}\right)$. Therefore $f_{j} \bar{\varphi}=\overline{\left(0, a_{j} x\right)}=0$, because $a_{j} D=(0)$ in D. Hence $f_{j} \varphi \in\left(f_{1}, f_{2}, \cdots, f_{i-1}\right)$, which shows that $f_{1}, f_{2}, \cdots, f_{d}$ is a d-sequence in A.
(4) This is because A is not a generalized Cohen-Macaulay ring.

We close this section with the following.
Proposition 1.16. Let $Q=\left(a_{1}, a_{2}, \cdots, a_{d}\right)$ be a parameter ideal in A. Let $G=$ $\operatorname{gr}_{Q}(A)=\bigoplus_{n \geq 0} Q^{n} / Q^{n+1}, \mathcal{R}=\bigoplus_{n \geq 0} Q^{n}$, and $M=\mathfrak{m} \mathcal{R}+\mathcal{R}_{+}$. Then the following assertions hold true.
(1) G_{M} is a Vasconcelos ring if and only if so is A.
(2) Suppose that A is a homomorphic image of a Cohen-Macaulay ring. Then \mathcal{R}_{M} is a Vasconcelos ring, if so is A.

Proof. (1) Recall that $\mathrm{e}_{\left(a_{1}^{*}, a_{2}^{*}, \cdots, a_{d}^{*}\right) G}^{1}(G)=\mathrm{e}_{Q}^{1}(A)$, where $a_{i}^{*}=a_{i} \bmod Q^{2}$ denotes the initial form of a_{i}.
(2) Let $U=\mathrm{U}_{A}(0)$ be the unmixed component of (0) in A. We may assume $U \neq(0)$. Then $B=A / U$ is a Cohen-Macaulay ring (Theorem 1.13 (3)). We look at the exact sequence

$$
0 \rightarrow U^{*} \rightarrow \mathcal{R} \rightarrow \mathcal{S} \rightarrow 0
$$

where $\mathcal{S}=\mathcal{R}([Q+U] / U)$ denotes the Rees algebra of the ideal $[Q+U] / U$ in B. Then $\mathcal{R}([Q+U] / U)$ is a Cohen-Macaulay ring, since B is Cohen-Macaulay, while we have

$$
\operatorname{dim}_{\mathcal{R}} U^{*} \leq \operatorname{dim}_{A} U+1 \leq d-1
$$

Thus \mathcal{R}_{M} is a Vasconcelos ring by Theorem 1.13 (4).

2. Homological degrees

Let A be a Noetherian local ring with maximal ideal \mathfrak{m} and $d=\operatorname{dim} A>0$. We put

$$
\Lambda_{i}(A)=\left\{\mathrm{e}_{Q}^{i}(A) \mid Q \text { is a parameter ideal in } A\right\}
$$

for each $0 \leq i \leq d$. With this notation we are interested in the following.

Question 2.1. (1) When is the set $\Lambda_{1}(A)$ finite?
(2) When $\sharp \Lambda_{1}(A)=1$?

Notice that our characterization Theorem 1.13 of Vasconcelos rings shows that

$$
0 \in \Lambda_{1}(A) \Rightarrow \Lambda_{1}(A)=\{0\}
$$

First of all, let me remind the estimation of $\mathrm{e}_{Q}^{1}(A)$ in terms of homological degrees ([38]). For simplicity, in the rest of this section let me assume that A is \mathfrak{m}-adically complete and the residue class field A / \mathfrak{m} of A is infinite. Let M be a finitely generated A-module. For each $j \in \mathbb{Z}$ we put

$$
M_{j}=\operatorname{Hom}_{A}\left(\mathrm{H}_{\mathfrak{m}}^{j}(M), E\right),
$$

where $E=\mathrm{E}_{A}(A / \mathfrak{m})$ denotes the injective envelope of A / \mathfrak{m}. Then M_{j} is a finitely generated A-module and we have the following.

Fact 2.2. $\operatorname{dim}_{A} M_{j} \leq j$ for all $j \in \mathbb{Z}$, where $\operatorname{dim}_{A}(0)=-\infty$.
Proof. Since A is complete, A is a homomorphic image of a Gorenstein complete local ring R with $\operatorname{dim} R=\operatorname{dim} A$. Passing to R, without loss of generality we may assume that A is a Gorenstein ring. Let $\mathfrak{p} \in \operatorname{Supp}_{A} M_{j}$. Then since

$$
M_{j} \cong \operatorname{Ext}_{A}^{d-j}(M, A)
$$

by the local duality theorem, we get

$$
\operatorname{Ext}_{A_{\mathfrak{p}}}^{d-j}\left(M_{\mathfrak{p}}, A_{\mathfrak{p}}\right) \neq(0)
$$

whence

$$
d-j \leq \operatorname{inj} \operatorname{dim} A_{\mathfrak{p}}=\operatorname{dim} A_{\mathfrak{p}} .
$$

Hence $\operatorname{dim} A / \mathfrak{p}=d-\operatorname{dim} A_{\mathfrak{p}} \leq j$, so that we have $\operatorname{dim}_{A} M_{j} \leq j$.

Let I be a fixed \mathfrak{m}-primary ideal in A. The homological degree $\operatorname{hdeg}_{I}(M)$ of M with respect to I is defined, inductively, according to the dimension $s=\operatorname{dim}_{A} M$ of M.

Definition 2.3 ([38]). For each finitely generated A-module M with $s=\operatorname{dim}_{A} M$, we put

$$
\operatorname{hdeg}_{I}(M)=\left\{\begin{array}{lc}
\ell_{A}(M) & \left(s=\operatorname{dim}_{A} M \leq 0\right) \\
\mathrm{e}_{I}^{0}(M)+\sum_{j=0}^{s-1}\binom{s-1}{j} \operatorname{hdeg}_{I}\left(M_{j}\right) & (s>0),
\end{array}\right.
$$

where $\mathrm{e}_{I}^{0}(M)$ denotes the multiplicity of M with respect to I.
Let me summarize some basic properties of $\operatorname{hdeg}_{I}(M)$.
Fact 2.4. (1) $0 \leq \operatorname{hdeg}_{I}(M) \in \mathbb{Z}$. $\operatorname{hdeg}_{I}(M)=0$ if and only if $M=(0)$.
(2) (B. Ulrich) $\operatorname{hdeg}_{I}(M)$ depends only on \bar{I}. Namely, suppose that I, J are \mathfrak{m}-primary ideals in A. Then $\operatorname{hdeg}_{I}(*)=\operatorname{hdeg}_{J}(*)$ if and only if $\bar{I}=\bar{J}$, where \bar{I} and \bar{J} denote respectively the integral closures of I and J.
(3) If $M \cong M^{\prime}$, then $\operatorname{hdeg}_{I}(M)=\operatorname{hdeg}_{I}\left(M^{\prime}\right)$.
(4) $\operatorname{hdeg}_{I}(M)=\operatorname{hdeg}_{I}\left(M / \mathrm{H}_{\mathfrak{m}}^{0}(M)\right)+\ell_{A}\left(\mathrm{H}_{\mathfrak{m}}^{0}(M)\right)$.
(5) If M is a generalized Cohen-Macaulay A-module, then

$$
\operatorname{hdeg}_{I}(M)=\mathrm{e}_{I}^{0}(M)+\mathbb{I}(M),
$$

where $\mathbb{I}(M)=\sum_{j=0}^{s-1}\binom{s-1}{j} \mathrm{~h}^{j}(M)$ denotes the Stückrad-Vogel invariant of M.
Proof. (2) Let me check the only if part. We have $\mathrm{e}_{I}^{0}(A / \mathfrak{p})=\mathrm{e}_{J}^{0}(A / \mathfrak{p})$ for every $\mathfrak{p} \in \operatorname{Spec} A$ with $\operatorname{dim} A / \mathfrak{p}=1$. Let $V=\overline{A / \mathfrak{p}}$ be the normalization of A / \mathfrak{p}. Then $I V=J V$, since V is a DVR with $\mathrm{e}_{I}^{0}(V)=\mathrm{e}_{J}^{0}(V)$. Therefore, as $(I+J) V=I V$, we get

$$
\mathrm{e}_{[(I+J)+\mathfrak{p}] / \mathfrak{p}}^{0}(A / \mathfrak{p})=\mathrm{e}_{[I+\mathfrak{p}] / \mathfrak{p}}^{0}(A / \mathfrak{p})
$$

whence the ideal $[(I+J)+\mathfrak{p}] / \mathfrak{p}$ is integral over $[I+\mathfrak{p}] / \mathfrak{p}$ for every $\mathfrak{p} \in \operatorname{Spec} A$ possessing $\operatorname{dim} A / \mathfrak{p}=1$. As Ulrich showed in his lecture, this condition implies $I+J \subseteq \bar{I}$. Hence $J \subseteq \bar{I}$, so that $\bar{I}=\bar{J}$ by symmetry.
(3) We may assume $\operatorname{dim}_{A} M=s>0$. Let $W=\mathrm{H}_{\mathfrak{m}}^{0}(M)$ and $M^{\prime}=M / W$. Then

$$
\left[M^{\prime}\right]_{j} \cong M_{j} \text { for all } \underset{16}{j>0} \text { and }\left[M^{\prime}\right]_{0}=(0)
$$

Hence

$$
\begin{aligned}
\operatorname{hdeg}_{I}(M) & =\mathrm{e}_{I}^{0}(M)+\sum_{j=0}^{s-1}\binom{s-1}{j} \operatorname{hdeg}_{I}\left(M_{j}\right) \\
& =\mathrm{e}_{I}^{0}\left(M^{\prime}\right)+\sum_{j=1}^{s-1}\binom{s-1}{j} \operatorname{hdeg}_{I}\left(M^{\prime}\right)+\ell_{A}\left(\operatorname{Hom}_{A}(W, E)\right) \\
& =\operatorname{hdeg}_{I}\left(M^{\prime}\right)+\ell_{A}(W)
\end{aligned}
$$

(4) Notice that hdeg $M_{j}=\ell_{A}\left(M_{j}\right)=\ell_{A}\left(\mathrm{H}_{\mathfrak{m}}^{j}(M)\right)=\mathrm{h}^{j}(M)$ for all $j \neq s$.

The following results play key roles in the analysis of homological degree.
Lemma 2.5 ([38, Proposition 3.18]). Let $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ be an exact sequence of finitely generated A-modules. Then the following assertions hold true.
(1) If $\ell_{A}(Z)<\infty$, then $\operatorname{hdeg}_{I}(Y) \leq \operatorname{hdeg}_{I}(X)+\operatorname{hdeg}_{I}(Z)$.
(2) If $\ell_{A}(X)<\infty$, then $\operatorname{hdeg}_{I}(Y)=\operatorname{hdeg}_{I}(X)+\operatorname{hdeg}_{I}(Z)$.

Remark 2.6. In Lemma 2.5 (1) the equality

$$
\operatorname{hdeg}_{I}(Y)=\operatorname{hdeg}_{I}(X)+\operatorname{hdeg}_{I}(Z)
$$

does not hold true in general, even though $\ell_{A}(Z)<\infty$. For example, suppose that A is a Cohen-Macaulay local ring with $\operatorname{dim} A=1$. We look at the exact sequence

$$
0 \rightarrow \mathfrak{m} \rightarrow A \rightarrow A / \mathfrak{m} \rightarrow 0
$$

Then, since \mathfrak{m} is a Cohen-Macaulay A-module, we get

$$
\operatorname{hdeg}_{I}(A)=\mathrm{e}_{I}^{0}(A)=\mathrm{e}_{I}^{0}(\mathfrak{m})=\operatorname{hdeg}_{I}(\mathfrak{m})
$$

Therefore, since $\operatorname{hdeg}_{I}(A / \mathfrak{m})=1$, we have

$$
\operatorname{hdeg}_{I}(A)<\operatorname{hdeg}_{I}(A)+1=\operatorname{hdeg}_{I}(\mathfrak{m})+\operatorname{hdeg}_{I}(A / \mathfrak{m})
$$

Let $\mathcal{R}=A[I t] \subseteq A[t]$ be the Rees algebra of I, where t is an indeterminate. Let

$$
f: I \rightarrow \mathcal{R}, \quad a \mapsto a t
$$

be the identification of I with $\mathcal{R}_{1}=I t$. We put

$$
\operatorname{Proj} \mathcal{R}=\left\{\mathfrak{p} \mid \mathfrak{p} \text { is a graded prime ideal of } \mathcal{R} \text { such that } \mathfrak{p} \nsupseteq \mathcal{R}_{+}\right\} .
$$

We then have the following.

Lemma 2.7. Let M be a finitely generated A-module. Then there exists a finite subset $\mathcal{F} \subseteq \operatorname{Proj} \mathcal{R}$ such that
(1) every $a \in I \backslash \bigcup_{\mathfrak{p} \in \mathcal{F}}\left[f^{-1}(\mathfrak{p})+\mathfrak{m} I\right]$ is superficial for M with respect to I and
(2) for each $a \in I \backslash \bigcup_{\mathfrak{p} \in \mathcal{F}}\left[f^{-1}(\mathfrak{p})+\mathfrak{m} I\right]$ we have $\operatorname{hdeg}_{I}(M / a M) \leq \operatorname{hdeg}_{I}(M)$.

Proof. Induction on $s=\operatorname{dim}_{A} M$. If $s \leq 0$, choose $\mathcal{F}=\emptyset$. Suppose $s=1$ and let $\mathcal{F}=\left\{\mathfrak{p} \in \operatorname{Ass}_{\mathcal{R}} \operatorname{gr}_{I}(M) \mid \mathfrak{p} \nsupseteq \mathcal{R}_{+}\right\}$. Then every $a \in I \backslash \bigcup_{\mathfrak{p} \in \mathcal{F}}\left[f^{-1}(\mathfrak{p})+\mathfrak{m} I\right]$ is superficial for M with respect to I. We have $\operatorname{hdeg}_{I}(M)=\mathrm{e}_{I}^{0}(M)+\mathrm{h}^{0}(M)$ and $\operatorname{hdeg}_{I} \bar{M}=\ell_{A}(\bar{M})$, where $\bar{M}=M / a M$. Let $W=\mathrm{H}_{\mathfrak{m}}^{0}(M)$ and look at the exact sequence

$$
0 \rightarrow W \rightarrow M \rightarrow M^{\prime} \rightarrow 0
$$

where $M^{\prime}=M / W$. Then since M^{\prime} is a Cohen-Macaulay A-module, the element a is M^{\prime}-regular and we get

$$
0 \rightarrow W / a W \rightarrow \bar{M} \rightarrow M^{\prime} / a M^{\prime} \rightarrow 0
$$

Hence

$$
\begin{aligned}
\ell_{A}(\bar{M}) & =\ell_{A}(W / a W)+\ell_{A}\left(M^{\prime} / a M^{\prime}\right) \\
& \leq \ell_{A}(W)+\mathrm{e}_{(a)}^{0}\left(M^{\prime}\right) \\
& =\ell_{A}(W)+\mathrm{e}_{I}^{0}\left(M^{\prime}\right) \\
& =\mathrm{h}^{0}(M)+\mathrm{e}_{I}^{0}(M) \\
& =\operatorname{hdeg}_{I}(M)
\end{aligned}
$$

Suppose that $s>1$ and our assertion holds true for $s-1$. Let \mathcal{F} be a finite subset of $\operatorname{Proj} \mathcal{R}$ such that for every $a \in I \backslash \bigcup_{\mathfrak{p} \in \mathcal{F}}\left[f^{-1}(\mathfrak{p})+\mathfrak{m} I\right]$, a is superficial for M and M_{j} $(0 \leq j \leq s-2)$ and $\operatorname{hdeg}_{I}\left(M_{j} / a M_{j}\right) \leq \operatorname{hdeg}_{I}\left(M_{j}\right)$ for all $1 \leq j \leq s-1$. Then, since $\ell_{A}\left((0):_{M} a\right)<\infty$, we get a long exact sequence

$$
0 \rightarrow(0):_{M} a \rightarrow \mathrm{H}_{\mathfrak{m}}^{0}(M) \xrightarrow{a} \mathrm{H}_{\mathfrak{m}}^{0}(M) \rightarrow \underset{18}{\mathrm{H}_{\mathfrak{m}}^{0}(\bar{M})} \rightarrow \mathrm{H}_{\mathfrak{m}}^{1}(M) \xrightarrow{a} \mathrm{H}_{\mathfrak{m}}^{1}(M) \rightarrow \mathrm{H}_{\mathfrak{m}}^{1}(\bar{M}) \rightarrow \cdots
$$

of local cohomology modules, where $\bar{M}=M / a M$. Hence

for each $0 \leq i \leq s-2$. Because $\ell_{A}\left((0):_{M_{i}} a\right)<\infty$, thanks to Lemma 2.5, we get

$$
\begin{aligned}
\operatorname{hdeg}_{I}\left(\bar{M}_{i}\right) & \leq \operatorname{hdeg}_{I}\left((0):_{M_{i}} a\right)+\operatorname{hdeg}_{I}\left(M_{i+1} / a M_{i+1}\right) \\
& \leq \operatorname{hdeg}_{I}\left(M_{i}\right)+\operatorname{hdeg}_{I}\left(M_{i+1}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
\operatorname{hdeg}_{I}(\bar{M}) & =\mathrm{e}_{I}^{0}(\bar{M})+\sum_{j=0}^{s-2}\binom{s-2}{j} \operatorname{hdeg}_{I}\left(\bar{M}_{j}\right) \\
& \leq \mathrm{e}_{I}^{0}(M)+\sum_{j=0}^{s-2}\binom{s-2}{j}\left[\operatorname{hdeg}_{I}\left(M_{j}\right)+\operatorname{hdeg}_{I}\left(M_{j+1}\right)\right] \\
& =\mathrm{e}_{I}^{0}(M)+\sum_{j=0}^{s-1}\binom{s-1}{j} \operatorname{hdeg}_{I}\left(M_{j}\right) \\
& =\operatorname{hdeg}_{I}(M)
\end{aligned}
$$

as claimed.

Definition 2.8. Let M be a finitely generated A-module with $\operatorname{dim}_{A} M=s \geq 2$. We put

$$
\mathrm{T}_{I}(M)=\sum_{j=1}^{s-1}\binom{s-2}{j-1} \operatorname{hdeg}_{I}\left(M_{j}\right) .
$$

Fact 2.9. Let M be a finitely generated A-module with $\operatorname{dim}_{A} M=s \geq 3$. Then the proof of Lemma 2.7 shows that there exists a finite subset $\mathcal{F} \subseteq \operatorname{Proj} \mathcal{R}$ such that for every $a \in I \backslash \bigcup_{\mathfrak{p} \in \mathcal{F}}\left[f^{-1}(\mathfrak{p})+\mathfrak{m} I\right]$, a is superficial for M with respect to I and we have the inequality

$$
\mathrm{T}_{I}(M / a M) \leq \mathrm{T}_{I}(M)
$$

We now come to the main result of this section.

Theorem 2.10. Suppose that $d \geq 2$ and let Q be a parameter ideal in A. Then

$$
0 \geq \mathrm{e}_{Q}^{1}(M) \geq-\mathrm{T}_{Q}(M)
$$

for every finitely generated A-module M with $\operatorname{dim}_{A} M=d$.
Proof. The inequality $0 \geq \mathrm{e}_{Q}^{1}(M)$ follows from Corollary 1.5 (if necessary, use the principle of idealization to reduce the problem to the ring case; the technique in the ring case, in fact, works also for modules). Let $M^{\prime}=M / \mathrm{H}_{\mathfrak{m}}^{0}(M)$. Then, since $\mathrm{e}_{Q}^{1}(M)=$ $\mathrm{e}_{Q}^{1}\left(M^{\prime}\right)$ and $\mathrm{T}_{Q}(M)=\mathrm{T}_{Q}\left(M^{\prime}\right)$, to see that $\mathrm{e}_{Q}^{1}(M) \geq-\mathrm{T}_{Q}(M)$, passing to M^{\prime}, we may assume that $\mathrm{H}_{\mathfrak{m}}^{0}(M)=(0)$. Suppose $d=2$ and choose $a \in Q \backslash \mathfrak{m} Q$ so that a is superficial for M with respect to Q and $\operatorname{hdeg}_{Q}\left(M_{1} / a M_{1}\right) \leq \operatorname{hdeg}_{Q} M_{1}$. Let $\bar{M}=M / a M$. Then since a is M-regular, we have $M_{1} / a M_{1}=\bar{M}_{0}$. Hence

$$
\mathrm{e}_{Q}^{1}(M)=\mathrm{e}_{Q}^{1}(\bar{M})=-\mathrm{h}^{0}(\bar{M})=-\operatorname{hdeg}_{Q}\left(M_{1} / a M_{1}\right)
$$

so that by the choice of a we get

$$
\mathrm{e}_{Q}^{1}(M) \geq-\operatorname{hdeg}_{Q}\left(M_{1}\right)=-\mathrm{T}_{Q}(M)
$$

as claimed. Suppose $d>2$ and choose $a \in Q \backslash \mathfrak{m} Q$ so that a is superficial for M and $\mathrm{T}_{Q}(M / a M) \leq \mathrm{T}_{Q}(M)$. Then by induction on d we see

$$
\mathrm{e}_{Q}^{1}(M)=\mathrm{e}_{Q}^{1}(M / a M) \geq-\mathrm{T}_{Q}(M / a M) \geq-\mathrm{T}_{Q}(M)
$$

proving Theorem 2.10.

Corollary 2.11. If $d \geq 2$, then

$$
0 \geq \mathrm{e}_{Q}^{1}(A) \geq-\mathrm{T}_{Q}(A)
$$

for every parameter ideal Q in A.
Corollary 2.12 ([39]). Suppose that $d \geq 2$ and let Q be a parameter ideal in A. Then the set

$$
\Lambda(Q)=\left\{\mathrm{e}_{\mathfrak{q}}^{1}(A) \mid \mathfrak{q} \text { is a parameter ideal of } A \text { such that } \overline{\mathfrak{q}}=\bar{Q}\right\}
$$

is finite, where $\overline{\mathfrak{q}}$ and \bar{Q} denote respectively the integral closures of \mathfrak{q} and Q.

Proof. Since $\overline{\mathfrak{q}}=\bar{Q}$, we have $\mathrm{T}_{\mathfrak{q}}(A)=\mathrm{T}_{Q}(A)$. Hence $0 \geq \mathrm{e}_{\mathfrak{q}}^{1}(A) \geq-\mathrm{T}_{\mathfrak{q}}(A)=-\mathrm{T}_{Q}(A)$, so that the set $\Lambda(Q)$ is finite.

Corollary 2.13 ([15]). Suppose that $d \geq 2$ and that A is a generalized Cohen-Macaulay ring. Then

$$
0 \geq \mathrm{e}_{Q}^{1}(A) \geq-\sum_{j=1}^{d-1}\binom{d-2}{j-1} \mathrm{~h}^{j}(A)
$$

for every parameter ideal Q in A, whence the set

$$
\Lambda_{1}(A)=\left\{\mathrm{e}_{Q}^{1}(A) \mid Q \text { is a parameter ideal in } A\right\}
$$

is finite.

3. When is the set $\Lambda_{1}(A)$ finite?

Let A be a Noetherian local ring with maximal ideal \mathfrak{m} and $d=\operatorname{dim} A>0$. We put

$$
\Lambda_{1}(A)=\left\{\mathrm{e}_{Q}^{1}(A) \mid A \text { is a parameter ideal in } A\right\} .
$$

In this section we shall prove the following.
Theorem 3.1. Suppose that A is unmixed and $d \geq 2$. If $\Lambda_{1}(A)$ is a finite set, then

$$
\mathfrak{m}^{\ell} H_{\mathfrak{m}}^{j}(A)=(0) \text { for all } j \neq d
$$

where $\ell=-\min \Lambda_{1}(A)$, so that A is a generalized Cohen-Macaulay ring.

Before going ahead, let me remind what is known in the case where A is a generalized Cohen-Macaulay ring.

Proposition 3.2. Suppose that A is a generalized Cohen-Macaulay ring and $d \geq 2$. Let Q be a parameter ideal of A. Then the following assertions hold true.
(1) $([15,28]) 0 \geq \mathrm{e}_{Q}^{1}(A) \geq-\sum_{j=1}^{d-1}\binom{d-2}{j-1} \mathrm{~h}^{j}(A)$.
(2) ([33, Korollar 3.2]) If Q is standard, then $\mathrm{e}_{Q}^{1}(A)=-\sum_{j=1}^{d-1}\binom{d-2}{j-1} \mathrm{~h}^{j}(A)$.

Hence the set $\Lambda_{1}(A)$ is finite.

Let me explain the notion of standard parameter ideal. Suppose that A is a generalized Cohen-Macaulay ring. Hence $\sup _{21}\left[\ell_{A}(A / Q)-\mathrm{e}_{Q}^{1}(A)\right]<\infty$, which is equal
to $\mathbb{I}(A)=\sum_{j=0}^{d-1}\binom{d-1}{j} \mathrm{~h}^{j}(A)$. We say that a parameter ideal $Q=\left(a_{1}, a_{2}, \cdots, a_{d}\right)$ is standard, if

$$
\ell_{A}(A / Q)-\mathrm{e}_{Q}^{0}(A)=\mathbb{I}(A) .
$$

This condition is equivalent to saying that $a_{1}, a_{2}, \cdots, a_{d}$ form a strong d-sequence in any order, that is $a_{1}^{n_{1}}, a_{2}^{n_{2}}, \cdots, a_{d}^{n_{d}}$ is a d-sequence in A in any order for all integers $n_{1}, n_{2}, \cdots, n_{d}>0$. For each generalized Cohen-Macaulay ring A, one can find an integer $\ell \gg 0$ such that every parameter ideal Q contained in \mathfrak{m}^{ℓ} is standard. Therefore a Noetherian local ring A is Buchsbaum if and only if A is a generalized Cohen-Macaulay ring and every parameter ideal of A is standard.

As for Schenzel's formula 3.2 (2) let me give a few comments. P. Schenzel [33] actually gave the following.

Theorem 3.3 ([33, Korollar 3.2]). Suppose that A a generalized Cohen-Macaulay ring and let Q be a standard parameter ideal in A. Then we have

$$
(-1)^{i} \mathrm{e}_{Q}^{i}(A)=\left\{\begin{array}{lc}
\mathrm{h}^{0}(A) & (i=d), \\
\sum_{j=1}^{d-i}\binom{d-i-1}{j-1} \mathrm{~h}^{j}(A) & (0<i<d)
\end{array}\right.
$$

for $1 \leq i \leq d$.
Therefore the values $\left\{\mathrm{e}_{Q}^{i}(A)\right\}_{1 \leq i \leq d}$ are independent of the choice of standard parameter ideals Q, provided A is a generalized Cohen-Macaulay ring.

Theorem 3.3 follows by induction on d and the proof is not very complicated. We however do not know at this moment, except $i=1,2$, about the variation of values $\mathrm{e}_{Q}^{i}(A)$ of arbitrary parameter ideals Q, even in the case where A is a generalized CohenMacaulay ring.

Let me state a conjecture.
Conjecture 3.4. Let $\mathrm{T}_{Q}^{i}(A)=\sum_{j=1}^{d-i}\binom{d-i-1}{j-1} \operatorname{hdeg}_{Q}\left(A_{j}\right)$. Then $\left|\mathrm{e}_{Q}^{i}(A)\right| \leq \mathrm{T}_{Q}^{i}(A)$ for $0<i<d$.

To prove Theorem 3.1 I need the following observation. For a while, suppose that $d \geq 2$ and that A is a homomorphic image of a Gorenstein ring. Then by a theorem of
N. T. Cuong [5] (see [24] also) we have a system of parameters of A, say $x_{1}, x_{2}, \cdots, x_{d}$, which forms a strong d-sequence in A, that is the equality

$$
\left(x_{1}^{n_{1}}, x_{2}^{n_{2}}, \cdots, x_{i-1}^{n_{i-1}}: x_{i}^{n_{i}} x_{j}^{n_{j}}=\left(x_{1}^{n_{1}}, x_{2}^{n_{2}}, \cdots, x_{i-1}^{n_{i-1}}: x_{j}^{n_{j}}\right)\right.
$$

holds true for all integers $1 \leq i \leq j \leq d$ and $n_{1}, n_{2}, \cdots, n_{d}>0$. For each integer $q>0$ let $\Gamma_{q}(A)$ denote the set of $\mathrm{e}_{\left(a_{1}, a_{2}, \cdots, a_{d}\right)}^{1}(A)$ where $a_{1}, a_{2}, \cdots, a_{d}$ runs through systems of parameters in A such that $\left(a_{1}, a_{2}, \cdots, a_{d}\right) \subseteq \mathfrak{m}^{q}$ and $a_{1}, a_{2}, \cdots, a_{d}$ forms a d-sequence in A. We notice that

$$
\Lambda_{1}(A) \supseteq \Gamma_{q}(A) \supseteq \Gamma_{q+1}(A) \neq \emptyset
$$

for all $q>0$. With this notation we furthermore have the following.

Theorem 3.5. Suppose that $\operatorname{Ass} A=\operatorname{Assh} A$ and that $\Gamma_{q}(A)$ is a finite set for some $q>0$. Then $\mathfrak{m}^{\ell} H_{\mathfrak{m}}^{j}(A)=(0)$ for all $j \neq d$, where $\ell=-\min \Gamma_{q}(A)$.

Theorem 3.1 readily follows from Theorem 3.5, passing to the completion; notice that $-\min \Gamma_{q}(A) \leq-\min \Lambda_{1}(A)$, since $\Gamma_{q}(A) \subseteq \Lambda_{1}(A)$.

Proof of Theorem 3.5. Suppose that $d=2$. Then A is a generalized Cohen-Macaulay ring, since A is unmixed. Choose a standard parameter ideal $Q \subseteq \mathfrak{m}^{q}$. We then have

$$
\mathrm{e}_{Q}^{1}(A)=-\mathrm{h}^{1}(A)=\min \Lambda_{1}(A)
$$

by Proposition 3.3 (2). Hence $\ell=\mathrm{h}^{1}(A)$ and $\mathfrak{m}^{\ell} \mathrm{H}_{\mathfrak{m}}^{1}(A)=(0)$.
Suppose that $d>2$ and that our assertion holds true for $d-1$. Recall that the set

$$
\mathcal{F}_{1}=\left\{\mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{p} \neq \mathfrak{m}, \mathrm{ht}_{A} \mathfrak{p}>1=\operatorname{depth} A_{\mathfrak{p}}\right\}
$$

is finite (Lemma 1.7). We choose $x \in \mathfrak{m}$ so that

$$
x \notin \bigcup_{\mathfrak{p} \in \text { Ass } A} \mathfrak{p} \cup \bigcup_{\mathfrak{p} \in \mathcal{F}_{1}} \mathfrak{p} .
$$

Let $n \geq q$ be any integer and put $y=x^{n}$. Let $\bar{A}=A /(y)$ and $B=\bar{A} / \mathrm{H}_{\mathrm{m}}^{0}(\bar{A})$. We then have

$$
\operatorname{Ass}_{A} \bar{A} \backslash\{\mathfrak{m}\}=\operatorname{Assh}_{A} \bar{A}
$$

so that $\mathrm{H}_{\mathfrak{m}}^{0}(\bar{A})=\mathrm{U}_{\bar{A}}(0)$ and $\operatorname{Ass}_{A} B=\underset{23}{ } \operatorname{Assh}_{A} B$ by Lemma 1.7; hence B is unmixed.

Let $y_{2}, y_{3}, \cdots, y_{d} \in \mathfrak{m}^{q}$ be a system of parameters of \bar{A} and assume that $y_{2}, y_{3}, \cdots, y_{d}$ form a d-sequence in \bar{A}. Then, since $y=y_{1}$ is A-regular, $y_{1}, y_{2}, \cdots, y_{d}$ forms a d sequence in A, so that y_{1} is superficial with respect to the ideal $\left(y_{1}, y_{2}, \cdots, y_{d}\right)$. Hence

$$
\mathrm{e}_{\left(y_{2}, y_{3}, \cdots, y_{d}\right)}^{1}(\bar{A})=\mathrm{e}_{\left(y_{1}, y_{2}, \cdots, y_{d}\right)}^{1}(A) \in \Gamma_{q}(A)
$$

Thus $\Gamma_{q}(\bar{A}) \subseteq \Gamma_{q}(A)$ and $\Gamma_{q}(\bar{A})$ is a finite set.
Choose an integer $q^{\prime} \geq q$ so that

$$
\mathrm{H}_{\mathfrak{m}}^{0}(\bar{A}) \cap \mathfrak{n}^{q^{\prime}}=(0)
$$

where $\mathfrak{n}=\mathfrak{m} /(y)$ denotes the maximal ideal of \bar{A}. Let $y_{2}, y_{3}, \cdots, y_{d} \in \mathfrak{m}^{q^{\prime}}$ be a system of parameters for B which form a d-sequence in B. Then, thanks to the condition $\mathrm{H}_{\mathfrak{m}}^{0}(\bar{A}) \cap \mathfrak{n}^{q^{\prime}}=(0)$, the sequence $y_{2}, y_{3}, \cdots, y_{d}$ form a d-sequence also in \bar{A} and we have

$$
\mathrm{e}_{\left(y_{2}, y_{3}, \cdots, y_{d}\right)}^{1}(B)=\mathrm{e}_{\left(y_{2}, y_{3}, \cdots, y_{d}\right)}^{1}(\bar{A}) \in \Gamma_{q^{\prime}}(\bar{A}) .
$$

Thus $\Gamma_{q^{\prime}}(B)$ is a finite set (recall that $\Gamma_{q^{\prime}}(B) \subseteq \Gamma_{q^{\prime}}(\bar{A}) \subseteq \Gamma_{q}(\bar{A}) \subseteq \Gamma_{q}(A)$). Consequently, thanks to the hypothesis of induction, we get

$$
\mathfrak{m}^{\ell^{\prime}} \mathrm{H}_{\mathfrak{m}}^{j}(B)=(0)
$$

for all $j \neq d-1$, where $\ell^{\prime}=-\min \Gamma_{q^{\prime}}(B) \leq \ell=-\min \Gamma_{q}(A)$. Hence

$$
\mathfrak{m}^{\ell} \mathrm{H}_{\mathfrak{m}}^{j}(\bar{A})=\mathfrak{m}^{\ell} \mathrm{H}_{\mathfrak{m}}^{j}(B)=(0)
$$

for all $1 \leq j \leq d-2$.
We now look at the exact sequence

$$
\cdots \rightarrow \mathrm{H}_{\mathfrak{m}}^{j}(\bar{A}) \rightarrow \mathrm{H}_{\mathfrak{m}}^{j+1}(A) \xrightarrow{x^{n}} \mathrm{H}_{\mathfrak{m}}^{j+1}(A) \rightarrow \cdots
$$

of local cohomology modules, induced from the exact sequence

$$
0 \rightarrow A \xrightarrow{x^{n}} A \rightarrow \bar{A} \rightarrow 0 .
$$

We then have

$$
\mathfrak{m}^{\ell}\left[(0):_{\mathrm{H}_{\mathfrak{m}}^{j+1}(A)} x^{n}\right]=(0)
$$

for all $1 \leq j \leq d-2$ and $n \geq q$, where $\ell=-\min \Lambda_{q}(A)$. Because n and ℓ are independent of each other, this implies

$$
\mathfrak{m}^{\ell} \mathrm{H}_{\mathfrak{m}}^{j+1}(A)=(0)
$$

for all $1 \leq j \leq d-2$, that is $\mathfrak{m}^{\ell} \mathrm{H}_{\mathfrak{m}}^{j}(A)=(0)$ for $2 \leq j \leq d-1$. On the other hand, thanks to the exact sequence

$$
\cdots \rightarrow \mathrm{H}_{\mathfrak{m}}^{1}(A) \xrightarrow{x^{n}} \mathrm{H}_{\mathfrak{m}}^{1}(A) \rightarrow \mathrm{H}_{\mathfrak{m}}^{1}(\bar{A}) \rightarrow \cdots
$$

together with the fact that $\mathrm{H}_{\mathfrak{m}}^{1}(A)$ is a finitely generated A-module (Lemma 1.7 (1)), choosing the integer $n \geq q$ so that $x^{n} \mathrm{H}_{\mathfrak{m}}^{1}(A)=(0)$, we get

$$
\mathrm{H}_{\mathfrak{m}}^{1}(A) \hookrightarrow \mathrm{H}_{\mathfrak{m}}^{1}(\bar{A}),
$$

whence $\mathfrak{m}^{\ell} H_{\mathfrak{m}}^{1}(A)=(0)$. Thus $\mathfrak{m}^{\ell} H_{\mathfrak{m}}^{i}(A)=(0)$ for all $i \neq d$, which proves Theorem 3.5 .

Theorem 3.6. Suppose that $d \geq 2$. Then the following conditions are equivalent.
(1) $\Lambda_{1}(A)$ is a finite set.
(2) \widehat{A} / U is a generalized Cohen-Macaulay ring and $\operatorname{dim}_{\widehat{A}} U \leq d-2$, where $U=\mathrm{U}_{\widehat{A}}(0)$. When this is the case, we have $\Lambda_{1}(A)=\Lambda_{1}(\widehat{A} / U)$.

Proof. We may assume A is complete and $U \neq(0)$.
$(1) \Rightarrow(2)$ Let $t=\operatorname{dim}_{A} U$ and $B=A / U$. Then by Observation 1.11, for every parameter ideal Q in A we have

$$
(-1)^{d-i} \mathrm{e}_{Q}^{d-i}(A)= \begin{cases}(-1)^{d-i} \mathrm{e}_{Q}^{d-i}(B)+\mathrm{s}_{Q}^{t-i}(U) & (0 \leq i \leq t) \\ (-1)^{d-i} \mathrm{e}_{Q}^{d-i}(B) & (t<i \leq d)\end{cases}
$$

Therefore, if $t=d-1$, we get

$$
-\mathrm{e}_{Q}^{1}(A)=-\mathrm{e}_{Q}^{1}(B)+\mathrm{e}_{Q}^{0}(U) .
$$

Hence, choosing a system $a_{1}, a_{2}, \cdots, a_{d}$ of parameters of A so that $a_{d} U=(0)$ and taking $Q=\left(a_{1}^{n}, a_{2}^{n}, \cdots, a_{d}^{n}\right)(n>0)$, we get

$$
\left.-\mathrm{e}_{\left(a_{1}^{n}, a_{2}^{n}, \cdots, a_{d}^{n}\right)}^{1}(A)=-\mathrm{e}_{\left(a_{1}^{n}, a_{2}^{n}, \cdots, a_{d}^{n}\right)}^{1}(B)+n^{d-1} \mathrm{e}_{\left(a_{1}, a_{2}, \cdots, a_{d-1}\right)}^{0}\right)(U) \geq n^{d-1}
$$

for all integers $n>0$, which is impossible. Hence $t \leq d-2$, so that

$$
-\mathrm{e}_{Q}^{1}(A) \underset{25}{=}-\mathrm{e}_{Q}^{1}(B)
$$

for every parameter ideal Q in A. Consequently $\Lambda_{1}(A)=\Lambda_{1}(B)$ and B is a generalized Cohen-Macaulay ring by Theorem 3.1 (recall that $\Lambda_{1}(B)$ is a finite set and B is unmixed).
$(2) \Rightarrow$ (1) By Observation 1.11 we have $\Lambda_{1}(A)=\Lambda_{1}(B)$, since $\operatorname{dim}_{A} U \leq d-2$. Therefore $\Lambda_{1}(A)$ is finite, as so is $\Lambda_{1}(B)$.

Corollary 3.7. Suppose that $\Lambda_{i}(A)$ is a finite set for all $1 \leq i \leq d$. Then A is a generalized Cohen-Macaulay ring.

Proof. We may assume that $d>1, A$ is complete, and $U=\mathrm{U}_{\widehat{A}}(0) \neq(0)$. Then by Theorem 3.6 $B=A / U$ is a generalized Cohen-Macaulay ring and $\operatorname{dim}_{A} U \leq d-2$. We want to show $\ell_{A}(U)<\infty$, that is $t=0$. Assume the contrary and choose a system $a_{1}, a_{2}, \cdots, a_{d}$ of parameters in A so that $a_{1}, a_{2}, \cdots, a_{d}$ is a standard system of parameters for B and

$$
\left(a_{t+1}, a_{t+2}, \cdots, a_{d}\right) U=(0)
$$

We look at the parameter ideal $Q=\left(a_{1}^{n}, a_{2}^{n}, \cdots, a_{d}^{n}\right)$ with $n>0$. Then

$$
(-1)^{d-t} e_{Q}^{d-t}(A)=(-1)^{d-t} \mathrm{e}_{Q}^{d-t}(B)+\mathrm{e}_{Q}^{0}(U)
$$

by Observation 1.11. This is, however, impossible, because $(-1)^{d-t} \mathrm{e}_{Q}^{d-t}(B)$ is constant by Proposition $3.2(2), \mathrm{e}_{Q}^{0}(U)=\mathrm{e}_{\left(a_{1}^{n}, a_{2}^{n}, \cdots, a_{t}^{n}\right)}^{0}(U) \geq n^{t} \mathrm{e}_{\left(a_{1}, a_{2}, \cdots, a_{t}\right)}^{0}(U) \geq n^{t}$, and $\Lambda_{d-t}(A)$ is finite by our assumption. Hence $t=0$ and A is a generalized Cohen-Macaulay ring.

There are left two natural questions.

Question 3.8. (1) How about the converse of Corollary 3.7?
(2) What happen in the case where $\sharp \Lambda_{1}(A)=1$?

Later I will discuss question (1). As for the second question, if A is a Buchsbaum ring with $d=\operatorname{dim} A \geq 2$, then by Proposition 3.2 (2) we get

$$
\mathrm{e}_{Q}^{1}(A)=-\sum_{j=1}^{d-1}\binom{d-2}{j-1} \mathrm{~h}^{j}(A)
$$

for every parameter ideal Q in A; hence

$$
\Lambda_{1}(A)=\left\{-\sum_{j=1}^{d-1}\binom{d-2}{j-1} \mathrm{~h}^{j}(A)\right\} .
$$

The converse is also true, as we show in the following.
Theorem 3.9. Suppose that A is unmixed. Then A is a Buchsbaum ring, if $\sharp \Lambda_{1}(A)=1$.
The general answer is the following.
Theorem 3.10. Suppose that $d \geq 2$. Then the following conditions are equivalent.
(1) $\sharp \Lambda_{1}(A)=1$.
(2) \widehat{A} / U is a Buchsbaum ring and $\operatorname{dim}_{\widehat{A}} U \leq d-2$, where $U=\mathrm{U}_{\widehat{A}}(0)$.

When this is the case, we have

$$
\Lambda_{1}(A)=\left\{-\sum_{j=1}^{d-1}\binom{d-2}{j-1} \mathrm{~h}^{j}(\widehat{A} / U)\right\}
$$

Corollary 3.11. Suppose that $\sharp \Lambda_{i}(A)=1$ for all $1 \leq i \leq d$. Then $A / H_{\mathfrak{m}}^{0}(A)$ is a Buchsbaum ring.

Let me talk a little bit about the proof of Theorem 3.9.
Sketch of Proof of Theorem 3.9. We may assume A is complete and $d \geq 2$. Then A is a generalized Cohen-Macaulay ring by Theorem 3.5, because $\Lambda_{1}(A)$ is a finite set. Since $\mathrm{e}_{Q}^{1}(A)=-\sum_{j=1}^{d-1}\binom{d-2}{j-1} \mathrm{~h}^{j}(A)$ for every standard parameter ideal Q in A (Proposition $3.2(2))$, we get $\Lambda_{1}(A)=\left\{-\sum_{j=1}^{d-1}\binom{d-2}{j-1} \mathrm{~h}^{j}(A)\right\}$, so that

$$
\mathrm{e}_{Q}^{1}(A)=-\sum_{j=1}^{d-1}\binom{d-2}{j-1} \mathrm{~h}^{j}(A)
$$

for every parameter ideal Q in A. Then apply the following result of K. Ozeki.
Theorem 3.12 (K. Ozeki [17]). Suppose that A is a generalized Cohen-Macaulay ring, $d \geq 2$, and depth $A>0$. Let Q be a parameter ideal in A. Then Q is standard if and only if

$$
\mathrm{e}_{Q}^{1}(A)=-\sum_{j=1}^{d-1}\binom{d-2}{j-1} \mathrm{~h}^{j}(A)
$$

Thanks to Theorem 3.12, every parameter ideal Q in A is standard. Hence A is a Buchsbaum ring.

Question 3.13. Let Q be a parameter ideal in A. Find a criterion for the equality

$$
\mathrm{e}_{Q}^{1}(A)=-\sum_{j=1}^{d-1}\binom{d-2}{j-1} \operatorname{hdeg}_{Q}\left(A_{j}\right)
$$

assuming that A is complete, $d \geq 2$, and the residue class field A / \mathfrak{m} of A is infinite.
4. How about $\mathrm{e}_{Q}^{2}(A)$? - Uniform bounds For the sets $\Lambda_{i}(A)(1 \leq i \leq d)$

We have just proved that A is a generalized Cohen-Macaulay ring, if

$$
\Lambda_{i}(A)=\left\{\mathrm{e}_{Q}^{i}(A) \mid Q \text { is a parameter ideal in } A\right\}
$$

is a finite set for all $1 \leq i \leq d$. The converse is also true and we have the following.

Theorem 4.1. Let A be a Noetherian local ring with $d=\operatorname{dim} A>0$. Then the following conditions are equivalent.
(1) A is a generalized Cohen-Macaulay ring.
(2) $\Lambda_{i}(A)$ is a finite set for all $1 \leq i \leq d$.

To prove the implication $(1) \Rightarrow(2)$ we need the notion of regularity. Let Q be a parameter ideal of A and let

$$
G=\operatorname{gr}_{Q}(A)=\bigoplus_{n \geq 0} Q^{n} / Q^{n+1}
$$

be the associated graded ring of Q. Let $M=\mathfrak{m} G+G_{+}$be the graded maximal ideal of G. For each $i \in \mathbb{Z}$ let

$$
\mathrm{a}_{i}(G)=\sup \left\{n \in \mathbb{Z} \mid\left[\mathrm{H}_{M}^{i}(G)\right]_{n} \neq(0)\right\},
$$

where $\left[H_{M}^{i}(G)\right]_{n}(n \in \mathbb{Z})$ denotes the homogeneous component of the graded local cohomology module $\mathrm{H}_{M}^{i}(G)$ with degree n.

Definition 4.2. We put

$$
\begin{gathered}
\operatorname{reg}(G)=\sup \left\{i+\mathrm{a}_{i}(G) \mid i \in \mathbb{Z}\right\} \\
28
\end{gathered}
$$

and call it the regularity of G. Notice that $0 \leq \operatorname{reg} G \in \mathbb{Z}$.
The notion of regularity plays an important role in the analysis of graded rings and modules. In our case we have the following.

Theorem 4.3 ([18]). Suppose that A is a generalized Cohen-Macaulay ring and let Q be a parameter ideal in A. Then the following assertions hold true.
(1) $\left|\mathrm{e}_{Q}^{1}(A)\right| \leq \mathbb{I}(A)$.
(2) $\left|\mathrm{e}_{Q}^{i}(A)\right| \leq(r+1)^{i-1} \cdot \mathbb{I}(A) \cdot 3 \cdot 2^{i-2}$ for all $2 \leq i \leq d$, where $r=\operatorname{reg}\left(\operatorname{gr}_{Q}(A)\right)$.

The right hand side of the inequality in Theorem 4.3 (2)is a huge number but once we agree with this, we can apply the following result to our case in order to see the finiteness of the sets $\Lambda_{i}(A)$.

Theorem 4.4 ([25]). Suppose that A is a generalized Cohen-Macaulay ring and let Q be a parameter ideal in A. Then

$$
\operatorname{reg}\left(\operatorname{gr}_{Q}(A)\right) \leq \begin{cases}\max \{\mathbb{I}(A)-1,0\} & (d=1) \\ \max \left\{4 \cdot \mathbb{I}(A)^{(d-1)!}-\mathbb{I}(A)-1,0\right\} & (d>1)\end{cases}
$$

The second number appearing in the right hand side of the estimation of Theorem 4.4 is still very huge, but anyway, combining these two theorems, we see $\mathrm{e}_{Q}^{i}(A)(1 \leq$ $i \leq d)$ has a uniform bound independent of the choice of parameter ideals Q, if A is a generalized Cohen-Macaulay ring.

Question 4.5. What are the sharp bounds for $\mathrm{e}_{Q}^{i}(A)$?

This is a problem different from the question of the finiteness of the sets $\Lambda_{i}(A)$. Our guess is the following.

Guess 4.6. We have

$$
\left|\mathrm{e}_{Q}^{i}(A)\right| \leq \sum_{j=1}^{d-i}\binom{d-i-1}{j-1} \mathrm{~h}^{j}(A)
$$

for all $0<i<d$, if A is a generalized Cohen-Macaulay ring. More generally, for an arbitrary Noetherian local ring A, we have

$$
\left|\mathrm{e}_{Q}^{i}(A)\right| \leq \sum_{j=1}^{d-i}\binom{d-i-1}{j-1} \operatorname{hdeg}_{Q}\left(A_{j}\right)
$$

for $0<i<d$, provided A is complete and the residue class field A / \mathfrak{m} of A is infinite.
Let me state study $\mathrm{e}_{Q}^{2}(A)$.
Theorem 4.7. Suppose that A is complete with infinite residue class field and $d \geq 3$. Let Q be a parameter ideal in A. Then for every finitely generated unmixed A-module M with $\operatorname{dim}_{A} M=d$, we have th following eestimation

$$
-\sum_{j=2}^{d-1}\binom{d-3}{j-2} \operatorname{hdeg}_{Q}\left(M_{j}\right) \leq \mathrm{e}_{Q}^{2}(M) \leq \mathrm{T}_{Q}^{2}(M)
$$

In Theorem 4.7, for the latter inequality we do not need the unmixedness assumption on the modules M. However, unless M is unmixed, the former inequality in Theorem 4.7 does not hold true in general. Later we will explore an example (Example 4.9).

As a direct consequence of Theorem 4.7 we have
Corollary 4.8. Suppose that A is complete with infinite residue class field and $d \geq 3$. Assume that A is unmixed. Then

$$
-\sum_{j=2}^{d-1}\binom{d-3}{j-2} \operatorname{hdeg}_{Q}\left(A_{j}\right) \leq \mathrm{e}_{Q}^{2}(A) \leq \mathrm{T}_{Q}^{2}(A)
$$

for every parameter ideal Q in A. Therefore, for a fixed parameter ideal Q in A, the set

$$
\left\{\mathrm{e}_{\mathfrak{q}}^{2}(A) \mid \mathfrak{q} \text { is a parameter ideal in } A \text { such that } \overline{\mathfrak{q}}=\bar{Q}\right\}
$$

is finite.

Example 4.9. Let R be a complete regular local ring with maximal ideal \mathfrak{n}, infinite residue class field, and $\operatorname{dim} R=3$. Let $\mathfrak{n}=(X, Y, Z)$ and put $S=R /\left(Z^{n}\right)(n>0)$. Then

$$
\mathrm{e}_{\mathfrak{n}}^{0}(S)=n, \mathrm{e}_{\mathfrak{n}}^{1}(S)=\frac{n(n-1)}{2}, \text { and } \mathrm{e}_{\mathfrak{n}}^{2}(S)=\frac{n(n-1)(n-2)}{6}
$$

We look at the idealization $A=R \ltimes S$ of S over R and put $Q=\mathfrak{n} A$. Then A is mixed with $\operatorname{dim} A=3$, depth $A=2$,

$$
\operatorname{hdeg}_{Q}\left(A_{2}\right)=n, \quad \text { and } \quad \mathrm{e}_{Q}^{2}(A)=-\mathrm{e}_{\mathfrak{n}}^{1}(S)=-\frac{n(n-1)}{2}
$$

whence

$$
-\operatorname{hdeg}_{Q}\left(A_{2}\right)>\mathrm{e}_{Q}^{2}(A), \quad \text { if } \quad n \geq 4
$$

Proof. Since

$$
\mathrm{H}\left(\operatorname{gr}_{\mathfrak{n}}(S), \lambda\right)=\frac{1+\lambda+\cdots+\lambda^{n-1}}{(1-\lambda)^{2}}
$$

we get $\mathrm{e}_{\mathfrak{n}}^{0}(S)=n, \mathrm{e}_{\mathfrak{n}}^{1}(S)=\frac{n(n-1)}{2}$, and $\mathrm{e}_{\mathfrak{n}}^{2}(S)=\frac{n(n-1)(n-2)}{6}$. On the other hand, since S is a Gorenstein ring and since

$$
\mathrm{H}_{\mathfrak{m}}^{2}(A) \cong{ }_{p}\left[\mathrm{H}_{\mathfrak{n}}^{2}(S)\right]
$$

(here $p: A \rightarrow R, p(a, x)=a$ denotes the projection), we have

$$
\operatorname{hdeg}_{Q}\left(A_{2}\right)=\operatorname{hdeg}_{Q}\left(S_{2}\right)=\operatorname{hdeg}_{\mathfrak{n}}\left(S_{2}\right)=\mathrm{e}_{\mathfrak{n}}^{0}(S)=n
$$

Recall now that

$$
\begin{aligned}
\ell_{A}\left(A / Q^{\ell+1}\right) & =\ell_{R}\left(R / \mathfrak{n}^{\ell+1}\right)+\ell_{S}\left(S / \mathfrak{n}^{\ell+1} S\right) \\
& =\binom{\ell+3}{3}+\left[\mathrm{e}_{\mathfrak{n}}^{0}(S)\binom{\ell+2}{2}-\mathrm{e}_{\mathfrak{n}}^{1}(S)\binom{\ell+1}{1}+\mathrm{e}_{\mathfrak{n}}^{2}(S)\right]
\end{aligned}
$$

for all $\ell \gg 0$ and we readily have

$$
(-1)^{i} \mathrm{e}_{Q}^{i}(A)= \begin{cases}1 & (i=0) \\ \mathrm{e}_{\mathfrak{n}}^{0}(S)=n & (i=1) \\ -\mathrm{e}_{\mathfrak{n}}^{1}(S)=-\frac{n(n-1)}{2} & (i=2) \\ \mathrm{e}_{\mathfrak{n}}^{2}(S)=\frac{n(n-1)(n-2)}{6} & (i=3)\end{cases}
$$

Let me note a little bit about Proof of Corollary 4.8 in order to explain why I cannot extend this result, say for $\mathrm{e}_{Q}^{3}(A)$.

In the case of $\mathrm{e}_{Q}^{1}(A)$ the key of our argument is the following fact [15, Lemma 2.4 (1)]

$$
\mathrm{e}_{Q}^{1}(A)=-\mathrm{h}^{0}(A), \text { if } d=1
$$

For the estimation of $\mathrm{e}_{Q}^{2}(A)$ the key is the following.
Proposition 4.10. Suppose that A is unmixed and $d=2$. Then

$$
-\mathrm{h}^{1}(A) \leq \mathrm{e}_{Q}^{2}(A) \leq 0
$$

for every parameter ideal Q in A.

Proof. We may assume that the residue class field A / \mathfrak{m} of A is infinite. Let $Q=(x, y)$ be a parameter ideal in A and assume that x is superficial with respect to Q. Take an integer $\ell \gg 0$ and put $I=Q^{\ell}, a=x^{\ell}$, and $b=y^{\ell}$. Let $G=\operatorname{gr}_{I}(A)$. Then, thanks to a theorem of L. T. Hoa [19], we see that
(1) $\left[\mathrm{H}_{M}^{i}(G)\right]_{n}=(0)$ for all $i \in \mathbb{Z}$ and $n>0$, where $M=\mathfrak{m} G+G_{+}$and
(2) $I^{2}=\mathfrak{q} I$, where $\mathfrak{q}=(a, b)$.

The element a is still superficial with respect to I and we furthermore have the following.

Claim 1.

$$
\mathrm{e}_{Q}^{2}(A)=\mathrm{e}_{I}^{2}(A)=-\ell_{A}([((a): b) \cap I] /(a)) \leq 0
$$

Proof of Claim 1. We have $\mathrm{e}_{Q}^{2}(A)=\mathrm{e}_{I}^{2}(A)$ (in fact, $\mathrm{e}_{Q^{\ell}}^{2}(A)=\mathrm{e}_{Q}^{2}(A)$ for all integers $\ell>0$), while $\mathrm{a}_{2}(G)<0$ by condition (2). Therefore $\mathrm{a}_{0}(G)<0$, since $\mathrm{a}_{1}(G) \leq 0$ and depth $A>0$. Hence $\mathrm{H}_{M}^{0}(G)=(0)$, so that we have

$$
\mathrm{e}_{I}^{2}(A)=-\ell_{A}\left(\left[\mathrm{H}_{M}^{1}(G)\right]_{0}\right)
$$

thanks to a classical theorem of Serre. Let $\bar{G}=\operatorname{gr}_{I /(a)}(A /(a))$. Then since the initial form $a^{*}=a \bmod Q^{2}$ of a is regular on G, we get $\bar{G} \cong G / a^{*} G,\left[\mathrm{H}_{M}^{1}(G)\right]_{0} \cong\left[\mathrm{H}_{M}^{0}(\bar{G})\right]_{1}$, and $\left[\mathrm{H}_{M}^{0}(\bar{G})\right]_{n}=(0)$ for all $n \geq 2$. It is now standard to show that

$$
\left[\mathrm{H}_{M}^{0}(\bar{G})\right]_{1} \cong[((a): b) \cap I] /(a) \subseteq \underset{32}{[(a): b] /(a) \subseteq \mathrm{H}_{\mathfrak{m}}^{0}(A /(a)) \cong(0):_{\mathrm{H}_{\mathfrak{m}}^{1}(A)} a, ~}
$$

whence

$$
\mathrm{e}_{Q}^{2}(A)=\mathrm{e}_{I}^{2}(A)=-\ell_{A}([((a): b) \cap I] /(a)) \leq 0
$$

which proves Claim 1.

Proposition 4.10 now readily follows from Claim 1, since

$$
\ell_{A}([((a): b) \cap I] /(a)) \leq \mathrm{h}^{1}(A) .
$$

We are in a position to prove Corollary 4.8.

Proof of Corollary 4.8. Let $C=\operatorname{Hom}_{A}\left(K_{A}, K_{A}\right)$ and look at the exact sequence

$$
0 \rightarrow A \xrightarrow{\varphi} C \rightarrow X \rightarrow 0,
$$

where $\varphi(a)=a 1_{K_{A}}$ for all $a \in A$. Let us choose an element $a \in Q \backslash \mathfrak{m} Q$ so that
(1) a is superficial for all of A, C, and X with respect to Q and
(2) a is superficial for A_{j} with respect to Q and $\operatorname{hdeg}_{Q}\left(A_{j} / a A_{j}\right) \leq \operatorname{hdeg}_{Q}\left(A_{j}\right)$ for all $j \geq 0$.

We put $\bar{A}=A / a A, \bar{C}=C / a C$, and $\bar{X}=X / a X$. Then since a is C-regular, we have the exact sequence

$$
0 \rightarrow(0):_{X} a \rightarrow \bar{A} \xrightarrow{\bar{\varphi}} \bar{C} \rightarrow \bar{X} \rightarrow 0
$$

Let $L=\operatorname{Im} \bar{\varphi}$. Then since $\ell_{A}((0): x a)<\infty$, we have $\operatorname{dim}_{A} L=d-1$ and L is unmixed (recall that \bar{C} is unmixed, $\operatorname{since}^{\operatorname{depth}}{ }_{A_{\mathfrak{p}}} C_{\mathfrak{p}} \geq \inf \left\{2, \operatorname{dim} A_{\mathfrak{p}}\right\}$ for all $\mathfrak{p} \in \operatorname{Spec} A$), whence (0) $:_{X} a=H_{\mathfrak{m}}^{0}(\bar{A})$. Therefore, if $d=3$, then L is a generalized Cohen-Macaulay A module with $\operatorname{dim}_{A} L=2$ and $\operatorname{depth}_{A} L>0$, whence

$$
\mathrm{e}_{Q}^{2}(A)=\mathrm{e}_{Q}^{2}(\bar{A})=\mathrm{e}_{Q}^{2}(L)+\ell_{A}\left((0):_{X} a\right) .
$$

Consequently, thanks to Proposition 4.10, we have

$$
\ell_{A}((0): X a)-\mathrm{h}^{1}(\bar{A}) \leq \mathrm{e}_{Q}^{2}(A)=\mathrm{e}_{\vec{Q}}^{2}(L)+\ell_{A}\left((0):_{X} a\right) \leq \ell_{A}\left((0):_{X} a\right),
$$

because $\mathrm{h}^{1}(L)=\mathrm{h}^{1}(\bar{A})$. Since $A_{1} / a A_{1} \cong \bar{A}_{0}$, we also have

$$
\begin{aligned}
\ell_{A}\left((0):_{X} a\right)=\mathrm{h}^{0}(\bar{A}) & =\ell_{A}\left(\bar{A}_{0}\right) \\
& =\operatorname{hdeg}_{Q}\left(\bar{A}_{0}\right) \\
& =\operatorname{hdeg}_{Q}\left(A_{1} / a A_{1}\right) \\
& \leq \operatorname{hdeg}_{Q} A_{1} .
\end{aligned}
$$

Look now at the exact sequence

$$
0 \rightarrow(0):_{A_{1}} a \rightarrow A_{1} \xrightarrow{a} A_{1} \rightarrow \bar{A}_{0} \rightarrow 0
$$

We then have $\ell_{A}\left(\bar{A}_{0}\right)=\ell_{A}\left((0):_{A_{1}} a\right)$, whence $\ell_{A}\left((0):_{X} a\right)=\ell_{A}\left((0):_{A_{1}} a\right)$. Therefore we get

$$
\begin{aligned}
\ell_{A}\left((0):_{A_{1}} a\right)-\mathrm{h}^{1}(\bar{A}) & =\ell_{A}\left((0):_{A_{1}} a\right)-\left[\operatorname{hdeg}_{Q}\left(A_{2} / a A_{2}\right)+\operatorname{hdeg}_{Q}\left((0):_{A_{1}} a\right)\right] \\
& =-\operatorname{hdeg}_{Q}\left(A_{2} / a A_{2}\right) \geq-\operatorname{hdeg}_{Q}\left(A_{2}\right),
\end{aligned}
$$

because $\mathrm{h}^{1}(\bar{A})=\operatorname{hdeg}_{Q}\left(A_{2} / a A_{2}\right)+\operatorname{hdeg}_{Q}\left((0):_{A_{1}} a\right)$ by the exact sequence

$$
0 \rightarrow A_{2} / a A_{2} \rightarrow \bar{A}_{1} \rightarrow(0):_{A_{1}} a \rightarrow 0
$$

Hence $-\operatorname{hdeg}_{Q}\left(A_{2}\right) \leq \mathrm{e}_{Q}^{2}(A) \leq \operatorname{hdeg}_{Q}\left(A_{1}\right)$.
Suppose that $d>3$ and that our assertion holds true for $d-1$. Then since a is A-regular, we have the long exact sequence

$$
\begin{aligned}
0 & \rightarrow \mathrm{H}_{\mathfrak{m}}^{0}(\bar{A}) \rightarrow \mathrm{H}_{\mathfrak{m}}^{1}(A) \xrightarrow{a} \mathrm{H}_{\mathfrak{m}}^{1}(A) \rightarrow \mathrm{H}_{\mathfrak{m}}^{1}(\bar{A}) \rightarrow \mathrm{H}_{\mathfrak{m}}^{2}(A) \xrightarrow{a} \mathrm{H}_{\mathfrak{m}}^{2}(A) \rightarrow \cdots \\
& \rightarrow \mathrm{H}_{\mathfrak{m}}^{j}(A) \xrightarrow{a} \mathrm{H}_{\mathfrak{m}}^{j}(A) \rightarrow \mathrm{H}_{\mathfrak{m}}^{j}(\bar{A}) \rightarrow \mathrm{H}_{\mathfrak{m}}^{j+1}(A) \xrightarrow{a} \mathrm{H}_{\mathfrak{m}}^{j+1}(A) \rightarrow \cdots .
\end{aligned}
$$

Taking the Matlis dual $\operatorname{Hom}_{A}\left(*, \mathrm{E}_{A}(A / \mathfrak{m})\right)$ of it, we get short exact sequences

for each $1 \leq j \leq d-2$. Hence

$$
\operatorname{hdeg}_{Q}\left(\bar{A}_{j}\right) \leq \operatorname{hdeg}_{Q}\left((0):_{A_{j}} a\right)+\operatorname{hdeg}_{Q} A_{j+1} \leq \operatorname{hdeg}_{Q}\left(A_{j}\right)+\operatorname{hdeg}_{Q}\left(A_{j+1}\right)
$$

by Lemma 2.5, because $\ell_{A}\left((0):_{A_{j}} a\right)<\infty$. We then have by the hypothesis of induction that

$$
\begin{aligned}
-\sum_{j=2}^{d-2}\binom{d-4}{j-2} \operatorname{hdeg}_{Q}\left(\bar{A}_{j}\right) \leq \mathrm{e}_{Q}^{2}(\bar{A}) & \leq \mathrm{T}_{Q}^{2}(\bar{A}) \\
& =\sum_{j=1}^{d-3}\binom{d-4}{j-1} \operatorname{hdeg}_{Q}\left(\bar{A}_{j}\right) \\
& \leq \sum_{j=1}^{d-3}\binom{d-4}{j-1}\left[\operatorname{hdeg}_{Q}\left(A_{j}\right)+\operatorname{heg}_{Q}\left(A_{j+1}\right)\right] \\
& =\sum_{j=1}^{d-2}\binom{d-3}{j-1} \operatorname{hdeg}_{Q}\left(A_{j}\right) \\
& =\mathrm{T}_{Q}^{2}(A),
\end{aligned}
$$

while we similarly get

$$
\begin{aligned}
-\sum_{j=2}^{d-1}\binom{d-3}{j-2} \operatorname{hdeg}_{Q}\left(A_{j}\right) & =-\sum_{j=2}^{d-2}\binom{d-4}{j-2}\left[\operatorname{hdeg}_{Q}\left(A_{j}\right)+\operatorname{hdeg}_{Q}\left(A_{j+1}\right)\right] \\
& \leq-\sum_{j=2}^{d-2}\binom{d-4}{j-2} \operatorname{hdeg}_{Q}\left(\bar{A}_{j}\right)
\end{aligned}
$$

Hence

$$
-\sum_{j=2}^{d-1}\binom{d-3}{j-2} \operatorname{hdeg}_{Q}\left(A_{j}\right) \leq \mathrm{e}_{Q}^{2}(A) \leq \mathrm{T}_{Q}^{2}(A)
$$

because $\mathrm{e}_{Q}^{2}(A)=\mathrm{e}_{Q}^{2}(\bar{A})$.
Question 4.11. When does the equality $\mathrm{e}_{Q}^{2}(A)=\mathrm{T}_{Q}^{2}(A)$ hold true?
Here is an answer in the case where A is a generalized Cohen-Macaulay ring.
Theorem 4.12 ([18]). Suppose that A is a generalized Cohen-Macaulay ring with $d=$ $\operatorname{dim} A \geq 3$, $\operatorname{depth} A>0$, and infinite residue class field. Let Q be a parameter ideal in
A. Then the following conditions are equivalent.
(1) $\mathrm{e}_{Q}^{2}(A)=\sum_{j=1}^{d-2}\binom{d-3}{j-1} \mathrm{~h}^{j}(A)$.
(2) There exist elements $a_{1}, a_{2}, \cdots, a_{d} \in A$ such that (a) $Q=\left(a_{1}, a_{2}, \cdots, a_{d}\right)$, (b) $a_{1}, a_{2}, \cdots, a_{d}$ is a d-sequence in A, and (c) $Q H_{\mathfrak{m}}^{j}\left(A /\left(a_{1}, a_{2}, \cdots, a_{k}\right)\right)=(0)$, whenever $j+k \leq d-2,0<j$, and $0 \leq k$.

Remark 4.13. The parameter ideal Q is not necessarily standard, even if

$$
\mathrm{e}_{Q}^{2}(A)=\sum_{j=1}^{d-2}\binom{d-3}{j-1} \mathrm{~h}^{j}(A)
$$

For example, suppose that A is a generalized Cohen-Macaulay ring with $d=3$ and depth $A=2$. Assume that $\mathfrak{m H}_{\mathfrak{m}}^{2}(A) \neq(0)$ and choose $a \in \mathfrak{m}$ so that a is regular but $a \mathrm{H}_{\mathfrak{m}}^{2}(A) \neq(0)$. Let $b, c \in \mathfrak{m}$ be a standard system of parameters for $A /(a)$. Then a, b, c forms a d-sequence in A, so that

$$
\mathrm{e}_{(a, b, c)}^{2}(A)=0=\mathrm{h}^{1}(A) .
$$

The ideal Q is, however, not standard, because $Q \cdot \mathrm{H}_{\mathfrak{m}}^{2}(A) \neq(0)$.

5. A method to compute $\mathrm{e}_{Q}^{1}(A)$

In this section let A be a Noetherian local ring with $\operatorname{dim} A=2$ and assume that A is a homomorphic image of a Gorenstein local ring, say $A=R / \mathfrak{a}$ with R a Gorenstein local ring and \mathfrak{a} an ideal in it. We assume that A is unmixed. Hence $\mathrm{H}_{\mathfrak{m}}^{1}(A)$ is a finitely generated A-module (Lemma 1.7 (1)). Let $Q=(a, b)$ be a parameter ideal in A. Then, thanks to a lemma of Davis [23, Theorem 124], we get a regular sequence x, y in R so that $a=x \bmod \mathfrak{a}$ and $b=y \bmod \mathfrak{a}$. We put $\mathfrak{q}=(x, y) R$; hence $Q=\mathfrak{q} A$. Let $B=\operatorname{Hom}_{A}\left(\mathrm{~K}_{A}, \mathrm{~K}_{A}\right)$ be the endomorphism ring of the canonical module K_{A} and look at the exact sequence

$$
(E) \quad 0 \rightarrow A \xrightarrow{\varphi} B \rightarrow C \rightarrow 0
$$

of A-modules, where $\varphi(a)$ is defined, for each $a \in A$, to be the homothety $a \cdot 1_{K_{A}}$ of a. Then, since $\operatorname{depth}_{A} \mathrm{~K}_{A}=2, B$ is a Cohen-Macaulay A-module with $\operatorname{dim}_{A} B=2$ and we get $C \cong \mathrm{H}_{\mathfrak{m}}^{1}(A)$ as A-modules (cf. [1, Theorem 3.2, Proof of Theorem 4.2], [2, Theorem
1.6]). Let $n \geq 0$ be an integer and let \mathbb{M} denote the $n+1$ by $n+2$ matrix defined by

$$
\mathbb{M}=\left(\begin{array}{ccccccc}
x & y & 0 & 0 & 0 & \cdots & 0 \\
0 & x & y & 0 & 0 & \cdots & 0 \\
0 & 0 & x & y & 0 & \cdots & 0 \\
0 & 0 & & \cdots & & & \\
0 & 0 & 0 & x & y
\end{array}\right)
$$

Then the ideal \mathfrak{q}^{n+1} is generated by the maximal minors of the matrix \mathbb{M} and, thanks to the theorem of Hilbert-Burch ([23, Exercises 8, p. 148]), the R-module R / \mathfrak{q}^{n+1} has the resolution of the form

$$
0 \longrightarrow F_{2}=R^{n+1} \xrightarrow{t_{\mathbb{M}}} F_{1}=R^{n+2} \xrightarrow{\partial} F_{0}=R \longrightarrow R / \mathfrak{q}^{n+1} \longrightarrow 0,
$$

in which the homomorphism ∂ is defined by

$$
\partial\left(\mathbf{e}_{j}\right)=(-1)^{j} \cdot \operatorname{det} \mathbb{M}_{j}
$$

for all $1 \leq j \leq n+2$ (here \mathbb{M}_{j} denotes the matrix obtained by deleting from \mathbb{M} the j-th column and $\left\{\mathbf{e}_{j}\right\}_{1 \leq j \leq n+2}$ denotes the standard basis of $\left.R^{n+2}\right)$. Consequently, for each R-module X, $\operatorname{Tor}_{j}^{R}\left(R / \mathfrak{q}^{n+1}, X\right)$ is computed as the j-th homology module of the complex

$$
0 \rightarrow X^{n+1}=F_{2} \otimes_{R} X \xrightarrow{t_{\mathbb{M} \otimes_{R} 1_{X}}} X^{n+2}=F_{1} \otimes_{R} X \xrightarrow{\partial \otimes_{R^{1} X}} X=F_{0} \otimes_{R} X \longrightarrow 0 .
$$

Setting $X=C$, we therefore have, since $\operatorname{Tor}_{1}^{R}\left(R / \mathfrak{q}^{n+1}, B\right)=(0)$ (see [3, Theorem 9.1.6]; notice that the ideal $\mathfrak{q}=(x, y) R$ is generated by a B-regular sequence of length 2), the exact sequence

$$
0 \rightarrow \operatorname{Tor}_{1}^{R}\left(R / \mathfrak{q}^{n+1}, C\right) \rightarrow A / Q^{n+1} \rightarrow B / Q^{n+1} B \rightarrow C / Q^{n+1} C \rightarrow 0
$$

Therefore

$$
\begin{equation*}
\ell_{A}\left(A / Q^{n+1}\right)=\ell_{A}\left(B / Q^{n+1} B\right)+\ell_{A}\left(\operatorname{Tor}_{1}^{R}\left(R / \mathfrak{q}^{n+1}, C\right)\right)-\ell_{A}\left(C / Q^{n+1} C\right) \tag{2}
\end{equation*}
$$

for all $n \geq 0$. On the other hand, since the alternating sum of the length of homology modules of the complex

$$
0 \rightarrow C^{n+1}=F_{2} \otimes_{R} C \xrightarrow{t_{\mathbb{M}} \otimes_{R^{1} C} C} C^{n+2}=F_{1} \otimes_{R} C \xrightarrow{\partial \otimes_{R^{1} C}} C=F_{0} \otimes_{R} C \longrightarrow 0
$$

is 0 , we get

$$
\ell_{R}\left(\operatorname{Tor}_{1}^{R}\left(R / \mathfrak{q}^{n+1}, C\right)\right)=\ell_{R}\left(\operatorname{Tor}_{27}^{R}\left(R / \mathfrak{q}^{n+1}, C\right)\right)+\ell_{A}\left(C / Q^{n+1} C\right)
$$

Hence by equation (2) we have for all $n \geq 0$ that

$$
\text { (3) } \quad \ell_{A}\left(A / Q^{n+1}\right)=\mathrm{e}_{Q}^{0}(A)\binom{n+2}{2}+\ell_{R}\left(\operatorname{Tor}_{2}^{R}\left(R / \mathfrak{q}^{n+1}, C\right)\right) \text {, }
$$

because $\mathrm{e}_{Q}^{0}(A)=\mathrm{e}_{Q}^{0}(B)=\ell_{A}(B / Q B)$ (see exact sequence (E); recall that B is a Cohen-Macaulay A-module with $\operatorname{dim}_{A} B=2$ and $\left.\ell_{A}(C)<\infty\right)$ and $\ell_{A}\left(B / Q^{n+1} B\right)=$ $\ell_{A}(B / Q B)\binom{n+2}{2}$ for all $n \geq 0$. We remember the isomorphism

$$
\operatorname{Tor}_{2}^{R}\left(R / \mathfrak{q}^{n+1}, C\right) \cong \operatorname{Ker}\left(C^{n+1} \xrightarrow{t_{\mathbb{M}}} C^{n+2}\right),
$$

that is

$$
\operatorname{Tor}_{2}^{R}\left(R / \mathfrak{q}^{n+1}, C\right) \cong\left\{\left.\left(\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right) \in C^{n+1} \right\rvert\, a \alpha_{i}+b \alpha_{i-1}=0 \text { for all } 0 \leq i \leq n+1\right\}
$$

where $\alpha_{-1}=\alpha_{n+1}=0$ for convention.
Summarizing these observations, we get the following, which we will use very frequently in this paper. The same method of computation of $\mathrm{e}_{Q}^{i}(A)$ is given in [10, Example 3.8] and [28, Section 3].

Proposition 5.1. Let $n \geq 0$ be an integer and let

$$
T_{n}=\left\{\left.\left(\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right) \in C^{n+1} \right\rvert\, a \alpha_{i}+b \alpha_{i-1}=0 \text { for all } 0 \leq i \leq n+1\right\} .
$$

Then the following assertions hold true.
(1) $\ell_{A}\left(A / Q^{n+1}\right)=\mathrm{e}_{Q}^{0}(A)\binom{n+2}{2}+\ell_{A}\left(T_{n}\right)$ for all $n \geq 0$.
(2) $-\ell_{A}(C) \leq \mathrm{e}_{Q}^{1}(A) \leq-\ell_{A}\left((0):_{C} Q\right)$.
(3) Suppose $a C=(0)$. Then $\mathrm{e}_{Q}^{1}(A)=-\ell_{A}\left((0):_{C} b\right)=\ell_{A}(C / b C)$ and $\mathrm{e}_{Q}^{2}(A)=0$.
(4) ([10, Example 3.8], [28, Section 3]) Suppose $Q C=(0)$. Then $\mathrm{e}_{Q}^{1}(A)=-\ell_{A}(C)$ and $\mathrm{e}_{Q}^{2}(A)=0$.

Proof. See equation (3) for assertion (1). We see $\ell_{A}\left((0):_{C} Q\right)(n+1) \leq \ell_{A}\left(T_{n}\right) \leq$ $\ell_{A}(C)(n+1)$, since $\left[(0):_{C} Q\right]^{n+1} \subseteq T_{n} \subseteq C^{n+1}$. Hence we have assertion (2). If $a C=$ (0), then $T_{n}=\left[(0):_{C} b\right]^{n+1}$, so that $\ell_{A}\left(A / Q^{n+1}\right)=\mathrm{e}_{Q}^{0}(A)\binom{n+2}{2}+\ell_{A}\left((0):_{C} b\right)\binom{n+1}{1}$ by
assertion (1). Hence assertion (3) follows, because $\ell_{A}\left((0):_{C} b\right)=\ell_{A}(C / b C)$. Assertion (4) is now obvious.

Example 5.2. Let $R=k[[X, Y, Z, W]]$ be the formal power series ring over a field k and we look at the local ring

$$
A=R /\left[(X, Y)^{\ell} \cap(Z, W)\right],
$$

where $\ell \geq 1$ is an integer. Then A is a 2 -dimensional generalized Cohen-Macaulay local ring with depth $A=1$. In this local ring A, the following assertions hold true.
(1) Let a, b be a system of parameters in A. Then a, b or b, a forms a d-sequence in A. Hence every parameter ideal of A is generated by a d-sequence.
(2) $\Lambda_{1}(A)=\left\{\left.-\frac{(2 \ell-n+1) n}{2} \right\rvert\, 0<n \in \mathbb{Z}\right\}$ and $\Lambda_{2}(A)=\{0\}$.

Proof. Let \mathfrak{m} be the maximal ideal in A and let x, y, z, and w be the images of X, Y, Z, and W in A. Then $\mathfrak{m}=(x, y, z, w)$. Thanks to the exact sequence

$$
0 \rightarrow A \rightarrow A /(x, y)^{\ell} \oplus A /(z, w) \rightarrow A /\left[(x, y)^{\ell}+(z, w)\right] \rightarrow 0
$$

we have $\operatorname{dim} A=2$, depth $A=1$, and $\mathrm{H}_{\mathfrak{m}}^{1}(A) \cong A /\left[(x, y)^{\ell}+(z, w)\right]$. Hence A is a generalized Cohen-Macaulay local ring. Let $C=A /\left[(x, y)^{\ell}+(z, w)\right]$.

Now choose a system a, b of parameters in A and put $Q=(a, b)$. Suppose that $a C=$ (0). If $b C=(0)$, then Q is standard and so, $\mathrm{e}_{Q}^{1}(A)=-\ell_{A}(C)=\frac{(\ell+1) \ell}{2}$ and $\mathrm{e}_{Q}^{2}(A)=0$ by Proposition 5.1 (4). Suppose $b C \neq(0)$. Then $\left[(b):\left(a^{2}\right)\right] /(b) \subseteq \mathrm{U}(b) /(b) \cong(0):_{C} b$. Therefore, since $a\left[(0):_{C} b\right]=(0)$, we get that b, a is a d-sequence. Let $n=v_{\mathfrak{m}_{C}}(\bar{b})$ denote the order of the image \bar{b} of b in C with respect to the maximal ideal \mathfrak{m}_{C} of C. Then $0<n<\ell$ and (0) $:_{C} b=\mathfrak{m}_{C}^{\ell-n}$, whence $\mathrm{e}_{Q}^{1}(A)=-\ell_{A}\left((0):_{C} b\right)=-\ell_{A}\left(\mathfrak{m}_{C}^{\ell-n}\right)=$ $-\frac{(2 \ell-n+1) n}{2}$ and $\mathrm{e}_{Q}^{2}(A)=0$ by Proposition 5.1 (3)

Suppose that $a C \neq(0)$ and $b C \neq(0)$. We may assume that

$$
n=v_{\mathfrak{m}_{C}}(\bar{a}) \underset{39}{\leq} m=v_{\mathfrak{m}_{C}}(\bar{b}) .
$$

Then $b\left[(0):_{C} a\right] \subseteq \mathfrak{m}_{C}^{m} \cdot \mathfrak{m}_{C}^{\ell-n} \subseteq \mathfrak{m}_{C}^{\ell}=(0)$, so that $b \mathrm{U}(a) \subseteq(a)$, whence a, b is a d-sequence in A. We have

$$
\begin{aligned}
T & =\left\{\left.\left(\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\vdots \\
\alpha_{q}
\end{array}\right) \in C^{q+1} \right\rvert\, a \alpha_{i}+b \alpha_{i-1}=0 \text { for all } 0 \leq i \leq q+1\right\} \\
& =\left[(0):_{C} a\right]^{q+1}
\end{aligned}
$$

for all $q \geq 0$, whence $\mathrm{e}_{Q}^{1}(A)=-\ell_{A}\left((0):_{C} a\right)=-\frac{(2 \ell-n+1) n}{2}$ and $\mathrm{e}_{Q}^{2}(A)=0$.
Let $0<n<\ell$ be integers and look at the system $a=x^{\ell}-z, b=y^{n}-w$ of parameters in A. Then $a C=(0), b C \neq(0)$, and $v_{\mathfrak{m}_{C}}(\bar{b})=n$. Hence

$$
\Lambda_{1}(A)=\left\{\left.-\frac{(2 \ell-n+1) n}{2} \right\rvert\, 0<n \leq \ell\right\}
$$

as claimed.
As for the following question, I do not know the answer in general. The answer is affirmative, if $\ell \leq 3$, or $d \leq 2$, or the parameter ideals are homogeneous.

Question 5.3. Let $\ell, d>0$ be integers and let $R=k\left[\left[X_{1}, X_{2}, \cdots, X_{d}, Y_{1}, Y_{2}, \cdots, Y_{d}\right]\right]$ be the formal power series ring over a filed k. We look at the local ring

$$
A=R /\left[\left(X_{1}, X_{2}, \cdots, X_{d}\right)^{\ell} \cap\left(Y_{1}, Y_{2}, \cdots, Y_{d}\right)\right]
$$

Then, is every parameter ideal in A generated by a d-sequence of length d ?
Thanks to Proposition 5.1, we similarly have the following.
Example 5.4. Let $\ell \geq 1$ be an integer and $R=k[[X, Y, Z, W]]$ be the formal power series ring over a field k and we look at the local ring

$$
A=R /\left[\left(X^{\ell}, Y^{\ell}\right) \cap(Z, W)\right]
$$

Then A is a 2-dimensional generalized Cohen-Macaulay local ring with $\operatorname{depth} A=1$. Let $\mathfrak{q}=(X-Z, Y-W)$. Then $Q=\mathfrak{q} A$ is a parameter ideal in A and $\mathrm{e}_{Q}^{0}(A)=\ell^{2}+1$, $\mathrm{e}_{Q}^{1}(A)=-\ell$, and $\mathrm{e}_{Q}^{2}(A)=-\frac{\ell(\ell-1)}{2}$. Hence $\mathrm{e}_{Q}^{2}(A)<0$ if $\ell \geq 2$, so that Q cannot be generated by a d-sequence of length 2 (Proposition ?? (2)).

Proof. Let us discuss only the case where $\ell \geq 2$. Let $C=k[X, Y, Z, W] /\left(X^{\ell}, Y^{\ell}, Z, W\right)$ $\left(\cong \mathrm{H}_{\mathfrak{m}}^{1}(A)\right)$ and let $n \geq \ell+1$ be an integer. We look at the graded C-module

$$
T=\left\{\left.\left(\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right) \in C^{n+1} \right\rvert\, x \alpha_{i}+y \alpha_{i-1}=0 \text { for all } 0 \leq i \leq n+1\right\}
$$

where x, y be the images of $X-Z, Y-W$ in C. Let $T_{q}(q \in \mathbb{Z})$ denote the homogeneous component of the graded module T. Then $T_{q}=(0)$ if $q \leq \ell-2$, because (0) $:_{C} x=$ $x^{\ell-1} C$. Suppose $\ell-1 \leq q \leq 2 \ell-2$. Let $\left\{c_{i}\right\}_{0 \leq i \leq n+1}$ be a family of elements in k such that $c_{i}=0$ for all $n+1 \leq i \leq n-2 \ell+q+3$. We put
(*) $\alpha_{i}=\left\{\begin{array}{lll}\sum_{j=1}^{i+1}(-1)^{j-1} c_{i-j+1} x^{\ell-j} y^{q-\ell+j} & \text { if } \quad 0 \leq i \leq \ell-1, \\ \sum_{j=1}^{\ell}(-1)^{j-1} c_{i+1-j} x^{\ell-j} y^{q-\ell+j} & \text { if } \quad \ell \leq i \leq n .\end{array}\right.$
Then $\left(\begin{array}{c}\alpha_{0} \\ \alpha_{1} \\ \vdots \\ \alpha_{n}\end{array}\right) \in T_{q}$ and it is routine to check that T_{q} consists of all those elements which are defined by the above equation $(*)$. Hence $\operatorname{dim}_{k} T_{q}=n-2 \ell+q+3$, if $\ell-1 \leq q \leq 2 \ell-2$. Consequently, we have

$$
\begin{aligned}
\operatorname{dim}_{k} T & =\sum_{q=0}^{2 \ell-2} \operatorname{dim}_{k} T_{q} \\
& =\sum_{q=\ell-1}^{2 \ell-2}(n-2 \ell+q+3) \\
& =(n+1) \ell-\frac{(\ell-1) \ell}{2}
\end{aligned}
$$

Hence $\mathrm{e}_{Q}^{1}(A)=-\ell$ and $\mathrm{e}_{Q}^{2}(A)=-\frac{\ell(\ell-1)}{2}$ by Proposition 5.1. As $\mathrm{e}_{Q}^{0}(A)=$ $\mathrm{e}_{\mathfrak{q}}^{0}\left(R /\left(X^{\ell}, Y^{\ell}\right)\right)+\mathrm{e}_{\mathfrak{q}}^{0}(R /(Z, W))=\ell^{2}+1$, this completes the computation.

6. Constancy of $\mathrm{e}_{Q}^{1}(A)$ with the common \bar{Q}

Let A be a Noetherian local ring with maximal ideal \mathfrak{m}. In this section we study the question, raised by Wolmer V. Vasconcelos, of whether $\mathrm{e}_{Q}^{1}(A)$ is independent of the choice of minimal reductions Q of I, where I is an \mathfrak{m}-primary ideal in A.

We begin with the following general result.

Proposition 6.1. Let M be a finitely generated A-module with $\operatorname{dim}_{A} M=s$ and let Q and Q^{\prime} be parameter ideals for M with $\bar{Q}=\overline{Q^{\prime}}$ in A. Suppose that there exists an exact sequence

$$
0 \rightarrow L \rightarrow M \rightarrow M / L \rightarrow 0
$$

of A-modules such that $L \neq(0), \operatorname{dim}_{A} L=t<s$, and M / L is a Cohen-Macaulay A-module. Then

$$
\mathrm{e}_{Q}^{1}(M)=\mathrm{e}_{Q^{\prime}}^{1}(M),
$$

where $\mathrm{e}_{Q}^{1}(M)$ (resp. $\left.\mathrm{e}_{Q^{\prime}}^{1}(M)\right)$ denote the first Hilbert coefficients of M with respect to Q (resp. Q^{\prime}).

Proof. Passing to the ring $A /[(0): M]$, we may assume that (0) : $M=(0)$, whence $s=d$ and both Q and Q^{\prime} are parameter ideals of A. Let $C=M / L$. Then C is a maximal Cohen-Macaulay A-module. Hence we get the exact sequence

$$
0 \rightarrow L / Q^{n+1} L \rightarrow M / Q^{n+1} M \rightarrow C / Q^{n+1} C \rightarrow 0
$$

of A-modules, so that

$$
\text { (4) } \quad \begin{aligned}
\ell_{A}\left(M / Q^{n+1} M\right) & =\ell_{A}\left(C / Q^{n+1} C\right)+\ell_{A}\left(L / Q^{n+1} L\right) \\
& =\ell_{A}(C / Q C)\binom{n+s}{s}+\ell_{A}\left(L / Q^{n+1} L\right)
\end{aligned}
$$

for $n \geq 0$. We write

$$
\ell_{A}\left(L / Q^{n+1} L\right)=\mathrm{e}_{Q}^{0}(L)\binom{n+t}{t}-\mathrm{e}_{Q}^{1}(L)\binom{n+t-1}{t-1}+\cdots+(-1)^{t} \mathrm{e}_{Q}^{t}(L)
$$

for $n \gg 0$, where $\left\{\mathrm{e}_{Q}^{i}(L)\right\}_{0 \leq i \leq t}$ are integers with $\mathrm{e}_{Q}^{0}(L) \geq 1$. We then have $\mathrm{e}_{Q}^{1}(M)=$ $-\mathrm{e}_{Q}^{0}(L)$, if $t=s-1$ and $\mathrm{e}_{Q}^{1}(M)=0$, if $t<s-1$. Thus, from equation (4) the equality $\mathrm{e}_{Q}^{1}(M)=\mathrm{e}_{Q^{\prime}}^{1}(M)$ follows, because $e_{Q}^{0}(L)=e_{Q^{\prime}}^{0}(L)$ once $\bar{Q}=\overline{Q^{\prime}}$.

Let $M(\neq(0))$ be a finitely generated A-module. We say that M is a sequentially Cohen-Macaulay A-module, if M possesses a Cohen-Macaulay filtration, that is a filtration

$$
L_{0}=(0) \subsetneq L_{1} \subsetneq L_{42} \subsetneq \cdots \subsetneq L_{\ell}=M
$$

of A-submodules $\left\{L_{i}\right\}_{0 \leq i \leq \ell}$ such that $\operatorname{dim}_{A} L_{i}>\operatorname{dim}_{A} L_{i-1}$ and L_{i} / L_{i-1} is a CohenMacaulay A-module for all $1 \leq i \leq \ell$ ([34], [6], [9]). Therefore, applying Proposition 6.1 , we readily get the following.

Corollary 6.2. Suppose that M is a sequentially Cohen-Macaulay A-module with $\operatorname{dim}_{A} M>0$ and let Q and Q^{\prime} be parameter ideals for M. Then $\mathrm{e}_{Q}^{1}(M)=\mathrm{e}_{Q^{\prime}}^{1}(M)$, if $\bar{Q}=\overline{Q^{\prime}}$ in A.

Let us note a typical example.

Example 6.3 ([?]). Let R be a regular local ring of dimension 3 and let X, Y, Z be a regular system of parameters of R. We look at the two-dimensional local ring $A=R /(X) \cap(Y, Z)$. Then A is not Cohen-Macaulay but sequentially Cohen-Macaulay. Let x, y, z be the images of X, Y, Z in A, respectively, and put $C=A /(y, z)$ and $B=A /(x)$. Then C is a DVR and B is a two-dimensional regular local ring. Let $Q=(a, b)$ be a parameter ideal in A. Then a, b forms a B-regular sequence and, thanks to the exact sequence $0 \rightarrow C \rightarrow A \rightarrow B \rightarrow 0$, we get

$$
\ell_{A}\left(A / Q^{n+1}\right)=\mathrm{e}_{Q B}^{0}(B)\binom{n+2}{2}+\mathrm{e}_{Q C}^{0}(C)\binom{n+1}{1}
$$

for all $n \gg 0$, so that $\mathrm{e}_{Q}^{0}(A)=\ell_{B}(B / Q B), \mathrm{e}_{Q}^{1}(A)=-\mathrm{e}_{Q C}^{0}(C)$, and $\mathrm{e}_{Q}^{2}(A)=0$. Therefore, if Q^{\prime} is a parameter ideal in A with $\overline{Q^{\prime}}=\bar{Q}$, we always have $\mathrm{e}_{Q}^{i}(A)=\mathrm{e}_{Q^{\prime}}^{i}(A)$ for all $0 \leq i \leq 2$, because $Q C=Q^{\prime} C$.

We now assume that $\operatorname{dim} A=2$, depth $A=1$, and $\mathrm{H}_{\mathfrak{m}}^{1}(A)$ is a finitely generated A module. For simplicity, we assume that the residue class field $k=A / \mathfrak{m}$ of A is infinite. We put

$$
C=\mathrm{H}_{\mathfrak{m}}^{1}(A) \quad \text { and } \quad \mathfrak{c}=(0): C .
$$

Proposition 6.4. Let I be an m-primary ideal in A and assume that the scheme $\operatorname{Proj} \mathcal{R}(Q)$ is Cohen-Macaulay for every minimal reduction Q of I. Then $\mathrm{e}_{Q}^{1}(A)$ is independent of the choice of minimal reductions Q of I and is an invariant of I.

Proof. Let $Q=(a, b)$ and $Q^{\prime}=\left(a^{\prime}, b^{\prime}\right)$ be reductions of I. Then, since the ideal I contains an element x such that (b, x) and $\left(x, a^{\prime}\right)$ are reductions of I, without loss of generality we may assume that $a=a^{\prime}$. Then the element a is superficial for both Q and Q^{\prime}, because the schemes $\operatorname{Proj} \mathcal{R}(Q)$ and $\operatorname{Proj} \mathcal{R}\left(Q^{\prime}\right)$ are Cohen-Macaulay. In fact, let $G=\mathrm{G}(Q)$. Then $\operatorname{Proj} G$ is a Cohen-Macaulay scheme, since so is $\operatorname{Proj} \mathcal{R}(Q)$. Hence the local ring G_{P} is Cohen-Macaulay for every prime ideal $P \in \operatorname{Spec} G \backslash\{\mathfrak{M}\}$, where $\mathfrak{M}=\mathfrak{m} G+G_{+}$. Therefore, every system f, g of parameters of the local ring $R=G_{\mathfrak{M}}$ forms a filter regular sequence, that is equivalent to saying that the R-modules (0) $:_{R} f$ and $\left[(f):_{R} g\right] /(f)$ have finite length. Applying this observation to the homogeneous system $f=\overline{a t}, g=\overline{b t}$ of parameters for the graded ring G (here $\overline{a t}$ and $\overline{b t}$ denote the image of at and $b t$ in G, respectively), by definition of superficial elements we see that a and b are always superficial for the ideal Q, once $Q=(a, b)$. Consequently, since a is A-regular, we get

$$
\mathrm{e}_{Q}^{1}(A)=\mathrm{e}_{Q /(a)}^{1}(A /(a))=-\ell_{A}\left(\mathrm{H}_{\mathfrak{m}}^{0}(A /(a))\right)=-\ell_{A}\left((0):_{C} a\right),
$$

which depends on the element a only, so that we have $\mathrm{e}_{Q}^{1}(A)=\mathrm{e}_{Q^{\prime}}^{1}(A)$.
We now come to the main result of this section.

Theorem 6.5. Suppose that the ideal \mathbf{c} is not integrally closed. Then for each reduction $Q=(a, b)$ of \mathfrak{c}, there exists a reduction $Q^{\prime}=\left(a^{\prime}, b^{\prime}\right)$ of \bar{Q} such that

$$
0>\mathrm{e}_{Q^{\prime}}^{1}(A)>\mathrm{e}_{Q}^{1}(A)=-\ell_{A}(C)
$$

Proof. We put $I=\bar{Q}$ and let $\ell=\mu_{A}(I)$. We write $I=\left(x_{1}, x_{2}, \cdots, x_{\ell}\right)$ so that every two elements $x_{i}, x_{j}(1 \leq i, j \leq \ell, i \neq j)$ generate a reduction of I. Then, since $\mathfrak{c} \subsetneq I=\overline{\mathfrak{c}}$, we have $x_{i} \notin \mathfrak{c}$ for some $1 \leq i \leq \ell$. Choose an integer $1 \leq j \leq \ell$ so that $j \neq i$ and put $Q^{\prime}=\left(x_{i}, x_{j}\right)$. Then Q^{\prime} is a reduction of $I=\bar{Q}=\overline{\mathfrak{c}}$ but $Q^{\prime} \nsubseteq \mathfrak{c}$. Therefore, choosing elements a^{\prime}, b^{\prime} of Q^{\prime} so that $Q^{\prime}=\left(a^{\prime}, b^{\prime}\right)$ and both a^{\prime}, b^{\prime} are superficial for the ideal Q^{\prime}, we may assume that $a^{\prime} \notin \mathfrak{c}=(0): C$. We then have

$$
\mathrm{e}_{Q^{\prime}}^{1}(A)=\mathrm{e}_{Q^{\prime} /\left(a^{\prime}\right)}^{1}\left(A /\left(a^{\prime}\right)\right)=-\ell_{A}\left((0):_{C} a^{\prime}\right)>-\ell_{A}(C)
$$

while by Proposition 5.1 (4)

$$
\mathrm{e}_{Q}^{1}(A)=-\ell_{A}(C),
$$

because $Q C=(0)$. Thus

$$
0>\mathrm{e}_{Q^{\prime}}^{1}(A)>\mathrm{e}_{Q}^{1}(A)=-\ell_{A}(C)
$$

Let us note concrete examples.
Example 6.6. Let R be a regular local ring with maximal ideal \mathfrak{n} and $\operatorname{dim} R=4$. Let X, Y, Z, W be a regular system of parameters for R and let

$$
\mathfrak{a}=\left(X^{n}, Y^{n}\right) \cap(Z, W),
$$

where $n \geq 2$ is an integer. We look at the local $\operatorname{ring} A=R / \mathfrak{a}$. Then $\operatorname{dim} A=2$, $\operatorname{depth} A=1$, and

$$
\mathrm{H}_{\mathfrak{m}}^{1}(A) \cong A /\left(x^{n}, y^{n}, z, w\right)
$$

where $\mathfrak{m}=\mathfrak{n} / \mathfrak{a}$ is the maximal ideal of A and x, y, z, and w denote the images of X, Y, Z, and W in A, respectively. Let $Q=\left(x^{n}-z, y^{n}-w\right)$ and $Q^{\prime}=\left(x y^{n-1}-z, x^{n}+y^{n}-w\right)$. Then we have the following, where $\mathfrak{c}=(0): \mathrm{H}_{\mathfrak{m}}^{1}(A)=\left(x^{n}, y^{n}, z, w\right)$.
(1) $\bar{Q}=\overline{Q^{\prime}}=\overline{\mathfrak{c}}=\mathfrak{m}^{n}+(z, w)$.
(2) $\mathrm{e}_{Q}^{0}(A)=\mathrm{e}_{Q^{\prime}}^{0}(A)=2 n^{2}$.
(3) $0>\mathrm{e}_{Q^{\prime}}^{1}(A)=-\left(n^{2}-n+1\right)>\mathrm{e}_{Q}^{1}(A)=-n^{2}$.
(4) $\ell_{A}\left(A / Q^{\ell+1}\right)=2 n^{2}\binom{\ell+2}{2}+n^{2}\binom{\ell+1}{1}$ and $\ell_{A}\left(A / Q^{\ell+1}\right)=2 n^{2}\binom{\ell+2}{2}+\left(n^{2}-n+1\right)\binom{\ell+1}{1}$ for all integers $\ell \geq 0$.
(5) The element $x^{n}+y^{n}-w$ is not superficial for Q^{\prime}, whence the scheme $\operatorname{Proj} \mathcal{R}\left(Q^{\prime}\right)$ is not Cohen-Macaulay.
(6) Let $S=\mathrm{S}_{Q}(I)$ (resp. $S^{\prime}=\mathrm{S}_{Q^{\prime}}(I)$) denote the Sally module of $I=\bar{Q}=\overline{Q^{\prime}}$ with respect to Q (resp. Q^{\prime}) and let $T=\mathcal{R}(Q)$ (resp. $T^{\prime}=\mathcal{R}\left(Q^{\prime}\right)$) be the Rees algebra of Q (resp. Q^{\prime}). We put $\mathfrak{p}=\mathfrak{m} T$ and $\mathfrak{p}^{\prime}=\mathfrak{m} T^{\prime}$. Then

$$
\ell_{T_{\mathfrak{p}}}\left(S_{\mathfrak{p}}\right)=\ell_{T_{\mathfrak{p}^{\prime}}^{\prime}}\left(S_{\mathfrak{p}^{\prime}}^{\prime}\right)+(n-1)
$$

To prove assertions in Example 6.6 we need the following.

Lemma 6.7. Let A be a Noetherian local ring with maximal ideal \mathfrak{m} and $\operatorname{dim} A=2$. Suppose that depth $A=1$ and that $\mathrm{H}_{\mathfrak{m}}^{1}(A)$ is a finitely generated A-module. We put $\mathfrak{c}=(0): \mathrm{H}_{\mathfrak{m}}^{1}(A)$. Let a, b be a system of parameters in A. Then the following assertions hold true.
(1) If $b \in \mathfrak{c}$, then a, b forms $a d$-sequence in the sense of C. Huneke [20].
(2) $(a): b \subseteq \overline{(a)}$.

Proof. (1) We have $\left[(a): b^{2}\right] /(a) \subseteq \mathrm{H}_{\mathfrak{m}}^{0}(A /(a)) \cong(0):_{\mathrm{H}_{\mathfrak{m}}^{1}(A)} a$, so that $\mathfrak{c} \cdot\left[\left((a): b^{2}\right) /(a)\right]=$ (0). Hence $(a): b^{2} \subseteq(a): \mathfrak{c} \subseteq(a): b$. Thus a, b forms a d-sequence, because a is A regular.
(2) Let $B=\widetilde{A}$ be the Cohen-Macaulayfication of $A([2])$. We then have $[(a): b] B=$ $a B$, since a, b is a regular sequence in B. Therefore, $\frac{x}{a} \in B$ for all $x \in(a): b$, whence $x \in \overline{(a)}$, because B is a module-finite extension of A. Thus $(a): b \subseteq \overline{(a)}$.

Let us check the assertions in Example 6.6.
Proof of the assertions in Example 6.6. We have $Q \subseteq \mathfrak{c}=Q+(z, w)$ and $\mathfrak{c}^{2}=Q \mathfrak{c}$. Hence $\bar{Q}=\overline{\mathfrak{c}}$. Since $A /(z, w)$ is a regular local ring of dimension 2 , we have $\overline{\mathfrak{m}^{n}+(z, w)}=\mathfrak{m}^{n}+(z, w)$. Therefore, because

$$
Q \subseteq \mathfrak{m}^{n}+(z, w)=(x, y)^{n}+(z, w) \subseteq \overline{\left(x^{n}, y^{n}\right)+(z, w)}=\overline{\mathfrak{c}},
$$

we get $\bar{Q}=\mathfrak{m}^{n}+(z, w)=\overline{\mathfrak{c}}$, whence $\mathfrak{c} \neq \overline{\mathfrak{c}}$, because $x y^{n-1} \notin \mathfrak{c}$ (recall that $n \geq 2$). Let $\mathfrak{p}_{1}=(x, y)$ and $\mathfrak{p}_{2}=(z, w)$. Then Ass $A=$ Assh $A=\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}\right\}$ and the associative formula of multiplicity says that the equality

$$
\mathrm{e}_{\mathfrak{q}}^{0}(A)=\sum_{\mathfrak{p} \in \operatorname{Assh} A} \ell_{A \mathfrak{p}}\left(A_{\mathfrak{p}}\right) \mathrm{e}_{\mathfrak{q} \cdot(A / \mathfrak{p})}^{0}(A / \mathfrak{p})
$$

holds true for any \mathfrak{m}-primary ideal \mathfrak{q} in A. Applying it to our ideals Q and Q^{\prime}, we readily get that

$$
\mathrm{e}_{Q}^{0}(A)=\mathrm{e}_{Q^{\prime}}^{0}(A)=2 n^{2} .
$$

Hence Q^{\prime} is also a reduction of $\overline{\mathfrak{c}}$ by a theorem of D. Rees [32], because $Q^{\prime} \subseteq \overline{\mathfrak{c}}$ and $\mathrm{e}_{\bar{c}}^{0}(A)=\mathrm{e}_{Q}^{0}(A)=\mathrm{e}_{Q^{\prime}}^{0}(A)$. Thus $\bar{Q}=\overline{Q^{\prime}}$ but $Q^{\prime} \nsubseteq \mathfrak{c}$. We put $C=A /\left(x^{n}, y^{n}, z, w\right)$. Then
$C \cong \mathrm{H}_{\mathfrak{m}}^{1}(A)$ and $\left(x^{n}+y^{n}-w\right) C=(0)$. Hence

$$
\mathrm{e}_{Q^{\prime}}^{1}(A)=-\left(n^{2}-n+1\right)
$$

by Proposition 5.1 (3), because
$\ell_{A}\left((0):_{C} x y^{n-1}-z\right)=\ell_{A}\left(C /\left(x y^{n-1}-z\right) C\right)=\ell_{A}\left(A /\left(x^{n}, y^{n}, x y^{n-1}, z, w\right)\right)=n^{2}-n+1$,
whence by Proposition 5.1 (1) we have for all integers $\ell \geq 0$

$$
\begin{aligned}
\ell_{A}\left(A / Q^{\prime \ell+1}\right) & =2 n^{2}\binom{\ell+2}{2}+\ell_{A}\left((0):_{C} x y^{n-1}-z\right)\binom{\ell+1}{1} \\
& =2 n^{2}\binom{\ell+2}{2}+\left(n^{2}-n+1\right)\binom{\ell+1}{1}
\end{aligned}
$$

We similarly have

$$
\mathrm{e}_{Q}^{1}(A)=-\ell_{A}(C)=-n^{2}
$$

because $Q C=(0)$, whence

$$
\ell_{A}\left(A / Q^{n+1}\right)=2 n^{2}\binom{\ell+2}{2}+n^{2}\binom{\ell+1}{1}
$$

for all $\ell \geq 0$.
If $x^{n}+y^{n}-w$ is superficial for the ideal Q^{\prime}, we must have

$$
\mathrm{e}_{Q^{\prime}}^{1}(A)=\mathrm{e}_{Q^{\prime} /\left(x^{n}+y^{n}-w\right)}^{1}\left(A /\left(x^{n}+y^{n}-w\right)\right)=\ell_{A}\left((0):_{C} x^{n}+y^{n}-w\right)=-\ell_{A}(C)=-n^{2},
$$

which is impossible, because $n \geq 2$. Hence $x^{n}+y^{n}-w$ is not superficial for Q^{\prime}. Therefore the scheme $\operatorname{Proj} \mathcal{R}\left(Q^{\prime}\right)$ is not Cohen-Macaulay (see Proof of Proposition 6.4).

To see assertion (6), notice that by [16, Proposition 2.5] we get the equalities

$$
\begin{aligned}
\mathrm{e}_{I}^{1}(A) & =\mathrm{e}_{I}^{0}(A)+\mathrm{e}_{Q}^{1}(A)-\ell_{A}(A / I)+\ell_{T_{\mathfrak{p}}}\left(S_{\mathfrak{p}}\right) \\
& =\mathrm{e}_{I}^{0}(A)+\mathrm{e}_{Q^{\prime}}^{1}(A)-\ell_{A}(A / I)+\ell_{T_{\mathfrak{p}}^{\prime \prime}}\left(S_{\mathfrak{p}^{\prime}}^{\prime}\right)
\end{aligned}
$$

for the ideal $I=\overline{\mathfrak{c}}$, because by Lemma 4.7 all conditions $\left(\mathrm{C}_{0}\right)$ and $\left(\mathrm{C}_{2}\right)$ in [16] are satisfied for the ideals Q, Q^{\prime}, and $I=\overline{\boldsymbol{c}}$. This completes the proof of all the assertions.

Remark 6.8. In Example 6.6 assume that the residue class field R / \mathfrak{n} of R is infinite. Then $\mathrm{e}_{\mathfrak{q}}^{1}(A)=-n$ for every minimal reduction $\mathfrak{q}=(a, b)$ of the maximal ideal \mathfrak{m} of A.

Proof. Let $\bar{A}=A /(z, w)$ and let \bar{c} denote, for each $c \in A$, the image of c in \bar{A}. Then \bar{A} is a two-dimensional regular local ring with \bar{x}, \bar{y} a regular system of parameters. Let $\mathfrak{q}=(a, b)$ be a minimal reduction of \mathfrak{m}. Then $\mathfrak{m}=\mathfrak{q}+(z, w)$, since the local ring \bar{A} is regular. We may assume that a is superficial for \mathfrak{q}. Hence

$$
\mathrm{e}_{\mathfrak{q}}^{1}(A)=\mathrm{e}_{\mathfrak{q} /(a)}^{1}(A /(a))=-\ell_{A}\left((0):_{C} a\right)=-\ell_{A}(C / a C)=-\ell_{A}\left(A /\left(x^{n}, y^{n}, z, w, a\right)\right) .
$$

Let us check that $\ell_{A}\left(A /\left(x^{n}, y^{n}, z, w, a\right)\right)=n$. We write $\bar{a}=\alpha \bar{x}+\beta \bar{y}$ with $\alpha, \beta \in \bar{A}$. We may assume that α is a unit of \bar{A}, because $a \notin \mathfrak{m}^{2}+(z, w)$. Therefore

$$
\left(\bar{x}^{n}, \bar{y}^{n}, \bar{a}\right)=\left(\bar{x}^{n}, \bar{y}^{n}, \bar{x}+\beta^{\prime} \bar{y}\right)=\left(\bar{y}^{n}, \bar{x}+\beta^{\prime} \bar{y}\right)
$$

with $\beta^{\prime}=\alpha^{-1} \beta$, whence

$$
\ell_{A}\left(A /\left(x^{n}, y^{n}, z, w, a\right)\right)=\ell_{A}\left(\bar{A} /\left(\bar{x}+\beta^{\prime} \bar{y}, \bar{y}^{n}\right)\right)=n .
$$

Thus $\mathrm{e}_{\mathfrak{q}}^{1}(A)=-n$ as is claimed.
Before closing this section, let us note the following example, which shows that the rank of Sally modules depends on the choice of minimal reductions.

Example 6.9. Choose $n=2$ in Example 6.6 and put $I=\mathfrak{m}^{2}+(z, w)$. We denote by $S=\mathrm{S}_{Q}(I)$ (resp. $\left.S^{\prime}=\mathrm{S}_{Q^{\prime}}(I)\right)$ the Sally module of I with respect to Q (resp. Q^{\prime}). Let $T=\mathcal{R}(Q)=A[Q t]$ (resp. $\left.T^{\prime}=\mathcal{R}\left(Q^{\prime}\right)=A\left[Q^{\prime} t\right]\right)$, where t is an indeterminate over A. We put $B=T / \mathfrak{m} T$ and $B^{\prime}=T^{\prime} / \mathfrak{m} T^{\prime}$. Then
(1) $S \cong B_{+}$as graded T-modules,
(2) $S^{\prime} \cong B^{\prime} /\left(x^{2}+y^{2}-w\right) t \cdot B^{\prime}$ as graded T^{\prime}-modules, and
(3) $\ell_{A}\left(A / I^{n+1}\right)=8\binom{n+2}{2}-2\binom{n+1}{1}-4$ for all $n \geq 1$.

Hence $\operatorname{rank}_{B} S=1$ but rank $B_{B^{\prime}} S^{\prime}=0$.
Proof. (1) We put $a=x^{2}-z$ and $b=y^{2}-w$. It is routine to check that $I^{2}=$ $Q I+(x y z, x y w), x y z \notin Q, I^{3}=Q I^{2}$, and $\mathfrak{m} I^{2} \subseteq Q I$. Hence $S \neq(0)$ and $\mathfrak{m} S=(0)$, because $S=T S_{1}$ and $S_{1} \cong I^{2} / Q I$ (see [16, Lemma 2.1]), where S_{1} stands for the homogeneous component of S with degree 1 . Therefore we have an epimorphism

$$
\underset{48}{\varphi: B(-1)} \rightarrow S
$$

of graded B-modules defined by $\varphi\left(\mathbf{e}_{1}\right)=\widetilde{x y z t}$ and $\varphi\left(\mathbf{e}_{2}\right)=\widetilde{x y w t}$, where $\widetilde{x y z t}$ and $\widetilde{x y w t}$ denote the images of $x y z t$ and $x y w t$ in S, respectively, and $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ is the standard basis of $B(-1)^{2}$. Let \bar{f} denote, for each $f \in T$, the image of f in B. Then, since

$$
b(x y z)=a(x y w)=-x y z w,
$$

we see $\overline{b t} \mathbf{e}_{1}-\overline{a t} \mathbf{e}_{2} \in \operatorname{Ker} \varphi$. Therefore, we get an epimorphism

$$
\bar{\varphi}: B_{+} \rightarrow S
$$

induced from φ (notice that $B=k[\overline{a t}, \overline{\bar{t}}]$ and $B_{+} \cong B(-1)^{2} / B \cdot\left[\overline{b t} \mathbf{e}_{1}-\overline{a t} \mathbf{e}_{2}\right]$, since $\overline{a t}, \overline{b t}$ are algebraically independent over the residue class field $k=A / \mathfrak{m}$ of A), which must be an isomorphism, because $S \neq(0)$ and by [16, Lemma 2.3] S is a torsionfree B-module (notice that conditions $\left(\mathrm{C}_{0}\right)$ and $\left(\mathrm{C}_{2}\right)$ in [16] are satisfied by Lemma 4.7). Thus $S \cong B_{+}$ as graded B-modules. We have condition $\left(\mathrm{C}_{1}\right)$ in [16] also satisfied, since $Q C=(0)$ (see [36, Theorem 2.5]). Therefore by [16, Theorem 1.3 (iii)] we get

$$
\begin{aligned}
\ell_{A}\left(A / I^{n+1}\right) & =\mathrm{e}_{I}^{0}(A)\binom{n+2}{2}-\left\{\mathrm{e}_{I}^{0}(A)+\mathrm{e}_{Q}^{1}(A)-\ell_{A}(A / I)+1\right\}\binom{n+1}{1} \\
& +\left\{\mathrm{e}_{Q}^{1}(A)+\mathrm{e}_{Q}^{2}(A)\right\} \\
& =8\binom{n+2}{2}-2\binom{n+1}{1}-4
\end{aligned}
$$

for all $n \geq 1$.
(2) This time we have $I^{2}=Q^{\prime} I+(x y z), I^{3}=Q^{\prime} I^{2}$, and $\mathfrak{m} I^{2} \subseteq Q^{\prime} I$. Notice that $S^{\prime} \neq(0)$, since $x y z \notin Q^{\prime}$. Let $a^{\prime}=z-x y$ and $b^{\prime}=w-\left(x^{2}+y^{2}\right)$. We then have

$$
b^{\prime}(x y z)=a^{\prime}(x y w)=x y z w
$$

and $x y w=b^{\prime} z-a^{\prime} w \in{Q^{\prime 2}}^{2} I$. Hence we get an epimorphism

$$
\varphi^{\prime}:\left(B^{\prime} / b^{\prime} t \cdot B^{\prime}\right)(-1) \rightarrow S^{\prime}
$$

such that $\varphi^{\prime}(1)=\widetilde{x y z t}$.
We now want to show that φ^{\prime} is an isomorphism. Suppose that $\operatorname{Ker} \varphi^{\prime} \neq(0)$. Then the homogeneous component $\left[\operatorname{Ker} \varphi^{\prime}\right]_{n}$ of $\operatorname{Ker} \varphi^{\prime}$ is non-zero for some integer n. Choose such an integer n as small as possible. Then $n \geq 2$ and ${\overline{a^{\prime} t}}^{n-1} \in \operatorname{Ker} \varphi^{\prime}$, since
$B^{\prime}=k\left[\overline{a^{\prime} t}, \overline{b^{\prime} t}\right]$. Therefore

$$
a^{\prime n-1}(x y z) \in Q^{\prime n} I=a^{\prime} Q^{\prime n-1} I+b^{\prime n} I
$$

Let $a^{\prime n-1}(x y z)=a^{\prime} i+b^{\prime n} j$ with $i \in Q^{\prime n-1} I$ and $j \in I$. We then have

$$
j \in\left(a^{\prime}\right): b^{\prime n}=\left(a^{\prime}\right): b^{\prime},
$$

since a^{\prime}, b^{\prime} is a d-sequence by Lemma 4.7 (1). Let $b^{\prime} j=a^{\prime} h$ with $h \in A$. Then $h \in\left(b^{\prime}\right): a^{\prime} \subseteq I$ by Lemma $4.7(2)$ and $a^{\prime n-1}(x y z)=a^{\prime} i+a^{\prime}\left(b^{\prime n-1} h\right)$, whence

$$
a^{\prime n-2}(x y z)=i+b^{\prime n-1} h \in Q^{\prime n-1} I,
$$

because a^{\prime} is A-regular. Therefore

$$
{\overline{a^{\prime} t}}^{n-2} \in\left[\operatorname{Ker} \varphi^{\prime}\right]_{n-1},
$$

which contradicts the minimality of n. Hence φ^{\prime} is a monomorphism and $S^{\prime} \cong B^{\prime} / \overline{b^{\prime} t} \cdot B^{\prime}$ as graded T^{\prime}-modules.

7. The case where $\bar{Q}=\mathfrak{m}$

The value $\mathrm{e}_{Q}^{1}(A)$ depends on the choice of minimal reductions Q, even in the case where $\bar{Q}=\mathfrak{m}$. To see this, we need some technique of reduction.

Let B be a Noetherian local ring with maximal ideal \mathfrak{n} and assume that B contains a field k such that the composite map $k \xrightarrow{\iota} B \xrightarrow{\varepsilon} B / \mathfrak{n}$ is bijective, where $\iota: k \rightarrow B$ denotes the embedding and $\varepsilon: B \rightarrow B / \mathfrak{n}$ denotes the canonical epimorphism. Let J be an \mathfrak{n}-primary ideal in B and put $A=k+J$. Then A is a local k-subalgebra of B with maximal ideal $\mathfrak{m}=J$ and B is a module-finite extension of A, because $\ell_{A}(B / A)=\ell_{B}(B / J)-1$. Hence A is a Noetherian local ring with $\operatorname{dim} A=\operatorname{dim} B$, thanks to Eakin-Nagata's theorem.

Suppose now that $d=\operatorname{dim} B>0$. Let $\mathfrak{q}=\left(a_{1}, a_{2}, \cdots, a_{d}\right) B$ be a parameter ideal in B and assume that \mathfrak{q} is a reduction of J. We put

$$
Q=\left(a_{1}, a_{2}, \cdots, a_{d}\right) A .
$$

Then Q is a reduction of \mathfrak{m}. Hence Q is a parameter ideal in A. We have the canonical isomorphism between the Sally module $\mathrm{S}_{Q}(\mathfrak{m})=\bigoplus_{n \geq 1} \mathfrak{m}^{n+1} / Q^{n} \mathfrak{m}$ of \mathfrak{m} with respect to
Q and the Sally module $\mathrm{S}_{\mathfrak{q}}(J)=\bigoplus_{n \geq 1} J^{n+1} / \mathfrak{q}^{n} J$ of J with respect to \mathfrak{q}, because

$$
\mathfrak{m}^{n+1} / Q^{n} \mathfrak{m}=J^{n+1} / \mathfrak{q}^{n} J
$$

for all $n \geq 1$:
Fact 7.1. $\mathrm{S}_{Q}(\mathfrak{m}) \cong \mathrm{S}_{\mathfrak{q}}(J)$ as graded $\mathcal{R}(\mathfrak{q})$-modules.

We put $T=\mathcal{R}(Q)$ and $\mathfrak{p}=\mathfrak{m} T$. Then, thanks to [16, Remark 2.6], the sum

$$
\mathrm{e}_{Q}^{1}(A)+\ell_{T_{\mathfrak{p}}}\left(S_{\mathfrak{p}}\right)=\mathrm{e}_{\mathfrak{m}}^{1}(A)-\mathrm{e}_{\mathfrak{m}}^{0}(A)+1
$$

is an invariant of \mathfrak{m}, whence we have the following.

Proposition 7.2. Let $\mathfrak{q}=\left(a_{1}, a_{2}, \cdots, a_{d}\right) B$ and $\mathfrak{q}^{\prime}=\left(a_{1}^{\prime}, a_{2}^{\prime}, \cdots, a_{d}^{\prime}\right) B$ be parameter ideals of B and assume that \mathfrak{q} and \mathfrak{q}^{\prime} are reductions of J. Let $Q=\left(a_{1}, a_{2}, \cdots, a_{d}\right) A$ and $Q^{\prime}=\left(a_{1}^{\prime}, a_{2}^{\prime}, \cdots, a_{d}^{\prime}\right) A$. Then one has the equality

$$
\mathrm{e}_{Q}^{1}(A)+\ell_{T_{\mathfrak{p}}}\left(S_{\mathfrak{p}}\right)=\mathrm{e}_{Q^{\prime}}^{1}(A)+\ell_{T_{p^{\prime}}^{\prime}}\left(S_{\mathfrak{p}^{\prime}}^{\prime}\right),
$$

where $T=\mathcal{R}(Q), T^{\prime}=\mathcal{R}\left(Q^{\prime}\right), \mathfrak{p}=\mathfrak{m} T$, and $\mathfrak{p}^{\prime}=\mathfrak{m} T^{\prime}$.

The following example shows that $\mathrm{e}_{Q}^{1}(A)$ depends on the choice of minimal reductions Q, even in the case where $\bar{Q}=\mathfrak{m}$. This eventually shows that the rank, or the multiplicity of Sally modules depend on the choice of minimal reductions, as well.

Example 7.3. Let $R=k[[X, Y, Z, W]]$ be the formal power series ring over a field k and let $B=R /\left(X^{2}, Y^{2}\right) \cap(Z, W)$. Let $J=(x, y)^{2}+(z, w)$, where x, y, z and w denote the images of X, Y, Z, and W in B, respectively. We put $A=k+J$. Then A is a Noetherian local ring with maximal ideal $\mathfrak{m}=J$ and B is a module-finite extension of A. Let $Q=\left(x^{2}-z, y^{2}-w\right) A$ and $Q^{\prime}=\left(x y-z, x^{2}+y^{2}-w\right) A$. Then Q and Q^{\prime} are minimal reductions of \mathfrak{m} such that

$$
\mathrm{e}_{Q^{\prime}}^{1}(A)=\mathrm{e}_{Q}^{1}(A)+1=-5, \quad \ell_{T_{\mathfrak{p}}}\left(S_{\mathfrak{p}}\right)=1, \quad \text { and } \quad \ell_{T^{\prime} \mathfrak{p}^{\prime}}\left(S_{\mathfrak{p}^{\prime}}^{\prime}\right)=0,
$$

where $S=\mathrm{S}_{Q}(\mathfrak{m}), S^{\prime}=\mathrm{S}_{Q^{\prime}}(\mathfrak{m}), T=\mathcal{R}(Q), T^{\prime}=\mathcal{R}\left(Q^{\prime}\right), \mathfrak{p}=\mathfrak{m} T$, and $\mathfrak{p}^{\prime}=\mathfrak{m} T^{\prime}$.

Proof. Since $\ell_{A}\left(A / \mathfrak{m}^{n+1}\right)=\ell_{A}\left(B / J^{n+1}\right)-\ell_{A}(B / A)$ and $\ell_{A}(B / A)=\ell_{B}(B / J)-1$, by Example 6.9 (3) we have

$$
\ell_{A}\left(A / \mathfrak{m}^{n+1}\right)=8\binom{n+2}{2}-2\binom{n+1}{1}-6
$$

for all $n \geq 1$, whence

$$
\mathrm{e}_{\mathfrak{m}}^{0}(A)=8, \quad \mathrm{e}_{\mathfrak{m}}^{1}(A)=2, \quad \text { and } \quad e_{\mathfrak{m}}^{2}(A)=-6
$$

Therefore

$$
\mathrm{e}_{Q}^{1}(A)+\ell_{T_{\mathfrak{p}}}\left(S_{\mathfrak{p}}\right)=\mathrm{e}_{Q^{\prime}}^{1}(A)+\ell_{T_{\mathfrak{p}^{\prime}}^{\prime}}\left(S_{\mathfrak{p}^{\prime}}^{\prime}\right)=\mathrm{e}_{\mathfrak{m}}^{1}(A)-\mathrm{e}_{\mathfrak{m}}^{0}(A)+1=-5
$$

by Proposition 7.2. On the other hand, thanks to Fact 2 and Example 6.9 (1), (2), we see that $\ell_{T_{\mathfrak{p}}}\left(S_{\mathfrak{p}}\right)=1$ and $\ell_{T^{\prime}{ }_{\mathfrak{p}}}\left(S_{\mathfrak{p}^{\prime}}\right)=0$, whence $\mathrm{e}_{Q^{\prime}}^{1}(A)=\mathrm{e}_{Q}^{1}(A)+1=-5$.

8. A STRUCTURE THEOREM FOR LOCAL RINGS POSSESSING $\mathrm{e}_{Q}^{1}(A)=-1$

The condition $\mathrm{e}_{Q}^{1}(A)=-1$ for some parameter ideal Q in A is a rather strong condition. In this section we shall explore this phenomenon. Similarly as in Section 6 let A be a Noetherian local ring with maximal ideal \mathfrak{m} and $\operatorname{dim} A=2$. We assume that depth $A=1$ and that $\mathrm{H}_{\mathfrak{m}}^{1}(A)$ is a finitely generated A-module. We put $C=\mathrm{H}_{\mathfrak{m}}^{1}(A)$ and $\mathfrak{c}=(0): \mathrm{H}_{\mathfrak{m}}^{1}(A)$. Suppose that the residue class field $k=A / \mathfrak{m}$ of A is infinite. We then have the following.

Theorem 8.1. We consider the following two conditions.
(1) $\mu_{A}(\mathfrak{m})=4$, the Cohen-Macaulayfication \widetilde{A} of A is not a local ring, and A contains a parameter ideal Q such that $\mathrm{e}_{Q}^{1}(A)=-1$.
(2) $A \cong R /(F, Y) \cap(Z, W)$ as rings, where R is a regular local ring of dimension 4, X, Y, Z, W is a regular system of parameters in R, and $F \in R$ such that $F=X^{n}+\xi$ for some integer $n \geq 1$ and $\xi \in(Z, W)$.

Then the implication $(2) \Rightarrow(1)$ is always true and we have $\mathrm{e}_{\mathfrak{q}}^{1}(A)=-1$ for every minimal reduction \mathfrak{q} of \mathfrak{m}. When A is \mathfrak{m}-adically complete, the implication $(1) \Rightarrow(2)$ also holds true, so that conditions (1) and (2) are equivalent to each other.

We divide the proof of Theorem 8.1 into two parts.
Let us consider the implication $(2) \Rightarrow(1)$. Let R be a regular local ring of dimension 4 and let X, Y, Z, W be a regular system of parameters in R. Let $n \geq 1$ be an integer and $\xi \in(Z, W)$. We put $F=X^{n}+\xi$. Then $(F, Y, Z, W)=\left(X^{n}, Y, Z, W\right)$ and F, Y, Z, W forms a system of parameters in R. Let

$$
A=R /(F, Y) \cap(Z, W)
$$

and let \mathfrak{m} be the maximal ideal of A. We denote by f, x, y, z, and w the images of F, X, Y, Z, and W in A, respectively. Then, thanks to the exact sequence

$$
0 \rightarrow A \rightarrow A /(f, y) \oplus A /(z, w) \rightarrow A /\left(x^{n}, y, z, w\right) \rightarrow 0
$$

we have $\operatorname{depth} A=1$ and $\mathrm{H}_{\mathfrak{m}}^{1}(A) \cong A /\left(x^{n}, y, z, w\right)$. Hence

$$
\widetilde{A}=A /(f, y) \times A /(z, w)
$$

by [2, Theorem 1.6]. We put $C=\mathrm{H}_{\mathfrak{m}}^{1}(A)$ and $\mathfrak{c}=\left(x^{n}, y, z, w\right)$. Let $a=f-z$ and $b=y-w$. We look at the parameter ideal $Q=(a, b)$ in A. Then $(a): b=(a, z)$ and (b) : $a=(b, w)$. Hence

$$
[(a): b]+[(b): a]=(a, b, z, w)=\mathfrak{c},
$$

so that by [13, Theorem 1.1] we get the following.
Fact 8.2. The Rees algebra $\mathcal{R}\left(Q^{2}\right)$ of Q^{2} is a Gorenstein ring.

We now assume that the residue class field of R is infinite and let $\mathfrak{q}=(a, b)$ be any minimal reduction of \mathfrak{m}, where we choose the system a, b of generators of the ideal \mathfrak{q} so that both a, b are superficial for \mathfrak{q}. Let $\bar{A}=A /(z, w)$. Then, since $\mathfrak{q} \bar{A}$ is a reduction of the maximal ideal in the two-dimensional regular local ring \bar{A}, we get $\mathfrak{q} \bar{A}=\mathfrak{m} /(z, w)$, whence $\mathfrak{q}+(z, w)=\mathfrak{m}$. We want to show that $\mathrm{e}_{\mathfrak{q}}^{1}(A)=-1$. Here we may assume that $n>1$. In fact, if $n=1$, then $\mathrm{H}_{\mathfrak{m}}^{1}(A) \cong A / \mathfrak{m}$, so that A is a Buchsbaum local ring and $\mathrm{e}_{\mathfrak{q}}^{1}(A)=-1$ by Schenzel's formula 3.3. Suppose that $n>1$. Then, since $\mathfrak{m}=\mathfrak{q}+\mathfrak{c}$, without loss of generality we may assume that $a \notin \mathfrak{c}+\mathfrak{m}^{2}=\left(x^{2}, y, z, w\right)$, whence $\ell_{A}(C / a C)=1$. Thus $\mathrm{e}_{\mathfrak{q}}^{1}(A)=-\ell_{A}\left((0):_{C} a\right)=-1$.

Let us note one remark.

Remark 8.3. Suppose that $\xi \in(Z, W)$. Let $a=x^{\ell}-z, b=y-w$ with $1 \leq \ell \leq n$. We put $Q=(a, b)$. Then Q is a parameter ideal in A and, since $b C=(0)$, by Proposition 5.1 (3) we get

$$
\mathrm{e}_{Q}^{1}(A)=-\ell_{A}(C / a C)=-\ell_{A}\left(A /\left(x^{\ell}, y, z, w\right)\right)=-\ell
$$

This shows that the value $\mathrm{e}_{Q}^{1}(A)$ varies between $-n$ and -1 with $-n$ the least (cf. Proposition 5.1 (2)).

Let us prove the implication $(1) \Rightarrow(2)$ in Theorem 8.1. With the notation in the preamble of this section we assume that A is \mathfrak{m}-adically complete. Let $B=\widetilde{A}$ be the Cohen-Macaulayfication of A, whence $B \cong \operatorname{End}_{A}\left(\mathrm{~K}_{A}\right)$ as A-algebras ([2, Theorem 1.6]), where K_{A} denotes the canonical module of A. We then have the exact sequence

$$
0 \longrightarrow A \xrightarrow{\varphi} B \longrightarrow C \longrightarrow 0
$$

of A-modules, where $\varphi(x)$ is, for each $x \in A$, the homothety of x. Let $Q=(a, b)$ be a parameter ideal in A such that $\mathrm{e}_{Q}^{1}(A)=-1$. We may assume that a, b are both superficial for Q. Then, since $\ell_{A}(C / a C)=\ell_{A}\left((0):_{C} a\right)=1$, we get $\mu_{A}(C)=1$. Therefore $C \cong A / \mathfrak{c}$ and $\mathfrak{c}+(a)=\mathfrak{m}$, whence $\mu_{A}(B)=2$. Consequently, because B is not a local ring and A is complete, we have the canonical decomposition

$$
B=A / \mathfrak{a}_{1} \times A / \mathfrak{a}_{2}
$$

of the A-algebra B, where \mathfrak{a}_{i} is an ideal in A such that A / \mathfrak{a}_{i} is a two-dimensional Cohen-Macaulay local ring for each $i=1,2$. Hence $\mathfrak{a}_{1} \cap \mathfrak{a}_{2}=(0)$ and $\mathfrak{a}_{1}+\mathfrak{a}_{2}=\mathfrak{c}$, thanks to the exact sequence

$$
0 \rightarrow A \rightarrow A / \mathfrak{a}_{1} \oplus A / \mathfrak{a}_{2} \rightarrow A /\left(\mathfrak{a}_{1}+\mathfrak{a}_{2}\right) \rightarrow 0
$$

Let $V=\left[\mathfrak{c}+\mathfrak{m}^{2}\right] / \mathfrak{m}^{2} \subseteq \mathfrak{m} / \mathfrak{m}^{2}$. Then $\operatorname{dim}_{k} V \geq 3$, because $\mu_{A}(\mathfrak{m})=4$ and $\mathfrak{c}+(a)=\mathfrak{m}$. Since $\mathfrak{a}_{1}+\mathfrak{a}_{2}=\mathfrak{c}$, we may assume that $\operatorname{dim}_{k}\left[\mathfrak{a}_{2}+\mathfrak{m}^{2}\right] / \mathfrak{m}^{2} \geq 2$. Therefore the ideal \mathfrak{a}_{2} contains a part z, w of a minimal system of generators of the maximal ideal \mathfrak{m}. We then have $\mu_{A /(z, w)}(\mathfrak{m} /(z, w))=2$, whence the epimorphism

$$
A /(z, w) \underset{54}{\rightarrow} A / \mathfrak{a}_{2} \rightarrow 0
$$

is an isomorphism, because $\operatorname{dim} A /(z, w) \geq \operatorname{dim} A / \mathfrak{a}_{2}=2$. Thus $\mathfrak{a}_{2}=(z, w)$. Therefore $\operatorname{dim}_{k}\left[\mathfrak{a}_{1}+\mathfrak{m}^{2}\right] / \mathfrak{m}^{2} \geq 1$, because $\operatorname{dim}_{k} V \geq 3$. Choose $y \in \mathfrak{a}_{1}$ so that y, z, w forms a part of a minimal system of generators of \mathfrak{m} and write $\mathfrak{m}=(x, y, z, w)$. Then $A /(y, z, w)$ is a DVR, because $A /(z, w)$ is a two-dimensional regular local ring with the images of x, y in it a regular system of parameters. Consequently, since $\mathfrak{c}=\mathfrak{a}_{1}+\mathfrak{a}_{2} \supsetneq(y, z, w)$, we have

$$
\mathfrak{c} /(y, z, w)=\left(\bar{x}^{n}\right)
$$

for some $n \geq 1$, where \bar{x} stands for the image of x in $A /(y, z, w)$. Hence $\mathfrak{c}=\left(x^{n}, y, z, w\right)$ and $n=\ell_{A}(A / \mathfrak{c})$. On the other hand, because

$$
\mathfrak{c} /(y, z, w)=\left[\mathfrak{a}_{1}+(z, w)\right] /(y, z, w)=\left(\bar{x}^{n}\right),
$$

we find some element $\eta \in \mathfrak{a}_{1}$ so that $x^{n}-\eta \in(y, z, w)$. Let

$$
x^{n}-\eta=\alpha y+\beta z+\gamma w
$$

with $\alpha, \beta, \gamma \in A$. We then have $x^{n}-f \in(z, w)$ where $f=\eta+\alpha y$. Hence $\mathfrak{a}_{1}=(f, y)$, because

$$
\mathfrak{c}=\mathfrak{a}_{1}+\mathfrak{a}_{2} \supseteq(f, y) \oplus(z, w) \supseteq \mathfrak{c} .
$$

Now we choose a regular local ring R with maximal ideal \mathfrak{n} and $\operatorname{dim} R=4$ together with a surjective homomorphism

$$
R \xrightarrow{\phi} A \rightarrow 0
$$

of rings. Let X, Y, Z, and W be elements of R such that $\phi(X)=x, \phi(Y)=y, \phi(Z)=z$, and $\phi(W)=w$. Then $\mathfrak{n}=(X, Y, Z, W)$, since $\operatorname{Ker} \phi \subseteq \mathfrak{n}^{2}$. Notice that

$$
R /(Z, W) \cong A /(z, w)
$$

because $A /(z, w)$ is a two-dimensional regular local ring. Hence $K:=\operatorname{Ker} \phi \subseteq(Z, W)$. We look at the exact sequence

$$
(*) \quad 0 \rightarrow L \rightarrow R /(Z, W) \rightarrow A /(z, w) \rightarrow 0
$$

of R-modules. Let $F \in R$ such that $\phi(F)=f$. We then have $X^{n}-F \in(Z, W)$, because $x^{n}-f \in(z, w)$ and $K \subseteq(Z, W)$. Therefore $(F, Y, Z, W)=\left(X^{n}, Y, Z, W\right)$, so that F, Y, Z, W is a system of parameters of R. Hence, because z, w is a regular sequence
in the two-dimensional regular local $\operatorname{ring} A / \mathfrak{a}_{2}=A /(z, w)$, from exact sequence $(*)$ we get the exact sequence

$$
0 \longrightarrow L /(Z, W) L \longrightarrow R /(F, Y, Z, W) \xrightarrow{\varepsilon} A /(f, y, z, w) \longrightarrow 0
$$

in which the homomorphism ε has to be an isomorphism, because

$$
\ell_{R}(R /(F, Y, Z, W))=\ell_{R}\left(R /\left(X^{n}, Y, Z, W\right)\right)=n
$$

and

$$
\ell_{A}(A /(f, y, z, w))=\ell_{A}\left(A /\left(x^{n}, y, z, w\right)\right)=\ell_{A}(A / \mathfrak{c})=n .
$$

Thus $L=(0)$ by Nakayama's lemma, so that we have $R /(F, Y) \cong A /(f, y)$. This shows that $K:=\operatorname{Ker} \phi \subseteq(F, Y)$, whence $K=(F, Y) \cap(Z, W)$, because $(F, Y) \cap(Z, W)$ is certainly included in K (recall that $\left.(f, y) \cap(z, w)=\mathfrak{a}_{1} \cap \mathfrak{a}_{2}=(0)\right)$. Thus

$$
A \cong R /(F, Y) \cap(Z, W)
$$

with $X^{n}-F \in(Z, W)$ and $n \geq 1$. This proves the implication (1) \Rightarrow (2) in Theorem 8.1 under the assumption that A is complete.

9. Appendix: When $\overline{\mathrm{e}}_{I}^{1}(R) \geq 0$?

This is a joint work with J. Hong and M. Mandal [8].
Throughout this section let R be a Noetherian local ring with maximal ideal \mathfrak{m} and $d=\operatorname{dim} R>0$. Assume that R is analytically unramified, whence the \mathfrak{m}-adic completion \widehat{R} of R is reduced. We fix an \mathfrak{m}-primary ideal I in R and denote by $\overline{I^{n+1}}$ (resp. $\ell_{R}\left(R / \overline{I^{n+1}}\right)$) the integral closure of I^{n+1} (resp. the length of $R / \overline{I^{n+1}}$) for each $n \geq 0$. Then the normalized Hilbert function

$$
\ell_{R}\left(R / \overline{I^{n+1}}\right)
$$

of R with respect to I is of polynomial type with degree d and we have integers $\left\{\overline{\mathrm{e}}_{I}^{i}(R)\right\}_{0 \leq i \leq d}$ such that the equality

$$
\ell_{R}\left(R / \overline{I^{n+1}}\right)=\overline{\mathrm{e}}_{I}^{0}(R)\binom{n+d}{d}-\overline{\mathrm{e}}_{I}^{1}(R)\binom{n+d-1}{d-1}+\cdots+(-1)^{d} \overline{\mathrm{e}}_{I}^{d}(R)
$$

holds true for all $n \gg 0$. We call these integers $\overline{\mathrm{e}}_{I}^{i}(R)$ the normalized Hilbert coefficients of R with respect to I.

In this section we are interested in the analysis of the first normalized Hilbert coefficient $\overline{\mathrm{e}}_{I}^{1}(R)$. The main purpose is to study the positivity conjecture on $\overline{\mathrm{e}}_{I}^{1}(R)$ posed by Wolmer V. Vasconcelos [39] and our result is stated as follows.

Theorem 9.1. Let R be an analytically unramified local ring with maximal ideal \mathfrak{m} and $d=\operatorname{dim} R>0$. If R is unmixed, then

$$
\overline{\mathrm{e}}_{I}^{1}(R) \geq 0
$$

for every \mathfrak{m}-primary ideal I in R.

Here we should note that the conjecture holds true in the case where R is a CohenMacaulay local ring ([41, Theorem 2.2]). In fact, generally we have

$$
\overline{\mathrm{e}}_{I}^{0}(R)=\mathrm{e}_{I}^{0}(R),
$$

where $\mathrm{e}_{I}^{0}(R)$ stands for the ordinary Hilbert-Samuel multiplicity of R with respect to I. Therefore $\overline{\mathrm{e}}_{I}^{1}(R) \geq \mathrm{e}_{I}^{1}(R)$ and so, if R is a Cohen-Macaulay local ring, we get

$$
\overline{\mathrm{e}}_{I}^{1}(R) \geq \mathrm{e}_{I}^{1}(R) \geq 0
$$

because $\mathrm{e}_{I}^{1}(R) \geq 0$ ([30, Corollary 1]). Mainly based on this fact, the third author M. Mandal, B. Singh, and J. Verma [26] gave several interesting answers in certain special cases and our Theorem 9.1 now affirmatively settles the conjecture in full generality.

We shall prove Theorem 9.1 in Section 2. In Section 3 we will discuss a few results related to the positivity conjecture. We suspect if the integral closure \bar{R} of R is a regular ring and $I \bar{R}$ is normal, that is, $I^{n} \bar{R}$ is integrally closed for all $n \geq 1$, once $\overline{\mathrm{e}}_{I}^{1}(R)=0$ for some \mathfrak{m}-primary ideal I in R. We shall give an affirmative answer in the case where \bar{R} is a Cohen-Macaulay ring.

Proof of Theorem 9.1. We have $\overline{\mathrm{e}}_{I \widehat{R}}^{1}(\widehat{R})=\overline{\mathrm{e}}_{I}^{1}(R)$, since $\overline{\mathfrak{a} \widehat{R}}=\overline{\mathfrak{a}} \widehat{R}$ for every \mathfrak{m}-primary ideal \mathfrak{a} in R. Therefore, passing to the \mathfrak{m}-adic completion \widehat{R} of R, without loss of generality we may assume that R is complete. If $d=1$, we then have

$$
\overline{\mathrm{e}}_{I}^{1}(R)=\underset{57}{\ell_{R}(\bar{R} / R)} \geq 0 .
$$

Suppose that $d \geq 2$ and let $S=\bar{R}$. For each $\mathfrak{p} \in$ Ass R we put $S(\mathfrak{p})=\overline{R / \mathfrak{p}}$. Then $S(\mathfrak{p})$ is a module-finite extension of R / \mathfrak{p} and we get

$$
S=\prod_{\mathfrak{p} \in \mathrm{Ass} R} S(\mathfrak{p}) \text { and } \overline{I^{n+1}}=\overline{I^{n+1} S} \cap R
$$

for all $n \geq 0$. Hence

$$
\begin{aligned}
\ell_{R}\left(R / \overline{I^{n+1}}\right) \leq \ell_{R}\left(S / \overline{I^{n+1} S}\right) & =\sum_{\mathfrak{p} \in \text { Ass } R} \ell_{R}\left(S(\mathfrak{p}) / \overline{I^{n+1} S(\mathfrak{p})}\right) \\
& =\sum_{\mathfrak{p} \in \text { Ass } R} \ell_{R}\left(S(\mathfrak{p}) / \mathfrak{m}_{S(\mathfrak{p})}\right) \cdot \ell_{S(\mathfrak{p})}\left(S(\mathfrak{p}) / \overline{I^{n+1} S(\mathfrak{p})}\right)
\end{aligned}
$$

where $\mathfrak{m}_{S(\mathfrak{p})}$ denotes the maximal ideal of $S(\mathfrak{p})$. Notice that, since $\operatorname{dim} S(\mathfrak{p})=d$ for each $\mathfrak{p} \in$ Ass R, we have

$$
\begin{aligned}
\overline{\mathrm{e}}_{I}^{0}(R)=\mathrm{e}_{I}^{0}(R)=\mathrm{e}_{I}^{0}(S) & =\sum_{\mathfrak{p} \in \operatorname{Ass} R} \mathrm{e}_{I}^{0}(S(\mathfrak{p})) \\
& =\sum_{\mathfrak{p} \in \operatorname{Ass} R} R\left(S(\mathfrak{p}) / \mathfrak{m}_{S(\mathfrak{p})}\right) \cdot \mathrm{e}_{I S(\mathfrak{p})}^{0}(S(\mathfrak{p})) \\
& =\sum_{\mathfrak{p} \in \operatorname{Ass} R} \ell_{R}\left(S(\mathfrak{p}) / \mathfrak{m}_{S(\mathfrak{p})}\right) \cdot \mathrm{e}_{I S(\mathfrak{p})}^{0}(S(\mathfrak{p})),
\end{aligned}
$$

whence

$$
\begin{aligned}
0 & \leq \ell_{R}\left(S / \overline{I^{n+1} S}\right)-\ell_{R}\left(R / \overline{I^{n+1}}\right) \\
& =\left[\overline{\mathrm{e}}_{I}^{1}(R)-\sum_{\mathfrak{p} \in \text { Ass } R} \ell_{R}\left(S(\mathfrak{p}) / \mathfrak{m}_{S(\mathfrak{p})}\right) \cdot \overline{\mathrm{e}}_{I S(\mathfrak{p})}^{1}(S(\mathfrak{p}))\right]\binom{n+d-1}{d-1} \\
& + \text { (terms of lower degree }),
\end{aligned}
$$

so that

$$
\overline{\mathrm{e}}_{I}^{1}(R) \geq \sum_{\mathfrak{p} \in \operatorname{Ass} R} \ell_{R}\left(S(\mathfrak{p}) / \mathfrak{m}_{S(\mathfrak{p})}\right) \cdot \overline{\mathrm{e}}_{I S(\mathfrak{p})}^{1}(I S(\mathfrak{p})) .
$$

Thus, in order to see $\overline{\mathrm{e}}_{I}^{1}(R) \geq 0$, it suffices to show that $\overline{\mathrm{e}}_{I S(\mathfrak{p})}^{1}(S(\mathfrak{p})) \geq 0$ for each $\mathfrak{p} \in$ Ass R. If $d=2$, we get

$$
\overline{\mathrm{e}}_{I S(\mathfrak{p})}^{1}(S(\mathfrak{p})) \geq \mathrm{e}_{I S(\mathfrak{p})}^{1}(I S(\mathfrak{p})) \geq 0
$$

because $S(\mathfrak{p})$ is a Cohen-Macaulay local ring. Hence $\overline{\mathrm{e}}_{I}^{1}(R) \geq 0$.
Suppose that $d \geq 3$ and that our assertion holds true for $d-1$. Then thanks to the above observation, passing to the $\underset{58}{\operatorname{ring}} S(\mathfrak{p})$, we may assume that R is a normal
complete local ring. Let $I=\left(a_{1}, a_{2}, \ldots, a_{\ell}\right)$ with $a_{i} \in R$, where $\ell=\mu_{R}(I)$. Let

$$
T=R\left[Z_{1}, Z_{2}, \ldots, Z_{\ell}\right], \quad \mathfrak{q}=\mathfrak{m} T, \quad x=\sum_{i=1}^{\ell} a_{i} Z_{i}, \quad \text { and } \quad D=T / x T,
$$

where $Z_{1}, Z_{2}, \ldots, Z_{\ell}$ are indeterminates over R. Let

$$
R^{\prime}=T_{\mathfrak{q}}, \quad I^{\prime}=I R^{\prime}, \quad \text { and } \quad D^{\prime}=D_{\mathfrak{q}} .
$$

We then have $\overline{I^{n+1} R^{\prime}}=\overline{I^{n+1}} R^{\prime}$ for all $n \geq 0$, so that $\ell_{R^{\prime}}\left(R^{\prime} / \overline{I^{n+1} R^{\prime}}\right)=\ell_{R}\left(R / \overline{I^{n+1}}\right)$, whence

$$
\overline{\mathrm{e}}_{I}^{1}(R)=\overline{\mathrm{e}}_{I^{\prime}}^{1}\left(R^{\prime}\right) .
$$

Here we notice that Ass $D^{\prime}=\operatorname{Assh} D^{\prime}$, because R^{\prime} is catenary and normal; hence D^{\prime} is unmixed, as D^{\prime} is a homomorphic image of a Cohen-Macaulay ring. The ring D^{\prime} is analytically unramified. To see this, since D^{\prime} is a Nagata local ring, it suffices to show that D is reduced, that is, $D_{P}=T_{P} / x T_{P}$ is an integral domain for every $P \in \operatorname{Ass}_{T} D$. Let $\mathfrak{p}=P \cap R$. Then since $\operatorname{ht}_{T} P=1$, we have $\operatorname{ht}_{R} \mathfrak{p} \leq 1$, so that $I \nsubseteq \mathfrak{p}$, because $\operatorname{ht}_{R} \mathfrak{p} \leq 1<d=\operatorname{dim} R$. Without loss of generality we may assume that $a_{\ell} \notin \mathfrak{p}$. Then, because $x=\sum_{i=1}^{\ell} a_{i} Z_{i}$ and a_{ℓ} is a unit of $R_{\mathfrak{p}}$, we get

$$
T_{\mathfrak{p}}=R_{\mathfrak{p}}\left[Z_{1}, Z_{2}, \ldots, Z_{\ell}\right]=R_{\mathfrak{p}}\left[Z_{1}, Z_{2}, \ldots, Z_{\ell-1}, x\right],
$$

whence the ring

$$
T_{\mathfrak{p}} / x T_{\mathfrak{p}}=R_{\mathfrak{p}}\left[Z_{1}, Z_{2}, \ldots, Z_{\ell}\right] / x R_{\mathfrak{p}}\left[Z_{1}, Z_{2}, \ldots, Z_{\ell}\right]=R_{\mathfrak{p}}\left[Z_{1}, Z_{2}, \ldots, Z_{\ell-1}\right]
$$

is an integral domain, as it is the polynomial ring with $\ell-1$ indeterminates over $R_{\mathfrak{p}}$. Therefore for all $P \in \operatorname{Ass}_{T} D$ the ring $D_{P}=T_{P} / x T_{P}$ is an integral domain, because it is a localization of $R_{\mathfrak{p}}\left[Z_{1}, Z_{2}, \ldots, Z_{\ell-1}\right]$. Thus D is reduced, whence D^{\prime} is analytically unramified and unmixed.

Let us denote by \mathcal{A} the extended Rees ring of $I T$ and by $\overline{\mathcal{A}}$ the integral closure of \mathcal{A} in $T\left[t, t^{-1}\right]$, where t denotes an indeterminate. Similarly, let us denote by T the extended Rees ring of $I D$ and by $\overline{\mathrm{T}}$ the integral closure of T in $D\left[t, t^{-1}\right]$. We put $N=\left(t^{-1}, I t\right)$ in \mathcal{A}. We look at the homomorphism

$$
\psi: T\left[t, t^{-1}\right] \rightarrow D\left[t, t^{-1}\right]
$$

of graded T-algebras such that $\psi(t)=t$. Since $\psi(\mathcal{A})=\mathrm{T}$ and $\overline{\mathrm{T}}$ is a module-finite extension of T , the homomorphism ψ gives rise to the finite homomorphism

$$
\varphi: \overline{\mathcal{A}} / x t \overline{\mathcal{A}} \longrightarrow \overline{\mathrm{~T}}
$$

of graded T-algebras. Let $\overline{\mathcal{B}}$ (resp. $\overline{\mathrm{U}}$) denote the integral closure of $\mathcal{B}=\mathcal{A}_{\mathfrak{q}}$ (resp. $U=T_{q}$). Then we get the homomorphism

$$
\varphi_{\mathfrak{q}}: \overline{\mathcal{B}} / x t \overline{\mathcal{B}} \rightarrow \overline{\mathrm{U}}
$$

of graded R^{\prime}-algebras and, thanks to Proof of [22, Theorem 2.1], we furthermore have the following. Let us include a brief proof for the sake of completeness.

Claim 2. The homomorphism

$$
\varphi_{P}:[\overline{\mathcal{A}} / x t \overline{\mathcal{A}}]_{P} \longrightarrow[\overline{\mathbf{T}}]_{P}
$$

is an isomorphism for all $P \in \operatorname{Spec} \mathcal{A} \backslash V(N)$. Hence the kernel and the cokernel of the homomorphism $\varphi_{\mathfrak{q}}: \overline{\mathcal{B}} / x t \overline{\mathcal{B}} \longrightarrow \overline{\mathrm{U}}$ of graded \mathcal{B}-modules are finitely graded.

Proof. Because $\overline{\mathcal{A}}[t]=T\left[t, t^{-1}\right]$ and $x t \overline{\mathcal{A}}[t]=x T\left[t, t^{-1}\right]$, the homomorphism $\varphi_{t^{-1}}$ is an isomorphism, whence so is the homomorphism φ_{P}, if $t^{-1} \notin P$.

Suppose now that $I t \nsubseteq P$. We may assume $a_{\ell} t \notin P$. Notice that

$$
\begin{aligned}
{[\overline{\mathcal{A}} / x t \overline{\mathcal{A}}]_{a_{\ell} t} } & =\left[\overline{R\left[I t, t^{-1}\right]}\left[Z_{1}, Z_{2}, \ldots, Z_{\ell}\right] / x t \cdot \overline{R\left[I t, t^{-1}\right]}\left[Z_{1}, Z_{2}, \ldots, Z_{\ell}\right]\right]_{a_{\ell} t} \\
& =\left(\overline{R\left[I t, t^{-1}\right]}\left[\frac{1}{a_{\ell} t}\right]\right)\left[Z_{1}, Z_{2}, \ldots, Z_{\ell}\right] /\left(\sum_{i=1}^{\ell-1} \frac{a_{i} Z_{i} t}{a_{\ell} t}+Z_{\ell}\right) \\
& =\left(\overline{R\left[I t, t^{-1}\right]}\left[\frac{1}{a_{\ell} t}\right]\right)\left[Z_{1}, Z_{2}, \ldots, Z_{\ell-1}\right]
\end{aligned}
$$

and that

$$
\begin{aligned}
D\left[t, t^{-1}\right]_{a_{\ell} t} & =T\left[t, t^{-1}, \frac{1}{a_{\ell} t}\right] / x \cdot T\left[t, t^{-1}, \frac{1}{a_{\ell} t}\right] \\
& =T\left[t, t^{-1}, \frac{1}{a_{\ell}}\right] / x \cdot T\left[t, t^{-1}, \frac{1}{a_{\ell}}\right] \\
& =R\left[\frac{1}{a_{\ell}}, Z_{1}, Z_{2}, \ldots, Z_{\ell}, t, t^{-1}\right] / x \cdot R\left[\frac{1}{a_{\ell}}, Z_{1}, Z_{2}, \ldots, Z_{\ell}, t, t^{-1}\right] \\
& =\left(R\left[\frac{1}{a_{\ell}}, t, t^{-1}\right]\right)\left[Z_{1}, Z_{2}, \ldots, Z_{\ell}\right] /\left(\sum_{i=1}^{\ell-1} \frac{a_{i} Z_{i}}{a_{\ell}}+Z_{\ell}\right) \\
& =\left(\left[R\left[t, t^{-1}\right]\right]\left[\frac{1}{a_{\ell} t}\right]\right)\left[Z_{1}, Z_{2}, \ldots, Z_{\ell-1}\right] .
\end{aligned}
$$

Then we get the following commutative diagram

where the vertical homomorphisms are isomorphisms, so that the horizontal homomorphism $\varphi_{a_{\ell} t}$ is injective. Because $\left(\left[\overline{R\left[I t, t^{-1}\right]}\right]\left[\frac{1}{a_{\ell} t}\right]\right)\left[Z_{1}, Z_{2}, \ldots, Z_{\ell-1}\right]$ is integrally closed in $\left(\left[R\left[t, t^{-1}\right]\right]\left[\frac{1}{a_{\ell} t}\right]\right)\left[Z_{1}, Z_{2}, \ldots, Z_{\ell-1}\right]$ and $\varphi_{a_{\ell} t}$ is finite, $\varphi_{a_{\ell} t}$ is an isomorphism, whence

$$
\varphi_{P}:[\overline{\mathcal{A}} / x t \overline{\mathcal{A}}]_{P} \longrightarrow[\overline{\mathbf{T}}]_{P}
$$

is an isomorphism too. This proves Claim 2.
Because t^{-1}, xt form a regular sequence in the normal $\operatorname{ring} \overline{\mathcal{B}}$ and because $\operatorname{dim} D^{\prime}=$ $\operatorname{dim} R^{\prime}-1=d-1 \geq 2$, thanks to Claim 2, we have

$$
\overline{\mathrm{e}}_{I}^{1}(R)=\overline{\mathrm{e}}_{I^{\prime}}^{1}\left(R^{\prime}\right)=\overline{\mathrm{e}}_{I D^{\prime}}^{1}\left(D^{\prime}\right)
$$

Thus the hypothesis of induction on d yields the assertion that $\overline{\mathrm{e}}_{I}^{1}(R) \geq 0$, which completes the proof of Theorem 9.1.

The condition in Theorem 9.1 that R is unmixed is not superfluous. Let us note the simplest example. See [26, Example 2.4] for more examples.

Example 9.2. We look at the local ring

$$
R=k[[X, Y, Z]] / \mathfrak{a},
$$

where $k[[X, Y, Z]]$ is the formal power series ring over a field k and $\mathfrak{a}=(X) \cap(Y, Z)$. Then $\operatorname{dim} R=2, R$ is mixed, and $\overline{\mathrm{e}}_{\mathfrak{m}}^{1}(R)=\overline{\mathrm{e}}_{\mathfrak{m}}^{2}(R)=-1$. Hence the famous bad example [29, p. 203, Example 2] of Nagata which is a non-regular local integral domain (A, \mathfrak{n}) of dimension 2 with $\mathrm{e}_{\mathfrak{n}}^{0}(A)=1$ possess $\overline{\mathrm{e}}_{\mathfrak{n}}^{1}(A)=\overline{\mathrm{e}}_{\mathfrak{n}}^{2}(A)=-1$, because

$$
\widehat{A} \cong k[[X, Y, Z]] /[(X) \cap(Y, Z)]
$$

for some field k.

Proof. We put $T=k[[X, Y, Z]]$ and $\mathfrak{q}=(X, Y, Z)$ in T. Then $\bar{R}=T /(X) \oplus T /(Y, Z)$ and we have the exact sequence

$$
(E) \quad 0 \rightarrow R \rightarrow T /(X) \oplus T /(Y, Z) \rightarrow T / \mathfrak{q} \rightarrow 0
$$

of T-modules; hence $\mathfrak{m} \bar{R} \subseteq R$. Recall that \mathfrak{m} is a normal ideal in R, that is, $\overline{\mathfrak{m}^{n}}=\mathfrak{m}^{n}$ for all $n \geq 1$, since the associated graded ring

$$
\operatorname{gr}_{\mathfrak{m}}(R)=k[X, Y, Z] /[(X) \cap(Y, Z)]
$$

of \mathfrak{m} is reduced. Therefore, as

$$
\mathfrak{m}^{n+1}=\overline{\mathfrak{m}^{n+1}}=\overline{\mathfrak{m}^{n+1} \bar{R}} \cap R=\mathfrak{m}^{n+1} \bar{R} \cap R,
$$

thanks to exact sequence (E) above, we get

$$
0 \rightarrow R / \overline{\mathfrak{m}^{n+1}} \rightarrow T /\left[(X)+\mathfrak{q}^{n+1}\right] \oplus T /\left[(Y, Z)+\mathfrak{q}^{n+1}\right] \rightarrow T / \mathfrak{q} \rightarrow 0
$$

for all $n \geq 0$. Hence

$$
\ell_{R}\left(R / \overline{\mathfrak{m}^{n+1}}\right)=\binom{n+2}{2}+\binom{n+1}{1}-1
$$

so that $\overline{\mathrm{e}}_{\mathfrak{m}}^{1}(R)=\overline{\mathrm{e}}_{\mathfrak{m}}^{2}(R)=-1$.
Let us note a consequence of Theorem 9.1.
Corollary 9.3 ([27, Theorem 1]). Let R be an analytically unramified unmixed local ring with maximal ideal \mathfrak{m} and $d=\operatorname{dim} R>0$. Let I be a parameter ideal in R. If $\overline{\mathrm{e}}_{I}^{1}(R)=\mathrm{e}_{I}^{1}(R)$, then R is a regular local ring with $\mu_{R}(\mathfrak{m} / I) \leq 1$, whence I is normal

Proof. We get $\mathrm{e}_{I}^{1}(R) \geq 0$ by Theorem 9.1, whence by Theorem $1.8 R$ is a CohenMacaulay local ring with $\mathrm{e}_{I}^{1}(R)=0$. Because $\mathrm{e}_{\bar{I}}^{1}(R) \geq \mathrm{e}_{\bar{I}}^{1}(R)$ and

$$
\mathrm{e}_{\bar{I}}^{1}(R) \geq 0
$$

([30, Corollary 1]), we furthermore have $\mathrm{e}_{\bar{I}}^{1}(R)=0$, whence \bar{I} is a parameter ideal in R ([30, Corollary 2]). Because parameter ideals contain no proper reductions ([31]), we get $\bar{I}=I$, whence by $\left[7\right.$, Theorem (3.1)] R is a regular local ring with $\mu_{R}(\mathfrak{m} / I) \leq 1$ and I is normal.

Remark 9.4. In Corollary 9.3, unless I is a parameter ideal, R is not necessarily a regular local ring, even though $\overline{\mathrm{e}}_{I}^{1}(R)=\mathrm{e}_{I}^{1}(R)$. Let us note an example. We look at the local ring

$$
R=k[[X, Y, Z]] /\left(Z^{2}-X Y\right)
$$

where $k[[X, Y, Z]]$ is the formal power series ring over a field k of characteristic 0 . Then R is a rational singularity, so that $\overline{\mathrm{e}}_{I}^{1}(R)=\mathrm{e}_{I}^{1}(R)$ for every integrally closed \mathfrak{m}-primary ideal I in R.

References

[1] Y. Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ. 23 (1983), 85-94.
[2] Y. Aoyama and S. Goto, On the endomorphism ring of the canonical module, J. Math. Kyoto Univ. 25-1 (1985), 21-30.
[3] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, 1993.
[4] A. Corso, Sally modules of m-primary ideals in local rings, Comm. Algebra, to appear.
[5] N. T. Cuong, p-standard system of parameters and p-standard ideals in local rings, Acta Mathematica Vietnamica 20 (1995), 145-161.
[6] N. T. Cuong and D. T. Cuong, On sequentially Cohen-Macaulay modules, Kodai Math. J. 30 (2007), no. 3, 409-428. Approximately Cohen-Macaulay rings, J. Algebra 76 (1982), 214-225.
[7] S. Goto, Integral closedness of complete-intersection ideals, J. Algebra, 108 (1987), 151-160.
[8] S. Goto, J. Hong, and M. Mandal, The positivity of the first normalized Hilbert coefficients, Preprint 2008.
[9] S. Goto, Y. Horiuchi and H. Sakurai, Sequentially Cohen-Macaulayness versus parametric decomposition of powers of parameter ideals, Preprint 2008.
[10] L. Ghezzi, J.-Y. Hong and W. V. Vasconcelos, The signature of the Chern coefficients of local rings, Preprint 2008.
[11] L. Ghezzi, S. Goto, J. Hong, K. Ozeki, T. T. Phuong, and W. V. Vasconcelos, Cohen-Macaulayness versus the vanishing of the first Hilbert coefficient of parameter ideals, J. London Math. Soc. (to appear).
[12] L. Ghezzi, S. Goto, J. Hong, K. Ozeki, T. T. Phuong, and W. V. Vasconcelos, Negativity Conjecture for the First Hilbert Coefficient, Preprint (2010)
[13] S. Goto, S. Iai, and Y. Shimoda, Gorensteinness in Rees algebras of powers of parameter ideals, in preparation.
[14] S. Goto and Y. Nakamura, Multiplicities and tight closures of parameters, J. Algebra 244 (2001), 302-311.
[15] S. Goto and K. Nishida, Hilbert coefficients and Buchsbaumness of associated graded rings, J. Pure and Appl. Algebra 181 (2003), 61-74.
[16] S. Goto and K. Ozeki, The structure of Sally modules - towards a theory of non-Cohen-Macaulay cases, Preprint 2009.
[17] S. Goto and K. Ozeki, Buchsbaumness in local rings possessing constant first Hilbert coefficients of parameters, Nagoya Math. J. (to appear).
[18] S. Goto and K. Ozeki, Uniform bounds for Hilbert coefficients of parameters, Preprint (2010).
[19] L. T. Hoa, Reduction numbers and Rees Algebras of powers of ideal, Proc. Amer. Math. Soc, 119, 1993, 415-422.
[20] C. Huneke, On the symmetric and Rees algebra of an ideal generated by a d-sequence, J. Algebra 62 (1980), 268-275.
[21] F. Hayasaka and E. Hyry, A note on the Buchsbaum-Rim function of a parameter module, Preprint 2009.
[22] J. Hong and B. Ulrich, Specialization and integral closure, Preprint (2006).
[23] I. Kaplansky, Commutative Rings, Allyn and Bacon, Inc., Boston, 1970.
[24] T. Kawasaki, On Cohen-Macaulayfication of certain quasi-projective schemes, J. Math. Soc. Japan 50 (1998), 969-991.
[25] C. H. Linh and N. V. Trung, Uniform bounds in generalized Cohen-Macaulay rings, J. Algebra, 304 (2006), 1147-1159.
[26] M. Mandal, B. Singh, and J. Verma, On some conjectures about the Chern numbers of filtrations, arXiv:1001.2822v1 [math. AC].
[27] M. Moralès, N.V. Trung, and O. Villamayor, Sur la fonction de Hilbert-Samuel des clôtures intégrales des puissances d'idéaux engendrés par un système de paramètres, J. Algebra, 129 (1990), 96-102.
[28] M. Mandal and J. K. Verma, On the Chern number of an ideal, Preprint 2008.
[29] M. Nagata, Local Rings, Interscience, 1962.
[30] M. Narita, A note on the coefficients of Hilbert characteristic functions in semi-regular rings, Proc. Cambridge Philos. Soc. 59 (1963), 269-275.
[31] D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Camb. Phil. Soc., 50 (1954), 145-158.
[32] D. Rees, \mathfrak{a}-transform of local rings and a theorem on multiplicities of ideals, Proc. Cambridge Philos. Soc. 57 (1961), 8-17.
[33] P. Schenzel, Multiplizitäten in verallgemeinerten Cohen-Macaulay-Moduln, Math. Nachr. 88 (1979), 295-306.
[34] P. Schenzel, On the dimension filtration and Cohen-Macaulay filtered modules, Van Oystaeyen, Freddy (ed.), Commutative algebra and algebraic geometry, New York: Marcel Dekker. Lect. Notes Pure Appl. Math. 206 (1999), 245-264.
[35] P. Schenzel, N. V. Trung and N. T. Cuong, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57-73.
Combinatorics and Commutative Algebra, Second Ed., Birkhäuser, Boston, Basel, Stuttgart, 1996.
[36] N. V. Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J. 102 (1986), 1-49.
[37] J. Stückrad, W. Vogel, Buchsbaum Rings and Applications, Springer-Verlag, Berlin, Heidelberg, New York, 1986.
[38] W. V. Vasconcelos, Cohomological degrees of graded modules in "Six lectures on Commutative Algebra", Progress in Mathematics 166, 345-392, Birkhäuser Verlag, Basel • Boston • Berlin.
[39] W. V. Vasconcelos, The Chern coefficients of local rings, Michigan Math. J. 57 (2008), 725-743.
[40] W. V. Vasconcelos, Homological degrees and the Chern coefficients of local rings, Private Correspondence.
[41] C. Polini, B. Ulrich, and W. V. Vasconcelos, Normalization of ideals and Brainccon - Skoda numbers, Mathematical Research Letters, 12 (2005), 827-842.

Department of Mathematics, School of Science and Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki 214-8571, Japan

E-mail address: goto@math.meiji.ac.jp

[^0]: Key words and phrases: Buchsbaum local ring, associated graded ring, Rees algebra, Hilbert function, Hilbert coefficient.

 2000 Mathematics Subject Classification: 13H10, 13A30, 13B22, 13 H 15.

