

2147-2

School and Workshop on Local Rings and Local Study of Algebraic Varieties

31 May - 11 June, 2010

Hilbert Coefficients of Parameters

S. Goto Meiji University, Japan

Strada Costiera II, 34151 Trieste, Italy - Tel.+39 040 2240 III; Fax +39 040 224 163 - sci_info@ictp.it

HILBERT COEFFICIENTS OF PARAMETERS

SHIRO GOTO

Contents

1.	When $e_{Q}^{1}(A) < 0$?	1
2.	Homological degrees	15
3.	When is the set $\Lambda_1(A)$ finite?	21
4.	How about $e_Q^2(A)$? – uniform bounds for the sets $\Lambda_i(A)$ $(1 \le i \le d)$	28
5.	A method to compute $e_Q^1(A)$	36
6.	Constancy of $e_Q^1(A)$ with the common \overline{Q}	41
7.	The case where $\overline{Q} = \mathfrak{m}$	50
8.	A structure theorem for local rings possessing $e_Q^1(A) = -1$	52
9.	Appendix: when $\overline{e}_I^1(R) \ge 0$?	56
References		63

1. When $e_Q^1(A) < 0$?

The purpose of my lecture is to report the recent progress in the analysis of Hilbert coefficients of parameters. My research is based discussions [11], [12], and [18] with L. Ghezzi, J. Hong, K. Ozeki, T. T. Phuong, and W. V. Vasconcelos. Especially, the very recent progress is strongly inspired by Vasconcelos [40]; so the results of my lecture are joint works with them.

My lecture consists of 8 sections and the table of contents is the following.

- (1) When $e_Q^1(A) < 0$?
- (2) Homological degrees.
- (3) When is the set

 $\Lambda_1(A) = \{ e_Q^1(A) \mid Q \text{ is a parameter ideal in } A \}$

finite?

Key words and phrases: Buchsbaum local ring, associated graded ring, Rees algebra, Hilbert function, Hilbert coefficient.

²⁰⁰⁰ Mathematics Subject Classification: 13H10, 13A30, 13B22, 13H15.

(4) How about $e_Q^2(A)$ – uniform bounds for the sets

 $\Lambda_i(A) = \{ e_Q^i(A) \mid Q \text{ is a parameter ideal in } A \}$

with $1 \le i \le \dim A$.

- (5) A method to compute $e_Q^1(A)$.
- (6) Constancy of $e_Q^1(A)$ with the same integral closure \overline{Q} .
- (7) The case where $\overline{Q} = \mathfrak{m}$.
- (8) A structure theorem of local rings with $e_Q^1(A) = -1$.
- (9) Appendix: when $\overline{e}_I^1(R) \ge 0$?

In what follows, let A be a Noetherian local ring with maximal ideal \mathfrak{m} and $d = \dim A > 0$. Let $\ell_A(M)$ denote, for an A-module M, the length of M. Then, for each \mathfrak{m} -primary ideal I in A, we have integers $\{e_I^i(A)\}_{0 \le i \le d}$ such that the equality

$$\ell_A(A/I^{n+1}) = e_I^0(A) \binom{n+d}{d} - e_I^1(A) \binom{n+d-1}{d-1} + \dots + (-1)^d e_I^d(A)$$

holds true for all $n \gg 0$. We call these integers $e_I^i(A)$ the Hilbert coefficients of A with respect to I. In particular, the leading coefficient $e_I^0(A)$ is called the multiplicity of Awith respect to I and plays an important role in the analysis of singularity of A and I.

For example, let me consider the case where I = Q is a parameter ideal in A. So, we assume that $Q = (a_1, a_2, \dots, a_d)$ is an ideal of A generated by a system a_1, a_2, \dots, a_d of parameters. Then as is well-known,

$$\ell_A(A/Q) \ge e_Q^0(A)$$

and we have definitions and characterizations of several kinds of local rings in terms of multiplicity of parameters. Let me remind some of them, which I maintain throughout this lecture. Let $\mathrm{H}^{i}_{\mathfrak{m}}(*)$ $(i \in \mathbb{Z})$ denote the *i*-th local cohomology functor of A with respect to \mathfrak{m} . We put $\mathrm{h}^{i}(A) = \ell_{A}(\mathrm{H}^{i}_{\mathfrak{m}}(A))$ for all $i \in \mathbb{Z}$.

Definitions and characterizations 1.1. (1) *A is a Cohen-Macaulay ring if and only* if $\ell_A(A/Q) = e_Q^0(A)$ for some (and hence for any) parameter ideal *Q* in *A*. When this is the case, $H^i_{\mathfrak{m}}(A) = (0)$ for all $i \neq d$. (2) ([37]) We say that A is a Buchsbaum ring, if $\ell_A(A/Q) - e_Q^0(A)$ is constant and independent of the choice of parameter ideals Q in A. When this is the case,

$$\mathfrak{m}\mathrm{H}^i_\mathfrak{m}(A) = (0)$$

for all $i \neq d$. Therefore, the local cohomology modules $\mathrm{H}^{i}_{\mathfrak{m}}(A)$ are finite-dimensional vector spaces over A/\mathfrak{m} . (The converse is not true in general, that is, A is not necessarily a Buchsbaum ring, even if $\mathfrak{m}\mathrm{H}^{i}_{\mathfrak{m}}(A) = (0)$ for all $i \neq d$.)

(3) ([35, 36]) We say that A is a generalized Cohen-Macaulay ring, if

$$\sup_{Q} [\ell_A(A/Q) - e_Q^0(A)] < \infty$$

where Q runs over parameter ideals in A. This condition is equivalent to saying that $\mathrm{H}^{i}_{\mathfrak{m}}(A)$ are finitely generated A-modules for all $i \neq d$. (So, sometimes I call these local rings to have FLC; finite local cohomology modules.) When this is the case, we have

$$\sup_{Q} [\ell_A(A/Q) - e_Q^0(A)] = \sum_{j=0}^{d-1} {d-1 \choose j} h^j(A) := \mathbb{I}(A),$$

which we call the Buchsbaum invariant (or the Stückrad-Vogel invariant) of A.

So, every Cohen-Macaulay local ring is Buchsbaum and Buchsbaum local rings are generalized Cohen-Macaulay. These definitions and characterizations are given in terms of multiplicity of parameters.

Question 1.2. How about $e_Q^1(A)$? Namely, can we say anything about the structure of local rings in terms of vanishing or non-vanishing of $e_Q^1(A)$ for parameters? In general we have $e_Q^1(A) \leq 0$ ([28]).

As for Question 1.2, Wolmer V. Vasconcelos firstly posed the following conjecture at the conference in Yokohama 2008.

Conjecture 1.3 ([10, 39]). Assume that A is unmixed, that is dim $\widehat{A}/P = d$ for all $P \in \operatorname{Ass} \widehat{A}$, where \widehat{A} denotes the m-adic completion of A. Then A is a Cohen-Macaulay local ring, once $e_Q^1(A) = 0$ for some parameter ideal Q of A.

Later I shall affirmatively settle this conjecture (Theorem 1.8). Before that, let me prove the inequality $e_Q^1(A) \leq 0$ ([28]). This result was firstly discovered by Mandal and Verma [28] and it is also one of consequences of Theorem 1.8. After a proof of [11, Corollary 2.11] (Corollary 1.14 in this lecture) was reported in my seminar, F. Hayasaka discovered an alternate proof of it based on the following Theorem 1.4. He proved Theorem 1.4 in a more general setting, that is the case where Q is a parameter module and the multiplicity is the Buchsbaum-Rim multiplicity. Let me include a brief proof in the case of ideals.

Theorem 1.4 ([21, Theorem 1.1]). Let $Q = (a_1, a_2, \dots, a_d)$ be a parameter ideal in A. Then

$$\ell_A(A/Q^{n+1}) \ge e_Q^0(A) \binom{n+d}{d}$$

for all $n \ge 0$. If $\ell_A(A/Q^{n+1}) = e_Q^0(A) \binom{n+d}{d}$ for some $n \ge 0$, then A is a Cohen-Macaulay ring, so that

$$\ell_A(A/Q^{n+1}) = e_Q^0(A) \binom{n+d}{d}$$

for all $n \geq 0$.

Proof. Let $B = A[X_1, X_2, \dots, X_d]$ be the polynomial ring and let $M = \mathfrak{m}B + (X_1, X_2, \dots, X_d)$ in B. Let $f_i = X_i - a_i$ $(1 \le i \le d)$ and put $\mathfrak{q} = (f_1, f_2, \dots, f_d)B$. Then f_1, f_2, \dots, f_d is a regular sequence in B, as $B = A[f_1, f_2, \dots, f_d]$. We look at the A-algebra map

 $\varphi: B \to A$

defined by $\varphi(X_i) = a_i$ for all $1 \le i \le d$. Then $\mathfrak{q} = \operatorname{Ker}\varphi$. We put $C = B_M$ and extend φ to the homomorphism $\psi: C \to A$

$$C \xrightarrow{\psi} A$$

Then $\operatorname{Ker}\psi = \mathfrak{q}C$ and we have the identifications

$$A/Q^{n+1} = B/[\mathfrak{q}^{n+1} + (X_1, X_2, \cdots, X_d)] = C/[\mathfrak{q}^{n+1}C + (X_1, X_2, \cdots, X_d)C]$$

for all $n \ge 0$, whence X_1, X_2, \cdots, X_d is a system of parameters for $C/\mathfrak{q}^{n+1}C$. Let

$$\operatorname{Assh} C/\mathfrak{q}C = \{\mathfrak{p} \in \operatorname{Supp}_C C/\mathfrak{q}C \mid \dim C/\mathfrak{p} = \dim C/\mathfrak{q}C\}.$$

Then, thanks to the associative formula of multiplicity together with the fact that f_1, f_2, \dots, f_d is a regular sequence in C, we get

$$\ell_{A}(A/Q^{n+1}) = \ell_{C}(C/[\mathfrak{q}^{n+1}C + (X_{1}, X_{2}, \cdots, X_{d})C])$$

$$\geq e_{(X_{1}, X_{2}, \cdots, X_{d})C}^{0}(C/\mathfrak{q}^{n+1}C)$$

$$= \sum_{\mathfrak{p}\in \operatorname{Assh}_{C}C/\mathfrak{q}C} \ell_{C\mathfrak{p}}(C_{\mathfrak{p}}/\mathfrak{q}^{n+1}C_{\mathfrak{p}}) \cdot e_{(X_{1}, X_{2}, \cdots, X_{d})C}^{0}(C/\mathfrak{p})$$

$$= \sum_{\mathfrak{p}\in \operatorname{Assh}_{C}C/\mathfrak{q}C} \binom{n+d}{d} \ell_{C\mathfrak{p}}(C_{\mathfrak{p}}/\mathfrak{q}C_{\mathfrak{p}}) \cdot e_{(X_{1}, X_{2}, \cdots, X_{d})C}^{0}(C/\mathfrak{p})$$

$$= \binom{n+d}{d} \sum_{\mathfrak{p}\in \operatorname{Assh}_{C}C/\mathfrak{q}C} \ell_{C\mathfrak{p}}(C_{\mathfrak{p}}/\mathfrak{q}C_{\mathfrak{p}}) \cdot e_{(X_{1}, X_{2}, \cdots, X_{d})C}^{0}(C/\mathfrak{p})$$

$$= \binom{n+d}{d} e_{(X_{1}, X_{2}, \cdots, X_{d})C}^{0}(C/\mathfrak{q}C) \text{ (by the associative formula)}$$

$$= \binom{n+d}{d} e_{Q}^{0}(A)$$

for all $n \ge 0$. Let $n \ge 0$ be now a fixed integer. We then have

$$\ell_A(A/Q^{n+1}) = \binom{n+d}{d} e_Q^0(A)$$

if and only if

$$\ell_C(C/[\mathfrak{q}^{n+1}C + (X_1, X_2, \cdots, X_d)C]) = e^0_{(X_1, X_2, \cdots, X_d)C}(C/\mathfrak{q}^{n+1}C),$$

which is equivalent to saying that $C/\mathfrak{q}^{n+1}C$ is a Cohen-Macaulay local ring. Because $\mathfrak{q}^{n+1}C$ is a perfect ideal of C (recall that $\mathfrak{q} = (f_1, f_2, \dots, f_d)$ is generated by a B-regular sequence f_1, f_2, \dots, f_d), this condition is equivalent to saying that he local ring C is Cohen-Macaulay, that is our base ring A is Cohen-Macaulay.

As consequences of Theorem 1.4 we get the following.

Corollary 1.5. Let Q be a parameter ideal in A. Then the following assertions hold true.

(1) ([28]) $e_Q^1(A) \le 0.$

(2) (cf. Corollary1.14) A is a Cohen-Macaulay ring if and only if $e_Q^i(A) = 0$ for all $1 \le i \le d$.

Proof. We have

$$0 \leq \ell_A(A/Q^{n+1}) - e_Q^0(A) \binom{n+d}{d} = -e_Q^1(A) \binom{n+d-1}{d-1} + (\text{terms of lower degree})$$

for all $n \gg 0$, whence $e_Q^1(A) \leq 0$. The second assertion is clear.

Later I will prove Corollary 1.5 in our own context.

Let me now be back to Vasconcelos' conjecture. To prove it, we need the following.

Lemma 1.6 ([15]). If d = 1, then $e_Q^1(A) = -h^0(A)$.

This easily follows from the fact that $A/\mathrm{H}^0_{\mathfrak{m}}(A)$ is a Cohen-Macaulay ring but the result itself plays a very important role in the analysis of $\mathrm{e}^1_Q(A)$.

Lemma 1.7 ([14]). Let A be a Noetherian local ring with maximal ideal \mathfrak{m} and $d = \dim A \ge 2$, possessing the canonical module K_A . Suppose that

$$\operatorname{Ass} A \setminus \{\mathfrak{m}\} = \operatorname{Assh} A,$$

that is dim $A/\mathfrak{p} = d$ for every $\mathfrak{p} \in AssA \setminus \{\mathfrak{m}\}$. Then the following assertions hold true.

- (1) The local cohomology module $H^1_{\mathfrak{m}}(A)$ is finitely generated.
- (2) The set $\mathcal{F} = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \dim A_{\mathfrak{p}} > \operatorname{depth} A_{\mathfrak{p}} = 1 \}$ is finite.
- (3) Let $a \in \mathfrak{m}$ and assume that $a \notin \bigcup_{\mathfrak{p} \in \operatorname{Assh} A} \mathfrak{p} \cup \bigcup_{\mathfrak{p} \in \mathcal{F}, \mathfrak{p} \neq \mathfrak{m}} \mathfrak{p}$. Then

$$\operatorname{Ass}_A A/(a) \setminus \{\mathfrak{m}\} = \operatorname{Assh}_A A/(a).$$

(4) Suppose that the residue class field A/m of A is infinite and let I be an m-primary ideal in A. Then one can choose an element a ∈ I \ mI so that a is superficial with respect to I and

$$\operatorname{Ass}_A A/(a) \setminus \{\mathfrak{m}\} = \operatorname{Assh}_A A/(a).$$

Let me talk a little bit about the proof of Lemma 1.7. In Section 2 I will provide a smarter approach to Vasconcelos' conjecture, where we will need Lemma 1.7 no more.

Proof. Let $U = U_A(0)$ denote the unmixed component of (0) in A. Then $\ell_A(U) < \infty$. As $U = (0) :_A K_A$, we have the exact sequence

$$0 \to U \to A \xrightarrow{\varphi} \operatorname{Hom}_A(K_A, K_A) \to C \to 0$$

of A-modules, where $\varphi(a) = a \cdot 1_{K_A}$ for all $a \in A$. Notice that depth_A Hom_A(K_A, K_A) \geq 2, because $d \geq 2$ and we get

$$\mathrm{H}^{1}_{\mathfrak{m}}(A) \cong \mathrm{H}^{0}_{\mathfrak{m}}(C) \subseteq C,$$

so that $H^1_{\mathfrak{m}}(A)$ is a finitely generated A-module.

Let $\mathfrak{p} \in \operatorname{Spec} A$ and suppose that $\mathfrak{p} \neq \mathfrak{m}$, $\operatorname{ht}_A \mathfrak{p} > 1$, but depth $A_{\mathfrak{p}} = 1$. Then, localizing at \mathfrak{p} , we get the exact sequence

$$0 \to A_{\mathfrak{p}} \to \operatorname{Hom}_{A_{\mathfrak{p}}}([K_A]_{\mathfrak{p}}, [K_A]_{\mathfrak{p}}) \to C_{\mathfrak{p}} \to 0$$

of $A_{\mathfrak{p}}$ -modules. Recall that $[K_A]_{\mathfrak{p}} = K_{A_{\mathfrak{p}}}$, because $[K_A]_{\mathfrak{p}} \neq (0)$ and we have depth_A $C_{\mathfrak{p}} = 0$, since depth_{A_p} Hom_{A_p}($[K_A]_{\mathfrak{p}}, [K_A]_{\mathfrak{p}}) \geq 2$ and depth $A_{\mathfrak{p}} = 1$. Thus $\mathfrak{p} \in Ass_A C$, so that

$$\mathcal{F} \subseteq \operatorname{Ass}_A C \cup \{\mathfrak{m}\},\$$

whence \mathcal{F} is a finite set.

Let $a \in \mathfrak{m}$ such that $a \notin \bigcup_{\mathfrak{p}\in \operatorname{Assh} A} \cup \bigcup_{\mathfrak{p}\in\mathcal{F},\mathfrak{p}\neq\mathfrak{m}} \mathfrak{p}$. Let $\mathfrak{p}\in \operatorname{Ass}_A A/(a) \setminus \{\mathfrak{m}\}$. Then (0) :_A $a \subseteq U$, because a is regular in A/U. Hence the element a is $A_{\mathfrak{p}}$ -regular, so that depth $A_{\mathfrak{p}} = 1$. Because $a \in \mathfrak{p}$, we get $\mathfrak{p} \notin \mathcal{F}$ and so $\operatorname{ht}_A \mathfrak{p} = 1$. Hence dim $A/\mathfrak{p} = d - 1$, because our local ring A is catenary; in fact, we have

$$\operatorname{Spec} A = \operatorname{Supp}_A K_A = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \dim A_{\mathfrak{p}} + \dim A/\mathfrak{p} = d \}.$$

Thus

$$\operatorname{Ass}_A A/(a) \setminus \{\mathfrak{m}\} \subseteq \operatorname{Assh}_A A/(a)$$

as claimed.

Let me now prove Vasconcelos' conjecture with the following formulation, where the implication $(1) \Rightarrow (2)$ is a result of Narita ([30, Corollary 1]).

Theorem 1.8. Suppose that A is unmixed. Then the following conditions are equivalent.

- (1) A is a Cohen-Macaulay ring.
- (2) $e_I^1(A) \ge 0$ for every \mathfrak{m} -primary ideal I in A.
- (3) $e_Q^1(A) \ge 0$ for some parameter ideal Q in A.
- (4) $e_Q^1(A) = 0$ for some parameter ideal Q in A.

Proof. Let me prove $(3) \Rightarrow (1)$. We may assume that d > 1, A is complete, and the residue class field A/\mathfrak{m} of A is infinite. Let me choose $a \in Q \setminus \mathfrak{m}Q$ so that a is superficial with respect to Q and

$$\operatorname{Ass}_A A/(a) \setminus \{\mathfrak{m}\} = \operatorname{Assh}_A A/(a).$$

(this choice is possible; see Lemma 1.7). We put $\overline{A} = A/(a)$. Then, since a is A-regular, we have

$$e_Q^1(\overline{A}) = e_Q^1(A) \ge 0$$

Therefore, if d = 2, then by Lemma 1.6 we see

$$e_Q^1(\overline{A}) = -h^0(\overline{A}) \ge 0,$$

since dim $\overline{A} = 1$. Hence \overline{A} is a Cohen-Macaulay ring, so that A is Cohen-Macaulay, because a is A-regular.

Suppose now that d > 2 and that our assertion holds true for d - 1. Let $U = U_{\overline{A}}(0)$ be the unmixed component of (0) in \overline{A} and put $B = \overline{A}/U$. Then, since $\ell_A(U) < \infty$ (we actually have $U = H^0_{\mathfrak{m}}(\overline{A})$), we have

$$\mathrm{e}^1_Q(B) = \mathrm{e}^1_Q(\overline{A}) = \mathrm{e}^1_Q(A) \geq 0.$$

Consequently, since B is unmixed, B is a Cohen-Macaulay ring by the hypothesis of induction. Hence

$$\mathrm{H}^{i}_{\mathfrak{m}}(\overline{A}) = \mathrm{H}^{i}_{\mathfrak{m}}(B) = (0) \text{ for all } 0 < i < d - 1.$$

We now look at the exact sequence

$$(\#) \quad 0 \to \mathrm{H}^{0}_{\mathfrak{m}}(\overline{A}) \to \mathrm{H}^{1}_{\mathfrak{m}}(A) \xrightarrow{a} \mathrm{H}^{1}_{\mathfrak{m}}(A) \to \mathrm{H}^{1}_{\mathfrak{m}}(\overline{A}) \to \cdots$$

of local cohomology modules, induced from the exact sequence

$$0 \to A \xrightarrow{a} A \xrightarrow{a} A \to \overline{A} \to 0.$$

Then because $\mathrm{H}^{1}_{\mathfrak{m}}(\overline{A}) = (0)$, we have $\mathrm{H}^{1}_{\mathfrak{m}}(A) = a\mathrm{H}^{1}_{\mathfrak{m}}(A)$, so that $\mathrm{H}^{1}_{\mathfrak{m}}(A) = (0)$, as $\mathrm{H}^{1}_{\mathfrak{m}}(A)$ is a finitely generated A-module. Hence $\mathrm{H}^{0}_{\mathfrak{m}}(\overline{A}) = (0)$ by exact sequence (#), so that

$$\mathrm{H}^{i}_{\mathfrak{m}}(\overline{A}) = (0) \text{ for all } i \neq d-1.$$

Thus A is a Cohen-Macaulay ring, because so is \overline{A} and a is A-regular.

In the above proof we do not use Corollary 1.5 (1).

Let Q be a parameter ideal in A and let

$$\operatorname{gr}_Q(A) = \bigoplus_{n \ge 0} Q^n / Q^{n+1}$$

denote the associated graded ring of Q. Let

$$\mathcal{H}(\mathrm{gr}_Q(A),\lambda) = \sum_{n=0}^{\infty} \ell_A(Q^n/Q^{n+1})\lambda^n$$

be the Hilbert series of $\operatorname{gr}_Q(A)$. Then we have $f(\lambda) \in \mathbb{Z}[\lambda]$ such that

$$H(\operatorname{gr}_Q(A), \lambda) = \frac{f(\lambda)}{(1-\lambda)^d}.$$

With this notaton, since $f'(1) = e_Q^1(A)$, we have the following.

Corollary 1.9. Let Q be a parameter ideal in A and let

$$\mathcal{H}(\mathrm{gr}_Q(A), \lambda) = \frac{f(\lambda)}{(1-\lambda)^d}$$

be the Hilbert series of $gr_Q(A)$, where $f(\lambda) \in \mathbb{Z}[\lambda]$. The A is a Cohen-Macaulay ring if and only if A is unmixed and f'(1) = 0.

We now ask what happens in the case where A is mixed. To answer this question, we need the following.

Observation 1.10. Let $U = U_A(0)$ be the unmixed component of (0) in A and assume that $U \neq (0)$. We put

$$t = \dim_A U \ (< d)$$
 and $B = A/U$.

Let Q be a parameter ideal in A. Then for every $n \ge 0$ we have the exact sequence

$$0 \to U/[Q^{n+1} \cap U] \to A/Q^{n+1} \to B/Q^{n+1}B \to 0,$$

whence $\ell_A(A/Q^{n+1}) = \ell_A(B/Q^{n+1}B) + \ell_A(U/[Q^{n+1} \cap U])$. Consequently, we have integers $\{s_Q^i(U)\}_{0 \le i \le t}$ such that

$$\ell_A(U/[Q^{n+1} \cap U]) = \sum_{i=0}^t (-1)^i \cdot \mathbf{s}_Q^i(U) \binom{n+t-i}{t-i}$$

for all $n \gg 0$. Notice that $s_Q^0(U) = e_Q^0(U)$ (> 0). Hence

$$\sum_{i=0}^{d} (-1)^{i} \mathbf{e}_{Q}^{i}(A) \binom{n+d-i}{d-i} = \sum_{i=0}^{d} (-1)^{i} \mathbf{e}_{Q}^{i}(B) \binom{n+d-i}{d-i} + \sum_{i=0}^{t} (-1)^{i} \mathbf{s}_{Q}^{i}(U) \binom{n+t-i}{t-i}$$

for all $n \gg 0$. Therefore, comparing the coefficients of $\binom{n+i}{i}$ in both sides, we get the following.

Fact 1.11.

$$(-1)^{d-i} \mathbf{e}_Q^{d-i}(A) = \begin{cases} (-1)^{d-i} \mathbf{e}_Q^{d-i}(B) + (-1)^{t-i} \mathbf{s}_Q^{t-i}(U) & (0 \le i \le t), \\ \\ (-1)^{d-i} \mathbf{e}_Q^{d-i}(B) & (t < i \le d) \end{cases}$$

for $0 \leq i \leq d$.

Let me give an alternate proof of Corollary 1.5 (1).

Alternate proof of Corollary 1.5 (1). Let me use the same notation as in Observation 1.10. We may assume d > 1 and A is complete. Suppose that $e_Q^1(A) > 0$. Then Ais mixed by Theorem 1.8. Hence $U \neq (0)$ but $e_Q^1(B) \leq 0$ by Theorem 1.8, since B is unmixed. Therefore if t < d - 1, by Observation 1.11 we get

$$0 > -e_Q^1(A) = -e_Q^1(B) \ge 0,$$

which is absurd. Hence t = d - 1, so that

$$0 > -e_Q^1(A) = -e_Q^1(B) + s_Q^0(U)$$

= $-e_Q^1(B) + e_Q^0(U)$
 $\ge e_Q^0(U) > 0$

which is impossible. Thus $e_Q^1(A) \leq 0$.

1	n	
T	U	

Definition 1.12. A given Noetherian local ring A of dimension $d \ge 0$ is called a *Vasconcelos* ring, either if d = 0 or if d > 0 and $e_Q^1(A) = 0$ for some parameter ideal Q in A.

Every Vasconcelos ring of dimension at most 1 is Cohen-Macaulay.

Here is a characterization of Vasconcelos rings.

Theorem 1.13. Suppose that $d = \dim A \ge 2$. Then the following conditions are equivalent.

- (1) A is a Vasconcelos ring.
- (2) $e_Q^1(A) = 0$ for every parameter ideal Q in A.
- (3) $\widehat{A}/\mathrm{U}_{\widehat{A}}(0)$ is a Cohen-Macaulay ring and $\dim_{\widehat{A}}\mathrm{U}_{\widehat{A}}(0) \leq d-2$, where $\mathrm{U}_{\widehat{A}}(0)$ denotes the unmixed component of (0) in the \mathfrak{m} -adic completion \widehat{A} of A.
- (4) The m-adic completion of A contains an ideal I such that Â/I is a Cohen-Macaulay ring and dim_Â I ≤ d − 2.

When this is the case, \widehat{A} is a Vasconcelos ring, $\operatorname{H}^{d-1}_{\mathfrak{m}}(A) = (0)$, and the canonical module $\operatorname{K}_{\widehat{A}}$ of \widehat{A} is a Cohen-Macaulay \widehat{A} -module.

In Theorem 1.13 condition (3) is free from parameter ideals. Hence $e_Q^1(A) = 0$ for every parameter ideal Q in A, once $e_Q^1(A) = 0$ for some parameter. This is what the theorem says.

Proof of Theorem 1.13. Let me maintain the notation in Observation 1.10.

(1) \Rightarrow (3) We may assume A is complete and $U \neq$ (0). If t = d - 1, then by Observation 1.11 we get

$$0 = -e_Q^1(A) = -e_Q^1(B) + e_Q^0(U) > 0.$$

Hence t < d - 1, so that by Observation 1.11 we get

$$0 = -e_Q^1(A) = -e_Q^1(B),$$

whence B is a Cohen-Macaulay ring.

(3) \Rightarrow (2) We may assume A is complete. By Observation 1.11 we have $-e_Q^1(A) = -e_Q^1(B) = 0$ for every parameter ideal Q in A.

 $(4) \Rightarrow (3)$ We will show I = U. Notice that $\dim \widehat{A}/I = d$, since $\dim_{\widehat{A}} I < d$. Similarly, because $\dim_{\widehat{A}} I < d$, we have $I\widehat{A}_{\mathfrak{p}} = (0)$ for every $\mathfrak{p} \in \operatorname{Assh} \widehat{A}$, whence $I \subseteq U$. Suppose that $U/I \neq (0)$ and choose $\mathfrak{p} \in \operatorname{Ass}_{\widehat{A}} U/I$. Then since $\mathfrak{p} \in \operatorname{Ass}_{\widehat{A}} \widehat{A}/I$, we get $\mathfrak{p} \in \operatorname{Assh} \widehat{A}$, so that

$$U\widehat{A}_{\mathfrak{p}} = I\widehat{A}_{\mathfrak{p}} = (0)$$

which is impossible. Thus I = U.

The original proof of Corollary 1.5(2) is as follows.

Corollary 1.14. Let Q be a parameter ideal in A and assume that $e_Q^i(A) = 0$ for all $1 \le i \le d$. Then A is a Cohen-Macaulay ring.

Proof. We may assume A is complete. Since A is a Vasconcelos ring, by Theorem 1.13 B = A/U is a Cohen-Macaulay ring. We must show U = (0). If $U \neq (0)$, then by Observation 1.11 we get

$$0 = (-1)^{d-t} e_Q^{d-t}(A) = (-1)^{d-t} e_Q^{d-t}(B) + e_Q^0(U) = e_Q^0(U) > 0,$$

which is impossible.

We note an example of Vasconcelos rings which is not Cohen-Macaulay.

Example 1.15. Let R be a regular local ring with maximal ideal \mathfrak{n} and $d = \dim R \geq 2$. Let X_1, X_2, \dots, X_d be a regular system of parameters of R. Let $D = R/(X_2, X_3, \dots, X_d)$ and look at the idealization

$$A = R \ltimes D$$

of D over R. Then A is a Noetherian local ring with maximal ideal $\mathfrak{m} = \mathfrak{n} \times D$, dim A = d, and depth A = 1. We have $\mathrm{H}^{i}_{\mathfrak{m}}(A) = (0)$ for all $i \neq 1, d$ but

$$\mathrm{H}^{1}_{\mathfrak{m}}(A) \cong \mathrm{H}^{1}_{\mathfrak{n}}(D).$$

Hence A is not unmixed (and not a generalized Cohen-Macaulay ring, since $H^1_{\mathfrak{m}}(A)$ is not a finitely generated A-module). For each $0 \leq i \leq d$ we put

$$\Lambda_i(A) = \{ e_Q^i(A) \mid Q \text{ is a parameter ideal in } A \}.$$

Then the following assertions hold true.

- (1) $\Lambda_i(A) = \{0\}$ for all $1 \le i \le d$ such that $i \ne d 1$.
- (2) $\Lambda_0(A) = \{n \mid 0 < n \in \mathbb{Z}\}$ and $\Lambda_{d-1}(A) = \{(-1)^{d-1}n \mid 0 < n \in \mathbb{Z}\}.$

Hence A is a Vasconcelos ring, if d > 2. We furthermore have the following.

- (3) Every parameter ideal of A is generated by a system of parameters which forms a d-sequence in A.
- (4) Proj(⊕_{n≥0} Qⁿ) is not a locally Cohen-Macaulay scheme for any parameter ideal Q in A.

Proof. Let $p: A \to R$, p(a, x) = a be the projection. For each *R*-module *M*, let us denote by $_pM$ the *A*-module *M* which is considered to be an *A*-module via *p*. We look at the exact sequence

$$0 \to {}_p D \xrightarrow{\iota} A \xrightarrow{p} R \to 0,$$

where $\iota(x) = (0, x)$ for each $x \in D$. Let Q be a parameter ideal in A and put $\mathfrak{q} = QR$. Then we get the exact sequence

$$0 \to {}_p[D/\mathfrak{q}^{n+1}D] \to A/Q^{n+1} \to R/\mathfrak{q}^{n+1} \to 0.$$

Therefore since D is a DVR, we have

$$\ell_A(A/Q^{n+1}) = \ell_R(R/\mathfrak{q}^{n+1}) + \ell_R(D/\mathfrak{q}^{n+1}D)$$

= $\mathrm{e}^0_{\mathfrak{q}}(R)\binom{n+d}{d} + \mathrm{e}^0_{\mathfrak{q}}(D)\binom{n+1}{1}$

for all $n \ge 0$. Hence

$$(-1)^{i} \mathbf{e}_{Q}^{i}(A) = \begin{cases} \mathbf{e}_{\mathfrak{q}}^{0}(R) & (i=0), \\ \mathbf{e}_{\mathfrak{q}}^{0}(D) & (i=d-1), \\ 0 & (i \neq 0, d-1) \end{cases}$$

for $0 \leq i \leq d$. We now take $Q = (X_1^n, X_2, \dots, X_d)$ (n > 0). Then $e_Q^0(A) = n$ and $(-1)^{d-1} e_Q^{d-1}(A) = n$. Hence assertions (1) and (2) follow.

(3) Let f_1, f_2, \dots, f_d be a system of parameters in A and write $f_i = (a_i, x_i)$ with $a_i \in R$ and $x_i \in D$. After renumbering, we may assume that

$$(a_1, a_2, \cdots, a_d)D = a_1D \quad (\neq (0)).$$

Then f_1, f_2, \dots, f_d forms a *d*-sequence in *A*. In fact, let $1 \leq i \leq j \leq d$ and let $\varphi \in (f_1, f_2, \dots, f_{i-1})$: $f_i f_j$. If i = 1, then since f_1 is *A*-regular, we get $f_j \varphi = 0$. Suppose i > 1 and look at the exact sequence

$$0 \to {}_p[D/(a_1, a_2, \cdots, a_{i-1})D] \stackrel{\iota}{\to} A/(f_1, f_2, \cdots, f_{i-1}) \to R/(a_1, a_2, \cdots, a_{i-1})R \to 0$$

(recall that a_1, a_2, \dots, a_{i-1} forms a regular sequence in R). We then have for some $x \in D$ $\overline{\varphi} = \overline{(0,x)}$ in $A/(f_1, f_2, \dots, f_{i-1})$, where $\overline{*}$ denotes the image in $A/(f_1, f_2, \dots, f_{i-1})$. Therefore $f_j\overline{\varphi} = \overline{(0, a_jx)} = 0$, because $a_jD = (0)$ in D. Hence $f_j\varphi \in (f_1, f_2, \dots, f_{i-1})$, which shows that f_1, f_2, \dots, f_d is a d-sequence in A.

(4) This is because A is not a generalized Cohen-Macaulay ring. \Box

We close this section with the following.

Proposition 1.16. Let $Q = (a_1, a_2, \dots, a_d)$ be a parameter ideal in A. Let $G = \operatorname{gr}_Q(A) = \bigoplus_{n\geq 0} Q^n/Q^{n+1}$, $\mathcal{R} = \bigoplus_{n\geq 0} Q^n$, and $M = \mathfrak{m}\mathcal{R} + \mathcal{R}_+$. Then the following assertions hold true.

- (1) G_M is a Vasconcelos ring if and only if so is A.
- (2) Suppose that A is a homomorphic image of a Cohen-Macaulay ring. Then R_M is a Vasconcelos ring, if so is A.

Proof. (1) Recall that $e^1_{(a_1^*, a_2^*, \dots, a_d^*)G}(G) = e^1_Q(A)$, where $a_i^* = a_i \mod Q^2$ denotes the initial form of a_i .

(2) Let $U = U_A(0)$ be the unmixed component of (0) in A. We may assume $U \neq (0)$. Then B = A/U is a Cohen-Macaulay ring (Theorem 1.13 (3)). We look at the exact sequence

$$0 \to U^* \to \mathcal{R} \to \mathcal{S} \to 0,$$

where $S = \mathcal{R}([Q+U]/U)$ denotes the Rees algebra of the ideal [Q+U]/U in B. Then $\mathcal{R}([Q+U]/U)$ is a Cohen-Macaulay ring, since B is Cohen-Macaulay, while we have

$$\dim_{\mathcal{R}} U^* \le \dim_A U + 1 \le d - 1.$$

Thus \mathcal{R}_M is a Vasconcelos ring by Theorem 1.13 (4).

2. Homological degrees

Let A be a Noetherian local ring with maximal ideal \mathfrak{m} and $d = \dim A > 0$. We put

$$\Lambda_i(A) = \{ e_Q^i(A) \mid Q \text{ is a parameter ideal in } A \}$$

for each $0 \leq i \leq d$. With this notation we are interested in the following.

Question 2.1. (1) When is the set $\Lambda_1(A)$ finite?

(2) When $\sharp \Lambda_1(A) = 1$?

Notice that our characterization Theorem 1.13 of Vasconcelos rings shows that

$$0 \in \Lambda_1(A) \Rightarrow \Lambda_1(A) = \{0\}.$$

First of all, let me remind the estimation of $e_Q^1(A)$ in terms of homological degrees ([38]). For simplicity, in the rest of this section let me assume that A is \mathfrak{m} -adically complete and the residue class field A/\mathfrak{m} of A is infinite. Let M be a finitely generated A-module. For each $j \in \mathbb{Z}$ we put

$$M_j = \operatorname{Hom}_A(\operatorname{H}^j_{\mathfrak{m}}(M), E),$$

where $E = E_A(A/\mathfrak{m})$ denotes the injective envelope of A/\mathfrak{m} . Then M_j is a finitely generated A-module and we have the following.

Fact 2.2. dim_A $M_j \leq j$ for all $j \in \mathbb{Z}$, where dim_A(0) = $-\infty$.

Proof. Since A is complete, A is a homomorphic image of a Gorenstein complete local ring R with dim $R = \dim A$. Passing to R, without loss of generality we may assume that A is a Gorenstein ring. Let $\mathfrak{p} \in \operatorname{Supp}_A M_j$. Then since

$$M_j \cong \operatorname{Ext}_A^{d-j}(M, A)$$

by the local duality theorem, we get

$$\operatorname{Ext}_{A_{\mathfrak{p}}}^{d-j}(M_{\mathfrak{p}}, A_{\mathfrak{p}}) \neq (0),$$

whence

$$d-j \leq \operatorname{injdim} A_{\mathfrak{p}} = \dim A_{\mathfrak{p}}$$

Hence dim $A/\mathfrak{p} = d - \dim A_{\mathfrak{p}} \leq j$, so that we have dim_A $M_j \leq j$.

Let I be a fixed **m**-primary ideal in A. The homological degree $\operatorname{hdeg}_I(M)$ of M with respect to I is defined, inductively, according to the dimension $s = \dim_A M$ of M.

Definition 2.3 ([38]). For each finitely generated A-module M with $s = \dim_A M$, we put

$$\operatorname{hdeg}_{I}(M) = \begin{cases} \ell_{A}(M) & (s = \dim_{A} M \leq 0), \\ e_{I}^{0}(M) + \sum_{j=0}^{s-1} {s-1 \choose j} \operatorname{hdeg}_{I}(M_{j}) & (s > 0), \end{cases}$$

where $e_I^0(M)$ denotes the multiplicity of M with respect to I.

Let me summarize some basic properties of $hdeg_I(M)$.

Fact 2.4. (1) $0 \leq \operatorname{hdeg}_I(M) \in \mathbb{Z}$. $\operatorname{hdeg}_I(M) = 0$ if and only if M = (0).

- (2) (B. Ulrich) $\operatorname{hdeg}_{I}(M)$ depends only on \overline{I} . Namely, suppose that I, J are \mathfrak{m} -primary ideals in A. Then $\operatorname{hdeg}_{I}(*) = \operatorname{hdeg}_{J}(*)$ if and only if $\overline{I} = \overline{J}$, where \overline{I} and \overline{J} denote respectively the integral closures of I and J.
- (3) If $M \cong M'$, then $\operatorname{hdeg}_I(M) = \operatorname{hdeg}_I(M')$.
- (4) $\operatorname{hdeg}_{I}(M) = \operatorname{hdeg}_{I}(M/\operatorname{H}^{0}_{\mathfrak{m}}(M)) + \ell_{A}(\operatorname{H}^{0}_{\mathfrak{m}}(M)).$
- (5) If M is a generalized Cohen-Macaulay A-module, then

$$\mathrm{hdeg}_I(M) = \mathrm{e}_I^0(M) + \mathbb{I}(M),$$

where $\mathbb{I}(M) = \sum_{j=0}^{s-1} {s-1 \choose j} h^j(M)$ denotes the Stückrad-Vogel invariant of M.

Proof. (2) Let me check the only if part. We have $e_I^0(A/\mathfrak{p}) = e_J^0(A/\mathfrak{p})$ for every $\mathfrak{p} \in \operatorname{Spec} A$ with $\dim A/\mathfrak{p} = 1$. Let $V = \overline{A/\mathfrak{p}}$ be the normalization of A/\mathfrak{p} . Then IV = JV, since V is a DVR with $e_I^0(V) = e_J^0(V)$. Therefore, as (I+J)V = IV, we get

$$e^{0}_{[(I+J)+\mathfrak{p}]/\mathfrak{p}}(A/\mathfrak{p}) = e^{0}_{[I+\mathfrak{p}]/\mathfrak{p}}(A/\mathfrak{p}),$$

whence the ideal $[(I+J)+\mathfrak{p}]/\mathfrak{p}$ is integral over $[I+\mathfrak{p}]/\mathfrak{p}$ for every $\mathfrak{p} \in \text{Spec } A$ possessing $\dim A/\mathfrak{p} = 1$. As Ulrich showed in his lecture, this condition implies $I + J \subseteq \overline{I}$. Hence $J \subseteq \overline{I}$, so that $\overline{I} = \overline{J}$ by symmetry.

(3) We may assume $\dim_A M = s > 0$. Let $W = H^0_{\mathfrak{m}}(M)$ and M' = M/W. Then

$$[M']_j \cong M_j$$
 for all $j > 0$ and $[M']_0 = (0)$.

Hence

$$\operatorname{hdeg}_{I}(M) = \operatorname{e}_{I}^{0}(M) + \sum_{j=0}^{s-1} {\binom{s-1}{j}} \operatorname{hdeg}_{I}(M_{j})$$
$$= \operatorname{e}_{I}^{0}(M') + \sum_{j=1}^{s-1} {\binom{s-1}{j}} \operatorname{hdeg}_{I}(M') + \ell_{A}(\operatorname{Hom}_{A}(W, E))$$
$$= \operatorname{hdeg}_{I}(M') + \ell_{A}(W).$$

(4) Notice that hdeg $M_j = \ell_A(M_j) = \ell_A(\mathrm{H}^j_{\mathfrak{m}}(M)) = \mathrm{h}^j(M)$ for all $j \neq s$.

The following results play key roles in the analysis of homological degree.

Lemma 2.5 ([38, Proposition 3.18]). Let $0 \to X \to Y \to Z \to 0$ be an exact sequence of finitely generated A-modules. Then the following assertions hold true.

- (1) If $\ell_A(Z) < \infty$, then $\operatorname{hdeg}_I(Y) \leq \operatorname{hdeg}_I(X) + \operatorname{hdeg}_I(Z)$.
- (2) If $\ell_A(X) < \infty$, then $\operatorname{hdeg}_I(Y) = \operatorname{hdeg}_I(X) + \operatorname{hdeg}_I(Z)$.

Remark 2.6. In Lemma 2.5 (1) the equality

$$hdeg_I(Y) = hdeg_I(X) + hdeg_I(Z)$$

does not hold true in general, even though $\ell_A(Z) < \infty$. For example, suppose that A is a Cohen-Macaulay local ring with dim A = 1. We look at the exact sequence

$$0 \to \mathfrak{m} \to A \to A/\mathfrak{m} \to 0.$$

Then, since \mathfrak{m} is a Cohen-Macaulay A-module, we get

$$\operatorname{hdeg}_{I}(A) = e_{I}^{0}(A) = e_{I}^{0}(\mathfrak{m}) = \operatorname{hdeg}_{I}(\mathfrak{m})$$

Therefore, since $\operatorname{hdeg}_I(A/\mathfrak{m}) = 1$, we have

$$\operatorname{hdeg}_{I}(A) < \operatorname{hdeg}_{I}(A) + 1 = \operatorname{hdeg}_{I}(\mathfrak{m}) + \operatorname{hdeg}_{I}(A/\mathfrak{m}).$$

Let $\mathcal{R} = A[It] \subseteq A[t]$ be the Rees algebra of I, where t is an indeterminate. Let

$$f: I \to \mathcal{R}, \quad a \mapsto at$$

be the identification of I with $\mathcal{R}_1 = It$. We put

 $\operatorname{Proj} \mathcal{R} = \{ \mathfrak{p} \mid \mathfrak{p} \text{ is a graded prime ideal of } \mathcal{R} \text{ such that } \mathfrak{p} \not\supseteq \mathcal{R}_+ \}.$

We then have the following.

Lemma 2.7. Let M be a finitely generated A-module. Then there exists a finite subset $\mathcal{F} \subseteq \operatorname{Proj} \mathcal{R}$ such that

- (1) every $a \in I \setminus \bigcup_{\mathfrak{p} \in \mathcal{F}} [f^{-1}(\mathfrak{p}) + \mathfrak{m}I]$ is superficial for M with respect to I and
- (2) for each $a \in I \setminus \bigcup_{\mathfrak{p} \in \mathcal{F}} [f^{-1}(\mathfrak{p}) + \mathfrak{m}I]$ we have $\operatorname{hdeg}_I(M/aM) \leq \operatorname{hdeg}_I(M)$.

Proof. Induction on $s = \dim_A M$. If $s \leq 0$, choose $\mathcal{F} = \emptyset$. Suppose s = 1 and let $\mathcal{F} = \{ \mathfrak{p} \in \operatorname{Ass}_{\mathcal{R}} \operatorname{gr}_I(M) \mid \mathfrak{p} \not\supseteq \mathcal{R}_+ \}$. Then every $a \in I \setminus \bigcup_{\mathfrak{p} \in \mathcal{F}} [f^{-1}(\mathfrak{p}) + \mathfrak{m}I]$ is superficial for M with respect to I. We have $\operatorname{hdeg}_I(M) = \operatorname{e}^0_I(M) + \operatorname{h}^0(M)$ and $\operatorname{hdeg}_I \overline{M} = \ell_A(\overline{M})$, where $\overline{M} = M/aM$. Let $W = \operatorname{H}^0_{\mathfrak{m}}(M)$ and look at the exact sequence

$$0 \to W \to M \to M' \to 0,$$

where M' = M/W. Then since M' is a Cohen-Macaulay A-module, the element a is M'-regular and we get

$$0 \to W/aW \to \overline{M} \to M'/aM' \to 0.$$

Hence

$$\ell_A(\overline{M}) = \ell_A(W/aW) + \ell_A(M'/aM')$$

$$\leq \ell_A(W) + e^0_{(a)}(M')$$

$$= \ell_A(W) + e^0_I(M')$$

$$= h^0(M) + e^0_I(M)$$

$$= h \deg_I(M).$$

Suppose that s > 1 and our assertion holds true for s - 1. Let \mathcal{F} be a finite subset of Proj \mathcal{R} such that for every $a \in I \setminus \bigcup_{\mathfrak{p} \in \mathcal{F}} [f^{-1}(\mathfrak{p}) + \mathfrak{m}I]$, a is superficial for M and M_j $(0 \leq j \leq s - 2)$ and $\operatorname{hdeg}_I(M_j/aM_j) \leq \operatorname{hdeg}_I(M_j)$ for all $1 \leq j \leq s - 1$. Then, since $\ell_A((0):_M a) < \infty$, we get a long exact sequence

$$0 \to (0) :_{M} a \to \mathrm{H}^{0}_{\mathfrak{m}}(M) \xrightarrow{a} \mathrm{H}^{0}_{\mathfrak{m}}(M) \to \mathrm{H}^{0}_{\mathfrak{m}}(\overline{M}) \to \mathrm{H}^{1}_{\mathfrak{m}}(M) \xrightarrow{a} \mathrm{H}^{1}_{\mathfrak{m}}(M) \to \mathrm{H}^{1}_{\mathfrak{m}}(\overline{M}) \to \cdots$$
¹⁸

of local cohomology modules, where $\overline{M} = M/aM$. Hence

for each $0 \le i \le s - 2$. Because $\ell_A((0) :_{M_i} a) < \infty$, thanks to Lemma 2.5, we get

$$\begin{aligned} \operatorname{hdeg}_{I}(\overline{M}_{i}) &\leq \operatorname{hdeg}_{I}((0):_{M_{i}} a) + \operatorname{hdeg}_{I}(M_{i+1}/aM_{i+1}) \\ &\leq \operatorname{hdeg}_{I}(M_{i}) + \operatorname{hdeg}_{I}(M_{i+1}), \end{aligned}$$

so that

$$\begin{aligned} \operatorname{hdeg}_{I}(\overline{M}) &= \operatorname{e}_{I}^{0}(\overline{M}) + \sum_{j=0}^{s-2} \binom{s-2}{j} \operatorname{hdeg}_{I}(\overline{M}_{j}) \\ &\leq \operatorname{e}_{I}^{0}(M) + \sum_{j=0}^{s-2} \binom{s-2}{j} \left[\operatorname{hdeg}_{I}(M_{j}) + \operatorname{hdeg}_{I}(M_{j+1})\right] \\ &= \operatorname{e}_{I}^{0}(M) + \sum_{j=0}^{s-1} \binom{s-1}{j} \operatorname{hdeg}_{I}(M_{j}) \\ &= \operatorname{hdeg}_{I}(M) \end{aligned}$$

as claimed.

Definition 2.8. Let M be a finitely generated A-module with $\dim_A M = s \ge 2$. We put

$$T_I(M) = \sum_{j=1}^{s-1} {s-2 \choose j-1} \operatorname{hdeg}_I(M_j).$$

Fact 2.9. Let M be a finitely generated A-module with $\dim_A M = s \ge 3$. Then the proof of Lemma 2.7 shows that there exists a finite subset $\mathcal{F} \subseteq \operatorname{Proj} \mathcal{R}$ such that for every $a \in I \setminus \bigcup_{\mathfrak{p} \in \mathcal{F}} [f^{-1}(\mathfrak{p}) + \mathfrak{m}I]$, a is superficial for M with respect to I and we have the inequality

$$T_I(M/aM) \le T_I(M).$$

We now come to the main result of this section.

Theorem 2.10. Suppose that $d \ge 2$ and let Q be a parameter ideal in A. Then

$$0 \ge e_Q^1(M) \ge -T_Q(M)$$

for every finitely generated A-module M with $\dim_A M = d$.

Proof. The inequality $0 \ge e_Q^1(M)$ follows from Corollary 1.5 (if necessary, use the principle of idealization to reduce the problem to the ring case; the technique in the ring case, in fact, works also for modules). Let $M' = M/H_m^0(M)$. Then, since $e_Q^1(M) = e_Q^1(M')$ and $T_Q(M) = T_Q(M')$, to see that $e_Q^1(M) \ge -T_Q(M)$, passing to M', we may assume that $H_m^0(M) = (0)$. Suppose d = 2 and choose $a \in Q \setminus \mathfrak{m}Q$ so that a is superficial for M with respect to Q and $\operatorname{hdeg}_Q(M_1/aM_1) \le \operatorname{hdeg}_Q M_1$. Let $\overline{M} = M/aM$. Then since a is M-regular, we have $M_1/aM_1 = \overline{M}_0$. Hence

$$e_Q^1(M) = e_Q^1(\overline{M}) = -h^0(\overline{M}) = -h \deg_Q(M_1/aM_1),$$

so that by the choice of a we get

$$e_Q^1(M) \ge -hdeg_Q(M_1) = -T_Q(M)$$

as claimed. Suppose d > 2 and choose $a \in Q \setminus \mathfrak{m}Q$ so that a is superficial for M and $T_Q(M/aM) \leq T_Q(M)$. Then by induction on d we see

$$e_Q^1(M) = e_Q^1(M/aM) \ge -T_Q(M/aM) \ge -T_Q(M)$$

proving Theorem 2.10.

Corollary 2.11. If $d \ge 2$, then

$$0 \ge e_Q^1(A) \ge -T_Q(A)$$

for every parameter ideal Q in A.

Corollary 2.12 ([39]). Suppose that $d \ge 2$ and let Q be a parameter ideal in A. Then the set

$$\Lambda(Q) = \{ e_{\mathfrak{q}}^{1}(A) \mid \mathfrak{q} \text{ is a parameter ideal of } A \text{ such that } \overline{\mathfrak{q}} = \overline{Q} \}$$

is finite, where $\overline{\mathbf{q}}$ and \overline{Q} denote respectively the integral closures of \mathbf{q} and Q.

Proof. Since $\overline{\mathfrak{q}} = \overline{Q}$, we have $T_{\mathfrak{q}}(A) = T_Q(A)$. Hence $0 \ge e_{\mathfrak{q}}^1(A) \ge -T_{\mathfrak{q}}(A) = -T_Q(A)$, so that the set $\Lambda(Q)$ is finite.

Corollary 2.13 ([15]). Suppose that $d \ge 2$ and that A is a generalized Cohen-Macaulay ring. Then

$$0 \ge e_Q^1(A) \ge -\sum_{j=1}^{d-1} \binom{d-2}{j-1} h^j(A)$$

for every parameter ideal Q in A, whence the set

 $\Lambda_1(A) = \{ e_Q^1(A) \mid Q \text{ is a parameter ideal in } A \}$

is finite.

3. When is the set $\Lambda_1(A)$ finite?

Let A be a Noetherian local ring with maximal ideal \mathfrak{m} and $d = \dim A > 0$. We put

 $\Lambda_1(A) = \{ e_Q^1(A) \mid A \text{ is a parameter ideal in } A \}.$

In this section we shall prove the following.

Theorem 3.1. Suppose that A is unmixed and $d \ge 2$. If $\Lambda_1(A)$ is a finite set, then

$$\mathfrak{m}^{\ell} \mathrm{H}^{j}_{\mathfrak{m}}(A) = (0) \text{ for all } j \neq d,$$

where $\ell = -\min \Lambda_1(A)$, so that A is a generalized Cohen-Macaulay ring.

Before going ahead, let me remind what is known in the case where A is a generalized Cohen-Macaulay ring.

Proposition 3.2. Suppose that A is a generalized Cohen-Macaulay ring and $d \ge 2$. Let Q be a parameter ideal of A. Then the following assertions hold true.

(1) ([15, 28]) $0 \ge e_Q^1(A) \ge -\sum_{j=1}^{d-1} {d-2 \choose j-1} h^j(A).$ (2) ([33, Korollar 3.2]) If Q is standard, then $e_Q^1(A) = -\sum_{j=1}^{d-1} {d-2 \choose j-1} h^j(A).$ Hence the set $\Lambda_1(A)$ is finite.

Let me explain the notion of standard parameter ideal. Suppose that A is a generalized Cohen-Macaulay ring. Hence $\sup_{21} [\ell_A(A/Q) - e_Q^1(A)] < \infty$, which is equal to $\mathbb{I}(A) = \sum_{j=0}^{d-1} {d-1 \choose j} h^j(A)$. We say that a parameter ideal $Q = (a_1, a_2, \cdots, a_d)$ is standard, if

$$\ell_A(A/Q) - e_Q^0(A) = \mathbb{I}(A).$$

This condition is equivalent to saying that a_1, a_2, \dots, a_d form a strong *d*-sequence in any order, that is $a_1^{n_1}, a_2^{n_2}, \dots, a_d^{n_d}$ is a *d*-sequence in *A* in any order for all integers $n_1, n_2, \dots, n_d > 0$. For each generalized Cohen-Macaulay ring *A*, one can find an integer $\ell \gg 0$ such that every parameter ideal *Q* contained in \mathfrak{m}^{ℓ} is standard. Therefore a Noetherian local ring *A* is Buchsbaum if and only if *A* is a generalized Cohen-Macaulay ring and every parameter ideal of *A* is standard.

As for Schenzel's formula 3.2 (2) let me give a few comments. P. Schenzel [33] actually gave the following.

Theorem 3.3 ([33, Korollar 3.2]). Suppose that A a generalized Cohen-Macaulay ring and let Q be a standard parameter ideal in A. Then we have

$$(-1)^{i} \mathbf{e}_{Q}^{i}(A) = \begin{cases} \mathbf{h}^{0}(A) & (i = d), \\ \\ \sum_{j=1}^{d-i} {d-i-1 \choose j-1} \mathbf{h}^{j}(A) & (0 < i < d) \end{cases}$$

for $1 \leq i \leq d$.

Therefore the values $\{e_Q^i(A)\}_{1 \le i \le d}$ are independent of the choice of standard parameter ideals Q, provided A is a generalized Cohen-Macaulay ring.

Theorem 3.3 follows by induction on d and the proof is not very complicated. We however do not know at this moment, except i = 1, 2, about the variation of values $e_Q^i(A)$ of arbitrary parameter ideals Q, even in the case where A is a generalized Cohen-Macaulay ring.

Let me state a conjecture.

Conjecture 3.4. Let $\operatorname{T}_Q^i(A) = \sum_{j=1}^{d-i} {d-i-1 \choose j-1} \operatorname{hdeg}_Q(A_j)$. Then $|\operatorname{e}_Q^i(A)| \leq \operatorname{T}_Q^i(A)$ for 0 < i < d.

To prove Theorem 3.1 I need the following observation. For a while, suppose that $d \ge 2$ and that A is a homomorphic image of a Gorenstein ring. Then by a theorem of

N. T. Cuong [5] (see [24] also) we have a system of parameters of A, say x_1, x_2, \dots, x_d , which forms a strong *d*-sequence in A, that is the equality

$$(x_1^{n_1}, x_2^{n_2}, \cdots, x_{i-1}^{n_{i-1}} : x_i^{n_i} x_j^{n_j} = (x_1^{n_1}, x_2^{n_2}, \cdots, x_{i-1}^{n_{i-1}} : x_j^{n_j})$$

holds true for all integers $1 \leq i \leq j \leq d$ and $n_1, n_2, \dots, n_d > 0$. For each integer q > 0let $\Gamma_q(A)$ denote the set of $e^1_{(a_1, a_2, \dots, a_d)}(A)$ where a_1, a_2, \dots, a_d runs through systems of parameters in A such that $(a_1, a_2, \dots, a_d) \subseteq \mathfrak{m}^q$ and a_1, a_2, \dots, a_d forms a d-sequence in A. We notice that

$$\Lambda_1(A) \supseteq \Gamma_q(A) \supseteq \Gamma_{q+1}(A) \neq \emptyset$$

for all q > 0. With this notation we furthermore have the following.

Theorem 3.5. Suppose that Ass A = Assh A and that $\Gamma_q(A)$ is a finite set for some q > 0. Then $\mathfrak{m}^{\ell} \mathrm{H}^j_{\mathfrak{m}}(A) = (0)$ for all $j \neq d$, where $\ell = -\min \Gamma_q(A)$.

Theorem 3.1 readily follows from Theorem 3.5, passing to the completion; notice that $-\min \Gamma_q(A) \leq -\min \Lambda_1(A)$, since $\Gamma_q(A) \subseteq \Lambda_1(A)$.

Proof of Theorem 3.5. Suppose that d = 2. Then A is a generalized Cohen-Macaulay ring, since A is unmixed. Choose a standard parameter ideal $Q \subseteq \mathfrak{m}^q$. We then have

$$e_Q^1(A) = -h^1(A) = \min \Lambda_1(A)$$

by Proposition 3.3 (2). Hence $\ell = h^1(A)$ and $\mathfrak{m}^{\ell} H^1_{\mathfrak{m}}(A) = (0)$.

Suppose that d > 2 and that our assertion holds true for d - 1. Recall that the set

$$\mathcal{F}_1 = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{p} \neq \mathfrak{m}, \, \operatorname{ht}_A \mathfrak{p} > 1 = \operatorname{depth} A_{\mathfrak{p}} \}$$

is finite (Lemma 1.7). We choose $x \in \mathfrak{m}$ so that

$$x \notin \bigcup_{\mathfrak{p} \in \mathrm{Ass}\,A} \mathfrak{p} \cup \bigcup_{\mathfrak{p} \in \mathcal{F}_1} \mathfrak{p}.$$

Let $n \ge q$ be any integer and put $y = x^n$. Let $\overline{A} = A/(y)$ and $B = \overline{A}/\mathrm{H}^0_{\mathfrak{m}}(\overline{A})$. We then have

$$\operatorname{Ass}_A \overline{A} \setminus \{\mathfrak{m}\} = \operatorname{Assh}_A \overline{A},$$

so that $H^0_{\mathfrak{m}}(\overline{A}) = U_{\overline{A}}(0)$ and $\operatorname{Ass}_A B = \operatorname{Assh}_A B$ by Lemma 1.7; hence B is unmixed.

Let $y_2, y_3, \dots, y_d \in \mathfrak{m}^q$ be a system of parameters of \overline{A} and assume that y_2, y_3, \dots, y_d form a *d*-sequence in \overline{A} . Then, since $y = y_1$ is *A*-regular, y_1, y_2, \dots, y_d forms a *d*sequence in *A*, so that y_1 is superficial with respect to the ideal (y_1, y_2, \dots, y_d) . Hence

$$e^{1}_{(y_2,y_3,\cdots,y_d)}(\overline{A}) = e^{1}_{(y_1,y_2,\cdots,y_d)}(A) \in \Gamma_q(A).$$

Thus $\Gamma_q(\overline{A}) \subseteq \Gamma_q(A)$ and $\Gamma_q(\overline{A})$ is a finite set.

Choose an integer $q' \ge q$ so that

$$\mathrm{H}^{0}_{\mathfrak{m}}(\overline{A}) \cap \mathfrak{n}^{q'} = (0),$$

where $\mathbf{n} = \mathbf{m}/(y)$ denotes the maximal ideal of \overline{A} . Let $y_2, y_3, \dots, y_d \in \mathbf{m}^{q'}$ be a system of parameters for B which form a d-sequence in B. Then, thanks to the condition $\mathrm{H}^0_{\mathfrak{m}}(\overline{A}) \cap \mathbf{n}^{q'} = (0)$, the sequence y_2, y_3, \dots, y_d form a d-sequence also in \overline{A} and we have

$$\mathbf{e}^{1}_{(y_{2},y_{3},\cdots,y_{d})}(B) = \mathbf{e}^{1}_{(y_{2},y_{3},\cdots,y_{d})}(\overline{A}) \in \Gamma_{q'}(\overline{A})$$

Thus $\Gamma_{q'}(B)$ is a finite set (recall that $\Gamma_{q'}(B) \subseteq \Gamma_{q'}(\overline{A}) \subseteq \Gamma_{q}(\overline{A}) \subseteq \Gamma_{q}(A)$). Consequently, thanks to the hypothesis of induction, we get

$$\mathfrak{m}^{\ell'} \mathrm{H}^j_\mathfrak{m}(B) = (0)$$

for all $j \neq d-1$, where $\ell' = -\min \Gamma_{q'}(B) \leq \ell = -\min \Gamma_q(A)$. Hence

$$\mathfrak{m}^{\ell} \mathrm{H}^{j}_{\mathfrak{m}}(\overline{A}) = \mathfrak{m}^{\ell} \mathrm{H}^{j}_{\mathfrak{m}}(B) = (0)$$

for all $1 \le j \le d-2$.

We now look at the exact sequence

$$\cdots \to \mathrm{H}^{j}_{\mathfrak{m}}(\overline{A}) \to \mathrm{H}^{j+1}_{\mathfrak{m}}(A) \xrightarrow{x^{n}} \mathrm{H}^{j+1}_{\mathfrak{m}}(A) \to \cdots$$

of local cohomology modules, induced from the exact sequence

$$0 \to A \xrightarrow{x^n} A \to \overline{A} \to 0.$$

We then have

$$\mathfrak{m}^{\ell}\left[(0):_{\mathrm{H}^{j+1}_{\mathfrak{m}}(A)} x^{n}\right] = (0)$$

for all $1 \leq j \leq d-2$ and $n \geq q$, where $\ell = -\min \Lambda_q(A)$. Because n and ℓ are independent of each other, this implies

$$\mathfrak{m}^{\ell} \mathcal{H}^{j+1}_{\mathfrak{m}}(A) = (0)$$

for all $1 \leq j \leq d-2$, that is $\mathfrak{m}^{\ell} \mathrm{H}^{j}_{\mathfrak{m}}(A) = (0)$ for $2 \leq j \leq d-1$. On the other hand, thanks to the exact sequence

$$\cdots \to \mathrm{H}^{1}_{\mathfrak{m}}(A) \xrightarrow{x^{n}} \mathrm{H}^{1}_{\mathfrak{m}}(A) \to \mathrm{H}^{1}_{\mathfrak{m}}(\overline{A}) \to \cdots$$

together with the fact that $\mathrm{H}^{1}_{\mathfrak{m}}(A)$ is a finitely generated A-module (Lemma 1.7 (1)), choosing the integer $n \geq q$ so that $x^{n}\mathrm{H}^{1}_{\mathfrak{m}}(A) = (0)$, we get

$$\mathrm{H}^{1}_{\mathfrak{m}}(A) \hookrightarrow \mathrm{H}^{1}_{\mathfrak{m}}(\overline{A}),$$

whence $\mathfrak{m}^{\ell} \mathrm{H}^{1}_{\mathfrak{m}}(A) = (0)$. Thus $\mathfrak{m}^{\ell} \mathrm{H}^{i}_{\mathfrak{m}}(A) = (0)$ for all $i \neq d$, which proves Theorem 3.5.

Theorem 3.6. Suppose that $d \ge 2$. Then the following conditions are equivalent.

(1) $\Lambda_1(A)$ is a finite set.

(2) \widehat{A}/U is a generalized Cohen-Macaulay ring and $\dim_{\widehat{A}} U \leq d-2$, where $U = U_{\widehat{A}}(0)$. When this is the case, we have $\Lambda_1(A) = \Lambda_1(\widehat{A}/U)$.

Proof. We may assume A is complete and $U \neq (0)$.

(1) \Rightarrow (2) Let $t = \dim_A U$ and B = A/U. Then by Observation 1.11, for every parameter ideal Q in A we have

$$(-1)^{d-i} \mathbf{e}_Q^{d-i}(A) = \begin{cases} (-1)^{d-i} \mathbf{e}_Q^{d-i}(B) + \mathbf{s}_Q^{t-i}(U) & (0 \le i \le t), \\ \\ (-1)^{d-i} \mathbf{e}_Q^{d-i}(B) & (t < i \le d). \end{cases}$$

Therefore, if t = d - 1, we get

$$-e_Q^1(A) = -e_Q^1(B) + e_Q^0(U).$$

Hence, choosing a system a_1, a_2, \dots, a_d of parameters of A so that $a_d U = (0)$ and taking $Q = (a_1^n, a_2^n, \dots, a_d^n)$ (n > 0), we get

$$-\mathbf{e}^{1}_{(a_{1}^{n},a_{2}^{n},\cdots,a_{d}^{n})}(A) = -\mathbf{e}^{1}_{(a_{1}^{n},a_{2}^{n},\cdots,a_{d}^{n})}(B) + n^{d-1}\mathbf{e}^{0}_{(a_{1},a_{2},\cdots,a_{d-1})}(U) \ge n^{d-1}$$

for all integers n > 0, which is impossible. Hence $t \le d - 2$, so that

$$-\mathrm{e}_Q^1(A) = -\mathrm{e}_Q^1(B)$$

for every parameter ideal Q in A. Consequently $\Lambda_1(A) = \Lambda_1(B)$ and B is a generalized Cohen-Macaulay ring by Theorem 3.1 (recall that $\Lambda_1(B)$ is a finite set and B is unmixed).

(2) \Rightarrow (1) By Observation 1.11 we have $\Lambda_1(A) = \Lambda_1(B)$, since $\dim_A U \leq d - 2$. Therefore $\Lambda_1(A)$ is finite, as so is $\Lambda_1(B)$.

Corollary 3.7. Suppose that $\Lambda_i(A)$ is a finite set for all $1 \leq i \leq d$. Then A is a generalized Cohen-Macaulay ring.

Proof. We may assume that d > 1, A is complete, and $U = U_{\widehat{A}}(0) \neq (0)$. Then by Theorem 3.6 B = A/U is a generalized Cohen-Macaulay ring and $\dim_A U \leq d - 2$. We want to show $\ell_A(U) < \infty$, that is t = 0. Assume the contrary and choose a system a_1, a_2, \dots, a_d of parameters in A so that a_1, a_2, \dots, a_d is a standard system of parameters for B and

$$(a_{t+1}, a_{t+2}, \cdots, a_d)U = (0).$$

We look at the parameter ideal $Q = (a_1^n, a_2^n, \dots, a_d^n)$ with n > 0. Then

$$(-1)^{d-t}e_Q^{d-t}(A) = (-1)^{d-t}e_Q^{d-t}(B) + e_Q^0(U)$$

by Observation 1.11. This is, however, impossible, because $(-1)^{d-t} e_Q^{d-t}(B)$ is constant by Proposition 3.2 (2), $e_Q^0(U) = e_{(a_1^n, a_2^n, \dots, a_t^n)}^0(U) \ge n^t e_{(a_1, a_2, \dots, a_t)}^0(U) \ge n^t$, and $\Lambda_{d-t}(A)$ is finite by our assumption. Hence t = 0 and A is a generalized Cohen-Macaulay ring. \Box

There are left two natural questions.

Question 3.8. (1) How about the converse of Corollary 3.7?

(2) What happen in the case where $\sharp \Lambda_1(A) = 1$?

Later I will discuss question (1). As for the second question, if A is a Buchsbaum ring with $d = \dim A \ge 2$, then by Proposition 3.2 (2) we get

$$e_Q^1(A) = -\sum_{j=1}^{d-1} {d-2 \choose j-1} h^j(A)$$

for every parameter ideal Q in A; hence

$$\Lambda_1(A) = \left\{ -\sum_{j=1}^{d-1} \binom{d-2}{j-1} \mathrm{h}^j(A) \right\}.$$

The converse is also true, as we show in the following.

Theorem 3.9. Suppose that A is unmixed. Then A is a Buchsbaum ring, if $\sharp \Lambda_1(A) = 1$.

The general answer is the following.

Theorem 3.10. Suppose that $d \ge 2$. Then the following conditions are equivalent.

- (1) $\sharp \Lambda_1(A) = 1.$
- (2) \widehat{A}/U is a Buchsbaum ring and $\dim_{\widehat{A}}U \leq d-2$, where $U = U_{\widehat{A}}(0)$.

When this is the case, we have

$$\Lambda_1(A) = \left\{ -\sum_{j=1}^{d-1} \binom{d-2}{j-1} \mathrm{h}^j(\widehat{A}/U) \right\}.$$

Corollary 3.11. Suppose that $\sharp \Lambda_i(A) = 1$ for all $1 \leq i \leq d$. Then $A/\mathrm{H}^0_{\mathfrak{m}}(A)$ is a Buchsbaum ring.

Let me talk a little bit about the proof of Theorem 3.9.

Sketch of Proof of Theorem 3.9. We may assume A is complete and $d \ge 2$. Then A is a generalized Cohen-Macaulay ring by Theorem 3.5, because $\Lambda_1(A)$ is a finite set. Since $e_Q^1(A) = -\sum_{j=1}^{d-1} {d-2 \choose j-1} h^j(A)$ for every standard parameter ideal Q in A (Proposition 3.2 (2)), we get $\Lambda_1(A) = \left\{-\sum_{j=1}^{d-1} {d-2 \choose j-1} h^j(A)\right\}$, so that

$$e_Q^1(A) = -\sum_{j=1}^{d-1} {d-2 \choose j-1} h^j(A)$$

for every parameter ideal Q in A. Then apply the following result of K. Ozeki.

Theorem 3.12 (K. Ozeki [17]). Suppose that A is a generalized Cohen–Macaulay ring, $d \ge 2$, and depth A > 0. Let Q be a parameter ideal in A. Then Q is standard if and only if

$$e_Q^1(A) = -\sum_{j=1}^{d-1} {d-2 \choose j-1} h^j(A).$$

Thanks to Theorem 3.12, every parameter ideal Q in A is standard. Hence A is a Buchsbaum ring.

Question 3.13. Let Q be a parameter ideal in A. Find a criterion for the equality

$$e_Q^1(A) = -\sum_{j=1}^{d-1} {d-2 \choose j-1} hdeg_Q(A_j),$$

assuming that A is complete, $d \ge 2$, and the residue class field A/\mathfrak{m} of A is infinite.

4. How about $e_Q^2(A)$? – Uniform bounds for the sets $\Lambda_i(A)$ $(1 \le i \le d)$

We have just proved that A is a generalized Cohen-Macaulay ring, if

$$\Lambda_i(A) = \{ e_Q^i(A) \mid Q \text{ is a parameter ideal in } A \}$$

is a finite set for all $1 \le i \le d$. The converse is also true and we have the following.

Theorem 4.1. Let A be a Noetherian local ring with $d = \dim A > 0$. Then the following conditions are equivalent.

- (1) A is a generalized Cohen-Macaulay ring.
- (2) $\Lambda_i(A)$ is a finite set for all $1 \leq i \leq d$.

To prove the implication $(1) \Rightarrow (2)$ we need the notion of regularity. Let Q be a parameter ideal of A and let

$$G = \operatorname{gr}_Q(A) = \bigoplus_{n \ge 0} Q^n / Q^{n+1}$$

be the associated graded ring of Q. Let $M = \mathfrak{m}G + G_+$ be the graded maximal ideal of G. For each $i \in \mathbb{Z}$ let

$$\mathbf{a}_i(G) = \sup\{n \in \mathbb{Z} \mid [\mathbf{H}^i_M(G)]_n \neq (0)\},\$$

where $[\mathrm{H}^{i}_{M}(G)]_{n}$ $(n \in \mathbb{Z})$ denotes the homogeneous component of the graded local cohomology module $\mathrm{H}^{i}_{M}(G)$ with degree n.

Definition 4.2. We put

$$\operatorname{reg}(G) = \sup\{i + a_i(G) \mid i \in \mathbb{Z}\}$$
28

and call it the regularity of G. Notice that $0 \leq \operatorname{reg} G \in \mathbb{Z}$.

The notion of regularity plays an important role in the analysis of graded rings and modules. In our case we have the following.

Theorem 4.3 ([18]). Suppose that A is a generalized Cohen-Macaulay ring and let Q be a parameter ideal in A. Then the following assertions hold true.

(1) $|e_Q^1(A)| \le \mathbb{I}(A).$ (2) $|e_Q^i(A)| \le (r+1)^{i-1} \cdot \mathbb{I}(A) \cdot 3 \cdot 2^{i-2}$ for all $2 \le i \le d$, where $r = \operatorname{reg}(\operatorname{gr}_Q(A)).$

The right hand side of the inequality in Theorem 4.3 (2) is a huge number but once we agree with this, we can apply the following result to our case in order to see the finiteness of the sets $\Lambda_i(A)$.

Theorem 4.4 ([25]). Suppose that A is a generalized Cohen-Macaulay ring and let Q be a parameter ideal in A. Then

$$\operatorname{reg}(\operatorname{gr}_Q(A)) \leq \left\{ \begin{array}{ll} \max\{\mathbbm{I}(A)-1,\ 0\} & (d=1), \\ \\ \max\{4{\cdot}\mathbbm{I}(A)^{(d-1)!}-\mathbbm{I}(A)-1,\ 0\} & (d>1). \end{array} \right.$$

The second number appearing in the right hand side of the estimation of Theorem 4.4 is still very huge, but anyway, combining these two theorems, we see $e_Q^i(A)$ $(1 \le i \le d)$ has a uniform bound independent of the choice of parameter ideals Q, if A is a generalized Cohen-Macaulay ring.

Question 4.5. What are the sharp bounds for $e_Q^i(A)$?

This is a problem different from the question of the finiteness of the sets $\Lambda_i(A)$. Our guess is the following.

Guess 4.6. We have

$$|\mathbf{e}_Q^i(A)| \le \sum_{j=1}^{d-i} \binom{d-i-1}{j-1} \mathbf{h}^j(A)$$

for all 0 < i < d, if A is a generalized Cohen-Macaulay ring. More generally, for an arbitrary Noetherian local ring A, we have

$$|\mathbf{e}_Q^i(A)| \le \sum_{j=1}^{d-i} \binom{d-i-1}{j-1} \operatorname{hdeg}_Q(A_j)$$

for 0 < i < d, provided A is complete and the residue class field A/\mathfrak{m} of A is infinite.

Let me state study $e_Q^2(A)$.

Theorem 4.7. Suppose that A is complete with infinite residue class field and $d \ge 3$. Let Q be a parameter ideal in A. Then for every finitely generated unmixed A-module M with $\dim_A M = d$, we have th following eestimation

$$-\sum_{j=2}^{d-1} \binom{d-3}{j-2} \operatorname{hdeg}_Q(M_j) \le \operatorname{e}_Q^2(M) \le \operatorname{T}_Q^2(M).$$

In Theorem 4.7, for the latter inequality we do not need the unmixedness assumption on the modules M. However, unless M is unmixed, the former inequality in Theorem 4.7 does not hold true in general. Later we will explore an example (Example 4.9).

As a direct consequence of Theorem 4.7 we have

Corollary 4.8. Suppose that A is complete with infinite residue class field and $d \ge 3$. Assume that A is unmixed. Then

$$-\sum_{j=2}^{d-1} \binom{d-3}{j-2} \operatorname{hdeg}_Q(A_j) \le \operatorname{e}_Q^2(A) \le \operatorname{T}_Q^2(A)$$

for every parameter ideal Q in A. Therefore, for a fixed parameter ideal Q in A, the set

 $\{e_{\mathfrak{q}}^{2}(A) \mid \mathfrak{q} \text{ is a parameter ideal in } A \text{ such that } \overline{\mathfrak{q}} = \overline{Q}\}$

is finite.

Example 4.9. Let R be a complete regular local ring with maximal ideal \mathfrak{n} , infinite residue class field, and dim R = 3. Let $\mathfrak{n} = (X, Y, Z)$ and put $S = R/(Z^n)$ (n > 0). Then

$$e_{\mathfrak{n}}^{0}(S) = n, \ e_{\mathfrak{n}}^{1}(S) = \frac{n(n-1)}{2}, \ \text{and} \ e_{\mathfrak{n}}^{2}(S) = \frac{n(n-1)(n-2)}{6}.$$

We look at the idealization $A = R \ltimes S$ of S over R and put $Q = \mathfrak{n}A$. Then A is mixed with dim A = 3, depth A = 2,

hdeg_Q(A₂) = n, and
$$e_Q^2(A) = -e_n^1(S) = -\frac{n(n-1)}{2}$$
,

whence

$$-\operatorname{hdeg}_Q(A_2) > \operatorname{e}_Q^2(A), \quad \text{if} \quad n \ge 4.$$

Proof. Since

$$H(gr_{\mathfrak{n}}(S),\lambda) = \frac{1+\lambda+\dots+\lambda^{n-1}}{(1-\lambda)^2},$$

we get $e_n^0(S) = n$, $e_n^1(S) = \frac{n(n-1)}{2}$, and $e_n^2(S) = \frac{n(n-1)(n-2)}{6}$. On the other hand, since S is a Gorenstein ring and since

$$\mathrm{H}^{2}_{\mathfrak{m}}(A) \cong {}_{p}[\mathrm{H}^{2}_{\mathfrak{n}}(S)]$$

(here $p: A \to R, p(a, x) = a$ denotes the projection), we have

$$\operatorname{hdeg}_Q(A_2) = \operatorname{hdeg}_Q(S_2) = \operatorname{hdeg}_n(S_2) = \operatorname{e}_n^0(S) = n$$

Recall now that

$$\ell_A(A/Q^{\ell+1}) = \ell_R(R/\mathfrak{n}^{\ell+1}) + \ell_S(S/\mathfrak{n}^{\ell+1}S) = \binom{\ell+3}{3} + \left[e_{\mathfrak{n}}^0(S)\binom{\ell+2}{2} - e_{\mathfrak{n}}^1(S)\binom{\ell+1}{1} + e_{\mathfrak{n}}^2(S)\right]$$

for all $\ell \gg 0$ and we readily have

$$(-1)^{i} \mathbf{e}_{Q}^{i}(A) = \begin{cases} 1 & (i=0), \\ \mathbf{e}_{\mathfrak{n}}^{0}(S) = n & (i=1), \\ -\mathbf{e}_{\mathfrak{n}}^{1}(S) = -\frac{n(n-1)}{2} & (i=2), \\ \mathbf{e}_{\mathfrak{n}}^{2}(S) = \frac{n(n-1)(n-2)}{6} & (i=3). \end{cases}$$

Let me note a little bit about Proof of Corollary 4.8 in order to explain why I cannot extend this result, say for $e_Q^3(A)$.

In the case of $e_Q^1(A)$ the key of our argument is the following fact [15, Lemma 2.4 (1)]

$$e_Q^1(A) = -h^0(A)$$
, if $d = 1$.

For the estimation of $e_Q^2(A)$ the key is the following.

Proposition 4.10. Suppose that A is unmixed and d = 2. Then

$$-\mathrm{h}^1(A) \le \mathrm{e}_Q^2(A) \le 0$$

for every parameter ideal Q in A.

Proof. We may assume that the residue class field A/\mathfrak{m} of A is infinite. Let Q = (x, y) be a parameter ideal in A and assume that x is superficial with respect to Q. Take an integer $\ell \gg 0$ and put $I = Q^{\ell}$, $a = x^{\ell}$, and $b = y^{\ell}$. Let $G = \operatorname{gr}_{I}(A)$. Then, thanks to a theorem of L. T. Hoa [19], we see that

- (1) $[\mathrm{H}^{i}_{M}(G)]_{n} = (0)$ for all $i \in \mathbb{Z}$ and n > 0, where $M = \mathfrak{m}G + G_{+}$ and
- (2) $I^2 = \mathfrak{q}I$, where $\mathfrak{q} = (a, b)$.

The element a is still superficial with respect to I and we furthermore have the following.

Claim 1.

$$e_Q^2(A) = e_I^2(A) = -\ell_A([((a):b) \cap I]/(a)) \le 0$$

Proof of Claim 1. We have $e_Q^2(A) = e_I^2(A)$ (in fact, $e_{Q^\ell}^2(A) = e_Q^2(A)$ for all integers $\ell > 0$), while $a_2(G) < 0$ by condition (2). Therefore $a_0(G) < 0$, since $a_1(G) \le 0$ and depth A > 0. Hence $H_M^0(G) = (0)$, so that we have

$$e_I^2(A) = -\ell_A([H_M^1(G)]_0),$$

thanks to a classical theorem of Serre. Let $\overline{G} = \operatorname{gr}_{I/(a)}(A/(a))$. Then since the initial form $a^* = a \mod Q^2$ of a is regular on G, we get $\overline{G} \cong G/a^*G$, $[\operatorname{H}^1_M(G)]_0 \cong [\operatorname{H}^0_M(\overline{G})]_1$, and $[\operatorname{H}^0_M(\overline{G})]_n = (0)$ for all $n \geq 2$. It is now standard to show that

$$[\mathrm{H}^{0}_{M}(\overline{G})]_{1} \cong [((a):b) \cap I]/(a) \subseteq [(a):b]/(a) \subseteq \mathrm{H}^{0}_{\mathfrak{m}}(A/(a)) \cong (0) :_{\mathrm{H}^{1}_{\mathfrak{m}}(A)} a,$$

whence

$$e_Q^2(A) = e_I^2(A) = -\ell_A([((a):b) \cap I]/(a)) \le 0$$

which proves Claim 1.

Proposition 4.10 now readily follows from Claim 1, since

$$\ell_A([((a):b) \cap I]/(a)) \le \mathrm{h}^1(A).$$

We are in a position to prove Corollary 4.8.

Proof of Corollary 4.8. Let $C = \text{Hom}_A(K_A, K_A)$ and look at the exact sequence

$$0 \to A \xrightarrow{\varphi} C \to X \to 0,$$

where $\varphi(a) = a \mathbb{1}_{K_A}$ for all $a \in A$. Let us choose an element $a \in Q \setminus \mathfrak{m}Q$ so that

- (1) a is superficial for all of A, C, and X with respect to Q and
- (2) *a* is superficial for A_j with respect to *Q* and $\operatorname{hdeg}_Q(A_j/aA_j) \leq \operatorname{hdeg}_Q(A_j)$ for all $j \geq 0$.

We put $\overline{A} = A/aA$, $\overline{C} = C/aC$, and $\overline{X} = X/aX$. Then since *a* is *C*-regular, we have the exact sequence

$$0 \to (0) :_X a \to \overline{A} \xrightarrow{\varphi} \overline{C} \to \overline{X} \to 0.$$

Let $L = \operatorname{Im}\overline{\varphi}$. Then since $\ell_A((0) :_X a) < \infty$, we have $\dim_A L = d - 1$ and L is unmixed (recall that \overline{C} is unmixed, since $\operatorname{depth}_{A_{\mathfrak{p}}} C_{\mathfrak{p}} \ge \inf\{2, \dim A_{\mathfrak{p}}\}$ for all $\mathfrak{p} \in \operatorname{Spec} A$), whence (0) :_X $a = \operatorname{H}^0_{\mathfrak{m}}(\overline{A})$. Therefore, if d = 3, then L is a generalized Cohen-Macaulay Amodule with $\dim_A L = 2$ and $\operatorname{depth}_A L > 0$, whence

$$e_Q^2(A) = e_Q^2(\overline{A}) = e_Q^2(L) + \ell_A((0) :_X a).$$

Consequently, thanks to Proposition 4.10, we have

$$\ell_A((0):_X a) - h^1(\overline{A}) \le e_Q^2(A) = e_Q^2(L) + \ell_A((0):_X a) \le \ell_A((0):_X a),$$

because $h^1(L) = h^1(\overline{A})$. Since $A_1/aA_1 \cong \overline{A}_0$, we also have

$$\ell_A((0) :_X a) = h^0(\overline{A}) = \ell_A(\overline{A}_0)$$

$$= \operatorname{hdeg}_Q(\overline{A}_0)$$

$$= \operatorname{hdeg}_Q(A_1/aA_1)$$

$$\leq \operatorname{hdeg}_Q A_1.$$

Look now at the exact sequence

$$0 \to (0) :_{A_1} a \to A_1 \xrightarrow{a} A_1 \to \overline{A}_0 \to 0.$$

We then have $\ell_A(\overline{A}_0) = \ell_A((0) :_{A_1} a)$, whence $\ell_A((0) :_X a) = \ell_A((0) :_{A_1} a)$. Therefore we get

$$\ell_A((0):_{A_1} a) - h^1(\overline{A}) = \ell_A((0):_{A_1} a) - [\operatorname{hdeg}_Q(A_2/aA_2) + \operatorname{hdeg}_Q((0):_{A_1} a)]$$
$$= -\operatorname{hdeg}_Q(A_2/aA_2) \ge -\operatorname{hdeg}_Q(A_2),$$

because $h^1(\overline{A}) = h \deg_Q(A_2/aA_2) + h \deg_Q((0) :_{A_1} a)$ by the exact sequence

$$0 \to A_2/aA_2 \to \overline{A}_1 \to (0) :_{A_1} a \to 0.$$

Hence $-\operatorname{hdeg}_Q(A_2) \le \operatorname{e}_Q^2(A) \le \operatorname{hdeg}_Q(A_1).$

Suppose that d > 3 and that our assertion holds true for d - 1. Then since a is A-regular, we have the long exact sequence

$$0 \to \mathrm{H}^{0}_{\mathfrak{m}}(\overline{A}) \to \mathrm{H}^{1}_{\mathfrak{m}}(A) \xrightarrow{a} \mathrm{H}^{1}_{\mathfrak{m}}(A) \to \mathrm{H}^{1}_{\mathfrak{m}}(\overline{A}) \to \mathrm{H}^{2}_{\mathfrak{m}}(A) \xrightarrow{a} \mathrm{H}^{2}_{\mathfrak{m}}(A) \to \cdots$$
$$\to \mathrm{H}^{j}_{\mathfrak{m}}(A) \xrightarrow{a} \mathrm{H}^{j}_{\mathfrak{m}}(A) \to \mathrm{H}^{j}_{\mathfrak{m}}(\overline{A}) \to \mathrm{H}^{j+1}_{\mathfrak{m}}(A) \xrightarrow{a} \mathrm{H}^{j+1}_{\mathfrak{m}}(A) \to \cdots$$

Taking the Matlis dual $\operatorname{Hom}_A(*, \operatorname{E}_A(A/\mathfrak{m}))$ of it, we get short exact sequences

for each $1 \leq j \leq d-2$. Hence

 $\operatorname{hdeg}_Q(\overline{A}_j) \leq \operatorname{hdeg}_Q((0):_{A_j} a) + \operatorname{hdeg}_Q A_{j+1} \leq \operatorname{hdeg}_Q(A_j) + \operatorname{hdeg}_Q(A_{j+1})$

by Lemma 2.5, because $\ell_A((0):_{A_j} a) < \infty$. We then have by the hypothesis of induction that

$$-\sum_{j=2}^{d-2} \binom{d-4}{j-2} \operatorname{hdeg}_Q(\overline{A}_j) \leq e_Q^2(\overline{A}) \leq \operatorname{T}_Q^2(\overline{A})$$

$$= \sum_{j=1}^{d-3} \binom{d-4}{j-1} \operatorname{hdeg}_Q(\overline{A}_j)$$

$$\leq \sum_{j=1}^{d-3} \binom{d-4}{j-1} [\operatorname{hdeg}_Q(A_j) + \operatorname{hdeg}_Q(A_{j+1})]$$

$$= \sum_{j=1}^{d-2} \binom{d-3}{j-1} \operatorname{hdeg}_Q(A_j)$$

$$= \operatorname{T}_Q^2(A),$$

while we similarly get

$$-\sum_{j=2}^{d-1} {d-3 \choose j-2} \operatorname{hdeg}_Q(A_j) = -\sum_{j=2}^{d-2} {d-4 \choose j-2} [\operatorname{hdeg}_Q(A_j) + \operatorname{hdeg}_Q(A_{j+1})] \\ \leq -\sum_{j=2}^{d-2} {d-4 \choose j-2} \operatorname{hdeg}_Q(\overline{A}_j).$$

Hence

$$-\sum_{j=2}^{d-1} \binom{d-3}{j-2} \operatorname{hdeg}_Q(A_j) \le \operatorname{e}_Q^2(A) \le \operatorname{T}_Q^2(A),$$

$$\overline{A}$$

because $e_Q^2(A) = e_Q^2(\overline{A})$.

Question 4.11. When does the equality $e_Q^2(A) = T_Q^2(A)$ hold true?

Here is an answer in the case where A is a generalized Cohen-Macaulay ring.

Theorem 4.12 ([18]). Suppose that A is a generalized Cohen-Macaulay ring with $d = \dim A \ge 3$, depth A > 0, and infinite residue class field. Let Q be a parameter ideal in A. Then the following conditions are equivalent.

(1)
$$e_Q^2(A) = \sum_{j=1}^{d-2} {d-3 \choose j-1} h^j(A).$$

(2) There exist elements $a_1, a_2, \dots, a_d \in A$ such that (a) $Q = (a_1, a_2, \dots, a_d)$, (b) a_1, a_2, \dots, a_d is a d-sequence in A, and (c) $QH^j_{\mathfrak{m}}(A/(a_1, a_2, \dots, a_k)) = (0)$, whenever $j + k \leq d - 2$, 0 < j, and $0 \leq k$.

Remark 4.13. The parameter ideal Q is not necessarily standard, even if

$$e_Q^2(A) = \sum_{j=1}^{d-2} {d-3 \choose j-1} h^j(A).$$

For example, suppose that A is a generalized Cohen-Macaulay ring with d = 3 and depth A = 2. Assume that $\mathfrak{m}H^2_{\mathfrak{m}}(A) \neq (0)$ and choose $a \in \mathfrak{m}$ so that a is regular but $aH^2_{\mathfrak{m}}(A) \neq (0)$. Let $b, c \in \mathfrak{m}$ be a standard system of parameters for A/(a). Then a, b, cforms a d-sequence in A, so that

$$e^2_{(a,b,c)}(A) = 0 = h^1(A)$$

The ideal Q is, however, not standard, because $Q \cdot H^2_{\mathfrak{m}}(A) \neq (0)$.

5. A method to compute $e_Q^1(A)$

In this section let A be a Noetherian local ring with dim A = 2 and assume that A is a homomorphic image of a Gorenstein local ring, say $A = R/\mathfrak{a}$ with R a Gorenstein local ring and \mathfrak{a} an ideal in it. We assume that A is unmixed. Hence $\mathrm{H}^{1}_{\mathfrak{m}}(A)$ is a finitely generated A-module (Lemma 1.7 (1)). Let Q = (a, b) be a parameter ideal in A. Then, thanks to a lemma of Davis [23, Theorem 124], we get a regular sequence x, y in R so that $a = x \mod \mathfrak{a}$ and $b = y \mod \mathfrak{a}$. We put $\mathfrak{q} = (x, y)R$; hence $Q = \mathfrak{q}A$. Let $B = \mathrm{Hom}_{A}(\mathrm{K}_{A}, \mathrm{K}_{A})$ be the endomorphism ring of the canonical module K_{A} and look at the exact sequence

$$(E) \quad 0 \to A \xrightarrow{\varphi} B \to C \to 0$$

of A-modules, where $\varphi(a)$ is defined, for each $a \in A$, to be the homothety $a \cdot 1_{K_A}$ of a. Then, since depth_A $K_A = 2$, B is a Cohen-Macaulay A-module with dim_A B = 2 and we get $C \cong H^1_{\mathfrak{m}}(A)$ as A-modules (cf. [1, Theorem 3.2, Proof of Theorem 4.2], [2, Theorem 1.6]). Let $n \ge 0$ be an integer and let \mathbb{M} denote the n+1 by n+2 matrix defined by

$$\mathbb{M} = \begin{pmatrix} x & y & 0 & 0 & 0 & \cdots & 0 \\ 0 & x & y & 0 & 0 & \cdots & 0 \\ 0 & 0 & x & y & 0 & \cdots & 0 \\ & & & \ddots & & & \\ 0 & 0 & \cdots & 0 & 0 & x & y \end{pmatrix}.$$

Then the ideal \mathfrak{q}^{n+1} is generated by the maximal minors of the matrix \mathbb{M} and, thanks to the theorem of Hilbert–Burch ([23, Exercises 8, p. 148]), the *R*-module R/\mathfrak{q}^{n+1} has the resolution of the form

$$0 \longrightarrow F_2 = R^{n+1} \xrightarrow{^{t}\mathbb{M}} F_1 = R^{n+2} \xrightarrow{\partial} F_0 = R \longrightarrow R/\mathfrak{q}^{n+1} \longrightarrow 0,$$

in which the homomorphism ∂ is defined by

$$\partial(\mathbf{e}_j) = (-1)^j \cdot \det \mathbb{M}_j$$

for all $1 \leq j \leq n+2$ (here \mathbb{M}_j denotes the matrix obtained by deleting from \mathbb{M} the *j*-th column and $\{\mathbf{e}_j\}_{1\leq j\leq n+2}$ denotes the standard basis of \mathbb{R}^{n+2}). Consequently, for each \mathbb{R} -module X, $\operatorname{Tor}_j^{\mathbb{R}}(\mathbb{R}/\mathfrak{q}^{n+1}, X)$ is computed as the *j*-th homology module of the complex

$$0 \to X^{n+1} = F_2 \otimes_R X \xrightarrow{{}^t \mathbb{M} \otimes_R \mathbb{I}_X} X^{n+2} = F_1 \otimes_R X \xrightarrow{\partial \otimes_R \mathbb{I}_X} X = F_0 \otimes_R X \longrightarrow 0.$$

Setting X = C, we therefore have, since $\operatorname{Tor}_{1}^{R}(R/\mathfrak{q}^{n+1}, B) = (0)$ (see [3, Theorem 9.1.6]; notice that the ideal $\mathfrak{q} = (x, y)R$ is generated by a *B*-regular sequence of length 2), the exact sequence

$$0 \to \operatorname{Tor}_{1}^{R}(R/\mathfrak{q}^{n+1}, C) \to A/Q^{n+1} \to B/Q^{n+1}B \to C/Q^{n+1}C \to 0.$$

Therefore

(2)
$$\ell_A(A/Q^{n+1}) = \ell_A(B/Q^{n+1}B) + \ell_A(\operatorname{Tor}_1^R(R/\mathfrak{q}^{n+1}, C)) - \ell_A(C/Q^{n+1}C)$$

for all $n \ge 0$. On the other hand, since the alternating sum of the length of homology modules of the complex

$$0 \to C^{n+1} = F_2 \otimes_R C \xrightarrow{^{t}\mathbb{M} \otimes_R \mathbb{I}_C} C^{n+2} = F_1 \otimes_R C \xrightarrow{\partial \otimes_R \mathbb{I}_C} C = F_0 \otimes_R C \longrightarrow 0$$

is 0, we get

$$\ell_R(\operatorname{Tor}_1^R(R/\mathfrak{q}^{n+1}, C)) = \ell_R(\operatorname{Tor}_2^R(R/\mathfrak{q}^{n+1}, C)) + \ell_A(C/Q^{n+1}C).$$

Hence by equation (2) we have for all $n \ge 0$ that

(3)
$$\ell_A(A/Q^{n+1}) = e_Q^0(A) \binom{n+2}{2} + \ell_R(\operatorname{Tor}_2^R(R/\mathfrak{q}^{n+1}, C)),$$

because $e_Q^0(A) = e_Q^0(B) = \ell_A(B/QB)$ (see exact sequence (E); recall that B is a Cohen-Macaulay A-module with $\dim_A B = 2$ and $\ell_A(C) < \infty$) and $\ell_A(B/Q^{n+1}B) = \ell_A(B/QB)\binom{n+2}{2}$ for all $n \ge 0$. We remember the isomorphism

$$\operatorname{Tor}_{2}^{R}(R/\mathfrak{q}^{n+1}, C) \cong \operatorname{Ker}(C^{n+1} \xrightarrow{^{t}\mathbb{M}} C^{n+2}),$$

that is

$$\operatorname{Tor}_{2}^{R}(R/\mathfrak{q}^{n+1},C) \cong \left\{ \begin{pmatrix} \alpha_{0} \\ \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix} \in C^{n+1} \middle| a\alpha_{i} + b\alpha_{i-1} = 0 \text{ for all } 0 \le i \le n+1 \right\},$$

where $\alpha_{-1} = \alpha_{n+1} = 0$ for convention.

Summarizing these observations, we get the following, which we will use very frequently in this paper. The same method of computation of $e_Q^i(A)$ is given in [10, Example 3.8] and [28, Section 3].

Proposition 5.1. Let $n \ge 0$ be an integer and let

$$T_n = \left\{ \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in C^{n+1} \middle| a\alpha_i + b\alpha_{i-1} = 0 \text{ for all } 0 \le i \le n+1 \right\}.$$

Then the following assertions hold true.

- (1) $\ell_A(A/Q^{n+1}) = e_Q^0(A)\binom{n+2}{2} + \ell_A(T_n)$ for all $n \ge 0$.
- (2) $-\ell_A(C) \leq e_Q^1(A) \leq -\ell_A((0) :_C Q).$
- (3) Suppose aC = (0). Then $e_Q^1(A) = -\ell_A((0) :_C b) = \ell_A(C/bC)$ and $e_Q^2(A) = 0$.
- (4) ([10, Example 3.8], [28, Section 3]) Suppose QC = (0). Then $e_Q^1(A) = -\ell_A(C)$ and $e_Q^2(A) = 0$.

Proof. See equation (3) for assertion (1). We see $\ell_A((0) :_C Q)(n+1) \leq \ell_A(T_n) \leq \ell_A(C)(n+1)$, since $[(0):_C Q]^{n+1} \subseteq T_n \subseteq C^{n+1}$. Hence we have assertion (2). If aC = (0), then $T_n = [(0):_C b]^{n+1}$, so that $\ell_A(A/Q^{n+1}) = e_Q^0(A)\binom{n+2}{2} + \ell_A((0):_C b)\binom{n+1}{1}$ by

assertion (1). Hence assertion (3) follows, because $\ell_A((0) :_C b) = \ell_A(C/bC)$. Assertion (4) is now obvious.

Example 5.2. Let R = k[[X, Y, Z, W]] be the formal power series ring over a field k and we look at the local ring

$$A = R/[(X, Y)^{\ell} \cap (Z, W)],$$

where $\ell \geq 1$ is an integer. Then A is a 2-dimensional generalized Cohen-Macaulay local ring with depth A = 1. In this local ring A, the following assertions hold true.

- Let a, b be a system of parameters in A. Then a, b or b, a forms a d-sequence in
 A. Hence every parameter ideal of A is generated by a d-sequence.
- (2) $\Lambda_1(A) = \{ -\frac{(2\ell n + 1)n}{2} \mid 0 < n \in \mathbb{Z} \} \text{ and } \Lambda_2(A) = \{ 0 \}.$

Proof. Let \mathfrak{m} be the maximal ideal in A and let x, y, z, and w be the images of X, Y, Z, and W in A. Then $\mathfrak{m} = (x, y, z, w)$. Thanks to the exact sequence

$$0 \to A \to A/(x,y)^{\ell} \oplus A/(z,w) \to A/[(x,y)^{\ell} + (z,w)] \to 0,$$

we have dim A = 2, depth A = 1, and $H^1_{\mathfrak{m}}(A) \cong A/[(x, y)^{\ell} + (z, w)]$. Hence A is a generalized Cohen-Macaulay local ring. Let $C = A/[(x, y)^{\ell} + (z, w)]$.

Now choose a system a, b of parameters in A and put Q = (a, b). Suppose that aC = (0). If bC = (0), then Q is standard and so, $e_Q^1(A) = -\ell_A(C) = \frac{(\ell+1)\ell}{2}$ and $e_Q^2(A) = 0$ by Proposition 5.1 (4). Suppose $bC \neq (0)$. Then $[(b) : (a^2)]/(b) \subseteq U(b)/(b) \cong (0) :_C b$. Therefore, since $a[(0) :_C b] = (0)$, we get that b, a is a d-sequence. Let $n = v_{\mathfrak{m}_C}(\overline{b})$ denote the order of the image \overline{b} of b in C with respect to the maximal ideal \mathfrak{m}_C of C. Then $0 < n < \ell$ and $(0) :_C b = \mathfrak{m}_C^{\ell-n}$, whence $e_Q^1(A) = -\ell_A((0) :_C b) = -\ell_A(\mathfrak{m}_C^{\ell-n}) = -\frac{(2\ell-n+1)n}{2}$ and $e_Q^2(A) = 0$ by Proposition 5.1 (3)

Suppose that $aC \neq (0)$ and $bC \neq (0)$. We may assume that

$$n = v_{\mathfrak{m}_C}(\overline{a}) \leq m = v_{\mathfrak{m}_C}(\overline{b}).$$

Then $b[(0) :_C a] \subseteq \mathfrak{m}_C^m \cdot \mathfrak{m}_C^{\ell-n} \subseteq \mathfrak{m}_C^\ell = (0)$, so that $b \mathrm{U}(a) \subseteq (a)$, whence a, b is a d-sequence in A. We have

$$T = \left\{ \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_q \end{pmatrix} \in C^{q+1} \middle| a\alpha_i + b\alpha_{i-1} = 0 \text{ for all } 0 \le i \le q+1 \right\}$$
$$= [(0) :_C a]^{q+1}$$

for all $q \ge 0$, whence $e_Q^1(A) = -\ell_A((0) :_C a) = -\frac{(2\ell - n + 1)n}{2}$ and $e_Q^2(A) = 0$.

Let $0 < n < \ell$ be integers and look at the system $a = x^{\ell} - z, b = y^n - w$ of parameters in A. Then $aC = (0), bC \neq (0)$, and $v_{\mathfrak{m}_C}(\overline{b}) = n$. Hence

$$\Lambda_1(A) = \{ -\frac{(2\ell - n + 1)n}{2} \mid 0 < n \le \ell \}$$

as claimed.

As for the following question, I do not know the answer in general. The answer is affirmative, if $\ell \leq 3$, or $d \leq 2$, or the parameter ideals are homogeneous.

Question 5.3. Let $\ell, d > 0$ be integers and let $R = k[[X_1, X_2, \cdots, X_d, Y_1, Y_2, \cdots, Y_d]]$ be the formal power series ring over a filed k. We look at the local ring

$$A = R/[(X_1, X_2, \cdots, X_d)^{\ell} \cap (Y_1, Y_2, \cdots, Y_d)].$$

Then, is every parameter ideal in A generated by a d-sequence of length d?

Thanks to Proposition 5.1, we similarly have the following.

Example 5.4. Let $\ell \geq 1$ be an integer and R = k[[X, Y, Z, W]] be the formal power series ring over a field k and we look at the local ring

$$A = R/[(X^{\ell}, Y^{\ell}) \cap (Z, W)].$$

Then A is a 2-dimensional generalized Cohen-Macaulay local ring with depth A = 1. Let $\mathbf{q} = (X - Z, Y - W)$. Then $Q = \mathbf{q}A$ is a parameter ideal in A and $e_Q^0(A) = \ell^2 + 1$, $e_Q^1(A) = -\ell$, and $e_Q^2(A) = -\frac{\ell(\ell-1)}{2}$. Hence $e_Q^2(A) < 0$ if $\ell \ge 2$, so that Q cannot be generated by a d-sequence of length 2 (Proposition ?? (2)). *Proof.* Let us discuss only the case where $\ell \geq 2$. Let $C = k[X, Y, Z, W]/(X^{\ell}, Y^{\ell}, Z, W)$ ($\cong H^1_{\mathfrak{m}}(A)$) and let $n \geq \ell + 1$ be an integer. We look at the graded C-module

$$T = \left\{ \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in C^{n+1} \middle| x\alpha_i + y\alpha_{i-1} = 0 \text{ for all } 0 \le i \le n+1 \right\},$$

where x, y be the images of X - Z, Y - W in C. Let T_q $(q \in \mathbb{Z})$ denote the homogeneous component of the graded module T. Then $T_q = (0)$ if $q \leq \ell - 2$, because $(0) :_C x = x^{\ell-1}C$. Suppose $\ell - 1 \leq q \leq 2\ell - 2$. Let $\{c_i\}_{0 \leq i \leq n+1}$ be a family of elements in k such that $c_i = 0$ for all $n + 1 \leq i \leq n - 2\ell + q + 3$. We put

(*)
$$\alpha_i = \begin{cases} \sum_{j=1}^{i+1} (-1)^{j-1} c_{i-j+1} x^{\ell-j} y^{q-\ell+j} & \text{if } 0 \le i \le \ell-1, \\ \sum_{j=1}^{\ell} (-1)^{j-1} c_{i+1-j} x^{\ell-j} y^{q-\ell+j} & \text{if } \ell \le i \le n. \end{cases}$$

Then $\begin{pmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \in T_q$ and it is routine to check that T_q consists of all those elements which

are defined by the above equation (*). Hence $\dim_k T_q = n - 2\ell + q + 3$, if $\ell - 1 \le q \le 2\ell - 2$. Consequently, we have

$$\dim_k T = \sum_{q=0}^{2\ell-2} \dim_k T_q$$
$$= \sum_{q=\ell-1}^{2\ell-2} (n-2\ell+q+3)$$
$$= (n+1)\ell - \frac{(\ell-1)\ell}{2}.$$

Hence $e_Q^1(A) = -\ell$ and $e_Q^2(A) = -\frac{\ell(\ell-1)}{2}$ by Proposition 5.1. As $e_Q^0(A) = e_q^0(R/(X^\ell, Y^\ell)) + e_q^0(R/(Z, W)) = \ell^2 + 1$, this completes the computation. \Box

6. Constancy of $\mathrm{e}^1_Q(A)$ with the common \overline{Q}

Let A be a Noetherian local ring with maximal ideal \mathfrak{m} . In this section we study the question, raised by Wolmer V. Vasconcelos, of whether $e_Q^1(A)$ is independent of the choice of minimal reductions Q of I, where I is an \mathfrak{m} -primary ideal in A.

We begin with the following general result.

Proposition 6.1. Let M be a finitely generated A-module with $\dim_A M = s$ and let Qand Q' be parameter ideals for M with $\overline{Q} = \overline{Q'}$ in A. Suppose that there exists an exact sequence

$$0 \to L \to M \to M/L \to 0$$

of A-modules such that $L \neq (0)$, $\dim_A L = t < s$, and M/L is a Cohen-Macaulay A-module. Then

$$\mathbf{e}^1_O(M) = \mathbf{e}^1_{O'}(M),$$

where $e_Q^1(M)$ (resp. $e_{Q'}^1(M)$) denote the first Hilbert coefficients of M with respect to Q (resp. Q').

Proof. Passing to the ring A/[(0) : M], we may assume that (0) : M = (0), whence s = d and both Q and Q' are parameter ideals of A. Let C = M/L. Then C is a maximal Cohen-Macaulay A-module. Hence we get the exact sequence

$$0 \to L/Q^{n+1}L \to M/Q^{n+1}M \to C/Q^{n+1}C \to 0$$

of A-modules, so that

(4)
$$\ell_A(M/Q^{n+1}M) = \ell_A(C/Q^{n+1}C) + \ell_A(L/Q^{n+1}L)$$

= $\ell_A(C/QC)\binom{n+s}{s} + \ell_A(L/Q^{n+1}L)$

for $n \ge 0$. We write

$$\ell_A(L/Q^{n+1}L) = e_Q^0(L)\binom{n+t}{t} - e_Q^1(L)\binom{n+t-1}{t-1} + \dots + (-1)^t e_Q^t(L)$$

for $n \gg 0$, where $\{e_Q^i(L)\}_{0 \le i \le t}$ are integers with $e_Q^0(L) \ge 1$. We then have $e_Q^1(M) = -e_Q^0(L)$, if t = s - 1 and $e_Q^1(M) = 0$, if t < s - 1. Thus, from equation (4) the equality $e_Q^1(M) = e_{Q'}^1(M)$ follows, because $e_Q^0(L) = e_{Q'}^0(L)$ once $\overline{Q} = \overline{Q'}$.

Let $M \ (\neq (0))$ be a finitely generated A-module. We say that M is a sequentially Cohen-Macaulay A-module, if M possesses a Cohen-Macaulay filtration, that is a filtration

$$L_0 = (0) \subsetneq L_1 \subsetneq L_2 \subsetneq \cdots \subsetneq L_\ell = M$$

of A-submodules $\{L_i\}_{0 \le i \le \ell}$ such that $\dim_A L_i > \dim_A L_{i-1}$ and L_i/L_{i-1} is a Cohen-Macaulay A-module for all $1 \le i \le \ell$ ([34], [6], [9]). Therefore, applying Proposition 6.1, we readily get the following.

Corollary 6.2. Suppose that M is a sequentially Cohen-Macaulay A-module with $\dim_A M > 0$ and let Q and Q' be parameter ideals for M. Then $e_Q^1(M) = e_{Q'}^1(M)$, if $\overline{Q} = \overline{Q'}$ in A.

Let us note a typical example.

Example 6.3 ([?]). Let R be a regular local ring of dimension 3 and let X, Y, Z be a regular system of parameters of R. We look at the two-dimensional local ring $A = R/(X) \cap (Y, Z)$. Then A is not Cohen-Macaulay but sequentially Cohen-Macaulay. Let x, y, z be the images of X, Y, Z in A, respectively, and put C = A/(y, z) and B = A/(x). Then C is a DVR and B is a two-dimensional regular local ring. Let Q = (a, b) be a parameter ideal in A. Then a, b forms a B-regular sequence and, thanks to the exact sequence $0 \to C \to A \to B \to 0$, we get

$$\ell_A(A/Q^{n+1}) = e_{QB}^0(B)\binom{n+2}{2} + e_{QC}^0(C)\binom{n+1}{1}$$

for all $n \gg 0$, so that $e_Q^0(A) = \ell_B(B/QB)$, $e_Q^1(A) = -e_{QC}^0(C)$, and $e_Q^2(A) = 0$. Therefore, if Q' is a parameter ideal in A with $\overline{Q'} = \overline{Q}$, we always have $e_Q^i(A) = e_{Q'}^i(A)$ for all $0 \le i \le 2$, because QC = Q'C.

We now assume that dim A = 2, depth A = 1, and $H^1_{\mathfrak{m}}(A)$ is a finitely generated Amodule. For simplicity, we assume that the residue class field $k = A/\mathfrak{m}$ of A is infinite. We put

$$C = \operatorname{H}^{1}_{\mathfrak{m}}(A)$$
 and $\mathfrak{c} = (0) : C.$

Proposition 6.4. Let I be an m-primary ideal in A and assume that the scheme Proj $\mathcal{R}(Q)$ is Cohen-Macaulay for every minimal reduction Q of I. Then $e_Q^1(A)$ is independent of the choice of minimal reductions Q of I and is an invariant of I. Proof. Let Q = (a, b) and Q' = (a', b') be reductions of I. Then, since the ideal I contains an element x such that (b, x) and (x, a') are reductions of I, without loss of generality we may assume that a = a'. Then the element a is superficial for both Q and Q', because the schemes $\operatorname{Proj} \mathcal{R}(Q)$ and $\operatorname{Proj} \mathcal{R}(Q')$ are Cohen-Macaulay. In fact, let G = G(Q). Then $\operatorname{Proj} G$ is a Cohen-Macaulay scheme, since so is $\operatorname{Proj} \mathcal{R}(Q)$. Hence the local ring G_P is Cohen-Macaulay for every prime ideal $P \in \operatorname{Spec} G \setminus \{\mathfrak{M}\}$, where $\mathfrak{M} = \mathfrak{m}G + G_+$. Therefore, every system f, g of parameters of the local ring $R = G_{\mathfrak{M}}$ forms a filter regular sequence, that is equivalent to saying that the R-modules $(0) :_R f$ and $[(f) :_R g]/(f)$ have finite length. Applying this observation to the homogeneous system $f = \overline{at}, g = \overline{bt}$ of parameters for the graded ring G (here \overline{at} and \overline{bt} denote the image of at and bt in G, respectively), by definition of superficial elements we see that a and b are always superficial for the ideal Q, once Q = (a, b). Consequently, since a is A-regular, we get

$$e_Q^1(A) = e_{Q/(a)}^1(A/(a)) = -\ell_A(\mathrm{H}^0_{\mathfrak{m}}(A/(a))) = -\ell_A((0):_C a),$$

which depends on the element a only, so that we have $e_Q^1(A) = e_{Q'}^1(A)$.

We now come to the main result of this section.

Theorem 6.5. Suppose that the ideal \mathfrak{c} is not integrally closed. Then for each reduction Q = (a, b) of \mathfrak{c} , there exists a reduction Q' = (a', b') of \overline{Q} such that

$$0 > e^1_{Q'}(A) > e^1_Q(A) = -\ell_A(C).$$

Proof. We put $I = \overline{Q}$ and let $\ell = \mu_A(I)$. We write $I = (x_1, x_2, \dots, x_\ell)$ so that every two elements x_i, x_j $(1 \le i, j \le \ell, i \ne j)$ generate a reduction of I. Then, since $\mathfrak{c} \subsetneq I = \overline{\mathfrak{c}}$, we have $x_i \notin \mathfrak{c}$ for some $1 \le i \le \ell$. Choose an integer $1 \le j \le \ell$ so that $j \ne i$ and put $Q' = (x_i, x_j)$. Then Q' is a reduction of $I = \overline{Q} = \overline{\mathfrak{c}}$ but $Q' \not\subseteq \mathfrak{c}$. Therefore, choosing elements a', b' of Q' so that Q' = (a', b') and both a', b' are superficial for the ideal Q', we may assume that $a' \notin \mathfrak{c} = (0) : C$. We then have

$$e_{Q'}^{1}(A) = e_{Q'/(a')}^{1}(A/(a')) = -\ell_{A}((0) :_{C} a') > -\ell_{A}(C),$$
44

while by Proposition 5.1(4)

$$e_Q^1(A) = -\ell_A(C),$$

because QC = (0). Thus

$$0 > e_{Q'}^1(A) > e_Q^1(A) = -\ell_A(C).$$

Let us note concrete examples.

Example 6.6. Let *R* be a regular local ring with maximal ideal \mathfrak{n} and dim R = 4. Let X, Y, Z, W be a regular system of parameters for *R* and let

$$\mathfrak{a} = (X^n, Y^n) \cap (Z, W),$$

where $n \ge 2$ is an integer. We look at the local ring $A = R/\mathfrak{a}$. Then dim A = 2, depth A = 1, and

$$\mathrm{H}^{1}_{\mathfrak{m}}(A) \cong A/(x^{n}, y^{n}, z, w),$$

where $\mathfrak{m} = \mathfrak{n}/\mathfrak{a}$ is the maximal ideal of A and x, y, z, and w denote the images of X, Y, Z, and W in A, respectively. Let $Q = (x^n - z, y^n - w)$ and $Q' = (xy^{n-1} - z, x^n + y^n - w)$. Then we have the following, where $\mathfrak{c} = (0) : \mathrm{H}^1_{\mathfrak{m}}(A) = (x^n, y^n, z, w)$.

(1) $\overline{Q} = \overline{Q'} = \overline{\mathfrak{c}} = \mathfrak{m}^n + (z, w).$

(2)
$$e_Q^0(A) = e_{Q'}^0(A) = 2n^2$$
.

(3)
$$0 > e^1_{Q'}(A) = -(n^2 - n + 1) > e^1_Q(A) = -n^2.$$

- (4) $\ell_A(A/Q^{\ell+1}) = 2n^2 \binom{\ell+2}{2} + n^2 \binom{\ell+1}{1}$ and $\ell_A(A/Q'^{\ell+1}) = 2n^2 \binom{\ell+2}{2} + (n^2 n + 1)\binom{\ell+1}{1}$ for all integers $\ell \ge 0$.
- (5) The element $x^n + y^n w$ is not superficial for Q', whence the scheme $\operatorname{Proj} \mathcal{R}(Q')$ is not Cohen-Macaulay.
- (6) Let $S = S_Q(I)$ (resp. $S' = S_{Q'}(I)$) denote the Sally module of $I = \overline{Q} = \overline{Q'}$ with respect to Q (resp. Q') and let $T = \mathcal{R}(Q)$ (resp. $T' = \mathcal{R}(Q')$) be the Rees algebra of Q (resp. Q'). We put $\mathfrak{p} = \mathfrak{m}T$ and $\mathfrak{p}' = \mathfrak{m}T'$. Then

$$\ell_{T_{\mathfrak{p}}}(S_{\mathfrak{p}}) = \ell_{T'_{\mathfrak{p}'}}(S'_{\mathfrak{p}'}) + (n-1).$$

To prove assertions in Example 6.6 we need the following.

Lemma 6.7. Let A be a Noetherian local ring with maximal ideal \mathfrak{m} and dim A = 2. Suppose that depth A = 1 and that $\mathrm{H}^{1}_{\mathfrak{m}}(A)$ is a finitely generated A-module. We put $\mathfrak{c} = (0) : \mathrm{H}^{1}_{\mathfrak{m}}(A)$. Let a, b be a system of parameters in A. Then the following assertions hold true.

- (1) If $b \in \mathfrak{c}$, then a, b forms a d-sequence in the sense of C. Huneke [20].
- (2) (a) : $b \subseteq \overline{(a)}$.

Proof. (1) We have $[(a): b^2]/(a) \subseteq \mathrm{H}^0_{\mathfrak{m}}(A/(a)) \cong (0):_{\mathrm{H}^1_{\mathfrak{m}}(A)} a$, so that $\mathfrak{c} \cdot [((a): b^2)/(a)] = (0)$. Hence $(a): b^2 \subseteq (a): \mathfrak{c} \subseteq (a): b$. Thus a, b forms a *d*-sequence, because a is A-regular.

(2) Let $B = \widetilde{A}$ be the Cohen-Macaulayfication of A ([2]). We then have [(a) : b]B = aB, since a, b is a regular sequence in B. Therefore, $\frac{x}{a} \in B$ for all $x \in (a) : b$, whence $x \in \overline{(a)}$, because B is a module-finite extension of A. Thus $(a) : b \subseteq \overline{(a)}$.

Let us check the assertions in Example 6.6.

Proof of the assertions in Example 6.6. We have $Q \subseteq \mathfrak{c} = Q + (z, w)$ and $\mathfrak{c}^2 = Q\mathfrak{c}$. Hence $\overline{Q} = \overline{\mathfrak{c}}$. Since A/(z, w) is a regular local ring of dimension 2, we have $\overline{\mathfrak{m}^n + (z, w)} = \mathfrak{m}^n + (z, w)$. Therefore, because

$$Q \subseteq \mathfrak{m}^n + (z, w) = (x, y)^n + (z, w) \subseteq \overline{(x^n, y^n) + (z, w)} = \overline{\mathfrak{c}},$$

we get $\overline{Q} = \mathfrak{m}^n + (z, w) = \overline{\mathfrak{c}}$, whence $\mathfrak{c} \neq \overline{\mathfrak{c}}$, because $xy^{n-1} \notin \mathfrak{c}$ (recall that $n \geq 2$). Let $\mathfrak{p}_1 = (x, y)$ and $\mathfrak{p}_2 = (z, w)$. Then Ass $A = \operatorname{Assh} A = {\mathfrak{p}_1, \mathfrak{p}_2}$ and the associative formula of multiplicity says that the equality

$$\mathbf{e}^{0}_{\mathfrak{q}}(A) = \sum_{\mathfrak{p} \in \operatorname{Assh} A} \ell_{A\mathfrak{p}}(A_{\mathfrak{p}}) \mathbf{e}^{0}_{\mathfrak{q} \cdot (A/\mathfrak{p})}(A/\mathfrak{p})$$

holds true for any \mathfrak{m} -primary ideal \mathfrak{q} in A. Applying it to our ideals Q and Q', we readily get that

$$e_Q^0(A) = e_{Q'}^0(A) = 2n^2$$
.

Hence Q' is also a reduction of $\overline{\mathfrak{c}}$ by a theorem of D. Rees [32], because $Q' \subseteq \overline{\mathfrak{c}}$ and $\mathrm{e}^{0}_{\overline{\mathfrak{c}}}(A) = \mathrm{e}^{0}_{Q'}(A) = \mathrm{e}^{0}_{Q'}(A)$. Thus $\overline{Q} = \overline{Q'}$ but $Q' \not\subseteq \mathfrak{c}$. We put $C = A/(x^{n}, y^{n}, z, w)$. Then $\overset{46}{46}$

 $C \cong \mathrm{H}^{1}_{\mathfrak{m}}(A)$ and $(x^{n} + y^{n} - w)C = (0)$. Hence

$$e_{Q'}^1(A) = -(n^2 - n + 1)$$

by Proposition 5.1 (3), because

$$\ell_A((0):_C xy^{n-1} - z) = \ell_A(C/(xy^{n-1} - z)C) = \ell_A(A/(x^n, y^n, xy^{n-1}, z, w)) = n^2 - n + 1,$$

whence by Proposition 5.1 (1) we have for all integers $\ell \geq 0$

$$\ell_A(A/Q'^{\ell+1}) = 2n^2 \binom{\ell+2}{2} + \ell_A((0):_C xy^{n-1} - z) \binom{\ell+1}{1} \\ = 2n^2 \binom{\ell+2}{2} + (n^2 - n + 1) \binom{\ell+1}{1}.$$

We similarly have

$$e_Q^1(A) = -\ell_A(C) = -n^2$$

because QC = (0), whence

$$\ell_A(A/Q^{n+1}) = 2n^2 \binom{\ell+2}{2} + n^2 \binom{\ell+1}{1}$$

for all $\ell \geq 0$.

If $x^n + y^n - w$ is superficial for the ideal Q', we must have

$$e_{Q'}^1(A) = e_{Q'/(x^n + y^n - w)}^1(A/(x^n + y^n - w)) = \ell_A((0) :_C x^n + y^n - w) = -\ell_A(C) = -n^2,$$

which is impossible, because $n \ge 2$. Hence $x^n + y^n - w$ is not superficial for Q'. Therefore the scheme Proj $\mathcal{R}(Q')$ is not Cohen-Macaulay (see Proof of Proposition 6.4).

To see assertion (6), notice that by [16, Proposition 2.5] we get the equalities

$$e_{I}^{1}(A) = e_{I}^{0}(A) + e_{Q}^{1}(A) - \ell_{A}(A/I) + \ell_{T_{\mathfrak{p}}}(S_{\mathfrak{p}})$$
$$= e_{I}^{0}(A) + e_{Q'}^{1}(A) - \ell_{A}(A/I) + \ell_{T'_{\mathfrak{p}}}(S'_{\mathfrak{p}'})$$

for the ideal $I = \overline{\mathfrak{c}}$, because by Lemma 4.7 all conditions (C₀) and (C₂) in [16] are satisfied for the ideals Q, Q', and $I = \overline{\mathfrak{c}}$. This completes the proof of all the assertions.

Remark 6.8. In Example 6.6 assume that the residue class field R/\mathfrak{n} of R is infinite. Then $e_{\mathfrak{q}}^1(A) = -n$ for every minimal reduction $\mathfrak{q} = (a, b)$ of the maximal ideal \mathfrak{m} of A. *Proof.* Let $\overline{A} = A/(z, w)$ and let \overline{c} denote, for each $c \in A$, the image of c in \overline{A} . Then \overline{A} is a two-dimensional regular local ring with $\overline{x}, \overline{y}$ a regular system of parameters. Let $\mathfrak{q} = (a, b)$ be a minimal reduction of \mathfrak{m} . Then $\mathfrak{m} = \mathfrak{q} + (z, w)$, since the local ring \overline{A} is regular. We may assume that a is superficial for \mathfrak{q} . Hence

$$e_{\mathfrak{q}}^{1}(A) = e_{\mathfrak{q}/(a)}^{1}(A/(a)) = -\ell_{A}((0):_{C} a) = -\ell_{A}(C/aC) = -\ell_{A}(A/(x^{n}, y^{n}, z, w, a)).$$

Let us check that $\ell_A(A/(x^n, y^n, z, w, a)) = n$. We write $\overline{a} = \alpha \overline{x} + \beta \overline{y}$ with $\alpha, \beta \in \overline{A}$. We may assume that α is a unit of \overline{A} , because $a \notin \mathfrak{m}^2 + (z, w)$. Therefore

$$(\overline{x}^n, \overline{y}^n, \overline{a}) = (\overline{x}^n, \overline{y}^n, \overline{x} + \beta' \overline{y}) = (\overline{y}^n, \overline{x} + \beta' \overline{y})$$

with $\beta' = \alpha^{-1}\beta$, whence

$$\ell_A(A/(x^n, y^n, z, w, a)) = \ell_A(\overline{A}/(\overline{x} + \beta' \overline{y}, \overline{y}^n)) = n.$$

Thus $e^1_{\mathfrak{q}}(A) = -n$ as is claimed.

Before closing this section, let us note the following example, which shows that the rank of Sally modules depends on the choice of minimal reductions.

Example 6.9. Choose n = 2 in Example 6.6 and put $I = \mathfrak{m}^2 + (z, w)$. We denote by $S = S_Q(I)$ (resp. $S' = S_{Q'}(I)$) the Sally module of I with respect to Q (resp. Q'). Let $T = \mathcal{R}(Q) = A[Qt]$ (resp. $T' = \mathcal{R}(Q') = A[Q't]$), where t is an indeterminate over A. We put $B = T/\mathfrak{m}T$ and $B' = T'/\mathfrak{m}T'$. Then

- (1) $S \cong B_+$ as graded *T*-modules,
- (2) $S' \cong B'/(x^2 + y^2 w)t \cdot B'$ as graded T'-modules, and
- (3) $\ell_A(A/I^{n+1}) = 8\binom{n+2}{2} 2\binom{n+1}{1} 4$ for all $n \ge 1$.

Hence $\operatorname{rank}_B S = 1$ but $\operatorname{rank}_{B'} S' = 0$.

Proof. (1) We put $a = x^2 - z$ and $b = y^2 - w$. It is routine to check that $I^2 = QI + (xyz, xyw), xyz \notin Q, I^3 = QI^2$, and $\mathfrak{m}I^2 \subseteq QI$. Hence $S \neq (0)$ and $\mathfrak{m}S = (0)$, because $S = TS_1$ and $S_1 \cong I^2/QI$ (see [16, Lemma 2.1]), where S_1 stands for the homogeneous component of S with degree 1. Therefore we have an epimorphism

$$\varphi: B(-1) \to S$$

$$48$$

of graded *B*-modules defined by $\varphi(\mathbf{e}_1) = \widetilde{xyzt}$ and $\varphi(\mathbf{e}_2) = \widetilde{xywt}$, where \widetilde{xyzt} and \widetilde{xywt} denote the images of xyzt and xywt in *S*, respectively, and $\{\mathbf{e}_1, \mathbf{e}_2\}$ is the standard basis of $B(-1)^2$. Let \overline{f} denote, for each $f \in T$, the image of f in *B*. Then, since

$$b(xyz) = a(xyw) = -xyzw,$$

we see $\overline{bt}\mathbf{e}_1 - \overline{at}\mathbf{e}_2 \in \text{Ker } \varphi$. Therefore, we get an epimorphism

$$\overline{\varphi}: B_+ \to S$$

induced from φ (notice that $B = k[\overline{at}, \overline{bt}]$ and $B_+ \cong B(-1)^2/B \cdot [\overline{bt}\mathbf{e}_1 - \overline{at}\mathbf{e}_2]$, since $\overline{at}, \overline{bt}$ are algebraically independent over the residue class field $k = A/\mathfrak{m}$ of A), which must be an isomorphism, because $S \neq (0)$ and by [16, Lemma 2.3] S is a torsionfree B-module (notice that conditions (C₀) and (C₂) in [16] are satisfied by Lemma 4.7). Thus $S \cong B_+$ as graded B-modules. We have condition (C₁) in [16] also satisfied, since QC = (0)(see [36, Theorem 2.5]). Therefore by [16, Theorem 1.3 (iii)] we get

$$\ell_A(A/I^{n+1}) = e_I^0(A) \binom{n+2}{2} - \{e_I^0(A) + e_Q^1(A) - \ell_A(A/I) + 1\} \binom{n+1}{1} + \{e_Q^1(A) + e_Q^2(A)\} = 8\binom{n+2}{2} - 2\binom{n+1}{1} - 4$$

for all $n \ge 1$.

(2) This time we have $I^2 = Q'I + (xyz), I^3 = Q'I^2$, and $\mathfrak{m}I^2 \subseteq Q'I$. Notice that $S' \neq (0)$, since $xyz \notin Q'$. Let a' = z - xy and $b' = w - (x^2 + y^2)$. We then have

$$b'(xyz) = a'(xyw) = xyzw$$

and $xyw = b'z - a'w \in Q'^2I$. Hence we get an epimorphism

$$\varphi': (B'/b't \cdot B')(-1) \to S'$$

such that $\varphi'(1) = \widetilde{xyzt}$.

We now want to show that φ' is an isomorphism. Suppose that Ker $\varphi' \neq (0)$. Then the homogeneous component $[\text{Ker}\varphi']_n$ of Ker φ' is non-zero for some integer n. Choose such an integer n as small as possible. Then $n \geq 2$ and $\overline{a't}^{n-1} \in \text{Ker } \varphi'$, since $B' = k[\overline{a't}, \overline{b't}]$. Therefore

$$a'^{n-1}(xyz) \in Q'^n I = a'Q'^{n-1}I + b'^n I.$$

Let $a'^{n-1}(xyz) = a'i + b'^n j$ with $i \in Q'^{n-1}I$ and $j \in I$. We then have

$$j \in (a') : b'^n = (a') : b',$$

since a', b' is a *d*-sequence by Lemma 4.7 (1). Let b'j = a'h with $h \in A$. Then $h \in (b') : a' \subseteq I$ by Lemma 4.7 (2) and $a'^{n-1}(xyz) = a'i + a'(b'^{n-1}h)$, whence

$$a'^{n-2}(xyz) = i + b'^{n-1}h \in Q'^{n-1}I,$$

because a' is A-regular. Therefore

$$\overline{a't}^{n-2} \in [\text{Ker } \varphi']_{n-1},$$

which contradicts the minimality of n. Hence φ' is a monomorphism and $S' \cong B'/\overline{b't} \cdot B'$ as graded T'-modules.

7. The case where $\overline{Q} = \mathfrak{m}$

The value $e_Q^1(A)$ depends on the choice of minimal reductions Q, even in the case where $\overline{Q} = \mathfrak{m}$. To see this, we need some technique of reduction.

Let *B* be a Noetherian local ring with maximal ideal \mathbf{n} and assume that *B* contains a field *k* such that the composite map $k \xrightarrow{\iota} B \xrightarrow{\varepsilon} B/\mathbf{n}$ is bijective, where $\iota : k \to B$ denotes the embedding and $\varepsilon : B \to B/\mathbf{n}$ denotes the canonical epimorphism. Let *J* be an **n**-primary ideal in *B* and put A = k + J. Then *A* is a local *k*-subalgebra of *B* with maximal ideal $\mathbf{m} = J$ and *B* is a module-finite extension of *A*, because $\ell_A(B/A) = \ell_B(B/J) - 1$. Hence *A* is a Noetherian local ring with dim $A = \dim B$, thanks to Eakin-Nagata's theorem.

Suppose now that $d = \dim B > 0$. Let $\mathbf{q} = (a_1, a_2, \cdots, a_d)B$ be a parameter ideal in B and assume that \mathbf{q} is a reduction of J. We put

$$Q = (a_1, a_2, \cdots, a_d)A.$$

Then Q is a reduction of \mathfrak{m} . Hence Q is a parameter ideal in A. We have the canonical isomorphism between the Sally module $S_Q(\mathfrak{m}) = \bigoplus_{n \ge 1} \mathfrak{m}^{n+1}/Q^n \mathfrak{m}$ of \mathfrak{m} with respect to

Q and the Sally module $S_{\mathfrak{q}}(J) = \bigoplus_{n \geq 1} J^{n+1}/\mathfrak{q}^n J$ of J with respect to \mathfrak{q} , because

$$\mathfrak{m}^{n+1}/Q^n\mathfrak{m} = J^{n+1}/\mathfrak{q}^n J$$

for all $n \ge 1$:

Fact 7.1. $S_Q(\mathfrak{m}) \cong S_{\mathfrak{q}}(J)$ as graded $\mathcal{R}(\mathfrak{q})$ -modules.

We put $T = \mathcal{R}(Q)$ and $\mathfrak{p} = \mathfrak{m}T$. Then, thanks to [16, Remark 2.6], the sum

$$e_Q^1(A) + \ell_{T_{\mathfrak{p}}}(S_{\mathfrak{p}}) = e_{\mathfrak{m}}^1(A) - e_{\mathfrak{m}}^0(A) + 1$$

is an invariant of \mathfrak{m} , whence we have the following.

Proposition 7.2. Let $\mathbf{q} = (a_1, a_2, \dots, a_d)B$ and $\mathbf{q}' = (a'_1, a'_2, \dots, a'_d)B$ be parameter ideals of B and assume that \mathbf{q} and \mathbf{q}' are reductions of J. Let $Q = (a_1, a_2, \dots, a_d)A$ and $Q' = (a'_1, a'_2, \dots, a'_d)A$. Then one has the equality

$$e_Q^1(A) + \ell_{T_{\mathfrak{p}}}(S_{\mathfrak{p}}) = e_{Q'}^1(A) + \ell_{T'_{\mathfrak{p}'}}(S'_{\mathfrak{p}'}),$$

where $T = \mathcal{R}(Q), T' = \mathcal{R}(Q'), \mathfrak{p} = \mathfrak{m}T, and \mathfrak{p}' = \mathfrak{m}T'.$

The following example shows that $e_Q^1(A)$ depends on the choice of minimal reductions Q, even in the case where $\overline{Q} = \mathfrak{m}$. This eventually shows that the rank, or the multiplicity of Sally modules depend on the choice of minimal reductions, as well.

Example 7.3. Let R = k[[X, Y, Z, W]] be the formal power series ring over a field k and let $B = R/(X^2, Y^2) \cap (Z, W)$. Let $J = (x, y)^2 + (z, w)$, where x, y, z and w denote the images of X, Y, Z, and W in B, respectively. We put A = k + J. Then A is a Noetherian local ring with maximal ideal $\mathfrak{m} = J$ and B is a module-finite extension of A. Let $Q = (x^2 - z, y^2 - w)A$ and $Q' = (xy - z, x^2 + y^2 - w)A$. Then Q and Q' are minimal reductions of \mathfrak{m} such that

$$e_{Q'}^1(A) = e_Q^1(A) + 1 = -5, \quad \ell_{T_{\mathfrak{p}}}(S_{\mathfrak{p}}) = 1, \text{ and } \quad \ell_{T'_{\mathfrak{p}'}}(S'_{\mathfrak{p}'}) = 0,$$

where $S = S_Q(\mathfrak{m}), S' = S_{Q'}(\mathfrak{m}), T = \mathcal{R}(Q), T' = \mathcal{R}(Q'), \mathfrak{p} = \mathfrak{m}T, \text{ and } \mathfrak{p}' = \mathfrak{m}T'.$

Proof. Since $\ell_A(A/\mathfrak{m}^{n+1}) = \ell_A(B/J^{n+1}) - \ell_A(B/A)$ and $\ell_A(B/A) = \ell_B(B/J) - 1$, by Example 6.9 (3) we have

$$\ell_A(A/\mathfrak{m}^{n+1}) = 8\binom{n+2}{2} - 2\binom{n+1}{1} - 6$$

for all $n \ge 1$, whence

$$e^0_{\mathfrak{m}}(A) = 8$$
, $e^1_{\mathfrak{m}}(A) = 2$, and $e^2_{\mathfrak{m}}(A) = -6$

Therefore

$$e_Q^1(A) + \ell_{T_p}(S_p) = e_{Q'}^1(A) + \ell_{T'_{p'}}(S'_{p'}) = e_m^1(A) - e_m^0(A) + 1 = -5$$

by Proposition 7.2. On the other hand, thanks to Fact 2 and Example 6.9 (1), (2), we see that $\ell_{T_{\mathfrak{p}}}(S_{\mathfrak{p}}) = 1$ and $\ell_{T'_{\mathfrak{p}'}}(S'_{\mathfrak{p}'}) = 0$, whence $e_{Q'}^1(A) = e_Q^1(A) + 1 = -5$. \Box

8. A structure theorem for local rings possessing $e_Q^1(A) = -1$

The condition $e_Q^1(A) = -1$ for some parameter ideal Q in A is a rather strong condition. In this section we shall explore this phenomenon. Similarly as in Section 6 let A be a Noetherian local ring with maximal ideal \mathfrak{m} and dim A = 2. We assume that depth A = 1 and that $H^1_{\mathfrak{m}}(A)$ is a finitely generated A-module. We put $C = H^1_{\mathfrak{m}}(A)$ and $\mathfrak{c} = (0) : H^1_{\mathfrak{m}}(A)$. Suppose that the residue class field $k = A/\mathfrak{m}$ of A is infinite. We then have the following.

Theorem 8.1. We consider the following two conditions.

- (1) $\mu_A(\mathfrak{m}) = 4$, the Cohen-Macaulayfication \widetilde{A} of A is not a local ring, and A contains a parameter ideal Q such that $e_Q^1(A) = -1$.
- (2) A ≅ R/(F,Y) ∩ (Z,W) as rings, where R is a regular local ring of dimension
 4, X,Y,Z,W is a regular system of parameters in R, and F ∈ R such that
 F = Xⁿ + ξ for some integer n ≥ 1 and ξ ∈ (Z,W).

Then the implication (2) \Rightarrow (1) is always true and we have $e_{q}^{1}(A) = -1$ for every minimal reduction q of m. When A is m-adically complete, the implication (1) \Rightarrow (2) also holds true, so that conditions (1) and (2) are equivalent to each other. We divide the proof of Theorem 8.1 into two parts.

Let us consider the implication $(2) \Rightarrow (1)$. Let R be a regular local ring of dimension 4 and let X, Y, Z, W be a regular system of parameters in R. Let $n \ge 1$ be an integer and $\xi \in (Z, W)$. We put $F = X^n + \xi$. Then $(F, Y, Z, W) = (X^n, Y, Z, W)$ and F, Y, Z, Wforms a system of parameters in R. Let

$$A = R/(F, Y) \cap (Z, W)$$

and let \mathfrak{m} be the maximal ideal of A. We denote by f, x, y, z, and w the images of F, X, Y, Z, and W in A, respectively. Then, thanks to the exact sequence

$$0 \to A \to A/(f, y) \oplus A/(z, w) \to A/(x^n, y, z, w) \to 0,$$

we have depth A = 1 and $\mathrm{H}^1_{\mathfrak{m}}(A) \cong A/(x^n, y, z, w)$. Hence

$$\widetilde{A} = A/(f, y) \times A/(z, w)$$

by [2, Theorem 1.6]. We put $C = H^1_{\mathfrak{m}}(A)$ and $\mathfrak{c} = (x^n, y, z, w)$. Let a = f - z and b = y - w. We look at the parameter ideal Q = (a, b) in A. Then (a) : b = (a, z) and (b) : a = (b, w). Hence

$$[(a):b] + [(b):a] = (a, b, z, w) = \mathfrak{c},$$

so that by [13, Theorem 1.1] we get the following.

Fact 8.2. The Rees algebra $\mathcal{R}(Q^2)$ of Q^2 is a Gorenstein ring.

We now assume that the residue class field of R is infinite and let $\mathbf{q} = (a, b)$ be any minimal reduction of \mathbf{m} , where we choose the system a, b of generators of the ideal \mathbf{q} so that both a, b are superficial for \mathbf{q} . Let $\overline{A} = A/(z, w)$. Then, since $\mathbf{q}\overline{A}$ is a reduction of the maximal ideal in the two-dimensional regular local ring \overline{A} , we get $\mathbf{q}\overline{A} = \mathbf{m}/(z, w)$, whence $\mathbf{q} + (z, w) = \mathbf{m}$. We want to show that $e_{\mathbf{q}}^{1}(A) = -1$. Here we may assume that n > 1. In fact, if n = 1, then $\mathrm{H}^{1}_{\mathbf{m}}(A) \cong A/\mathbf{m}$, so that A is a Buchsbaum local ring and $e_{\mathbf{q}}^{1}(A) = -1$ by Schenzel's formula 3.3. Suppose that n > 1. Then, since $\mathbf{m} = \mathbf{q} + \mathbf{c}$, without loss of generality we may assume that $a \notin \mathbf{c} + \mathbf{m}^{2} = (x^{2}, y, z, w)$, whence $\ell_{A}(C/aC) = 1$. Thus $e_{\mathbf{q}}^{1}(A) = -\ell_{A}((0) :_{C} a) = -1$.

Let us note one remark.

Remark 8.3. Suppose that $\xi \in (Z, W)$. Let $a = x^{\ell} - z$, b = y - w with $1 \le \ell \le n$. We put Q = (a, b). Then Q is a parameter ideal in A and, since bC = (0), by Proposition 5.1 (3) we get

$$e_Q^1(A) = -\ell_A(C/aC) = -\ell_A(A/(x^\ell, y, z, w)) = -\ell_A(A/(x^\ell, y, z, w$$

This shows that the value $e_Q^1(A)$ varies between -n and -1 with -n the least (cf. Proposition 5.1 (2)).

Let us prove the implication $(1) \Rightarrow (2)$ in Theorem 8.1. With the notation in the preamble of this section we assume that A is **m**-adically complete. Let $B = \widetilde{A}$ be the Cohen-Macaulayfication of A, whence $B \cong \text{End}_A(K_A)$ as A-algebras ([2, Theorem 1.6]), where K_A denotes the canonical module of A. We then have the exact sequence

$$0 \longrightarrow A \stackrel{\varphi}{\longrightarrow} B \longrightarrow C \longrightarrow 0$$

of A-modules, where $\varphi(x)$ is, for each $x \in A$, the homothety of x. Let Q = (a, b) be a parameter ideal in A such that $e_Q^1(A) = -1$. We may assume that a, b are both superficial for Q. Then, since $\ell_A(C/aC) = \ell_A((0) :_C a) = 1$, we get $\mu_A(C) = 1$. Therefore $C \cong A/\mathfrak{c}$ and $\mathfrak{c} + (a) = \mathfrak{m}$, whence $\mu_A(B) = 2$. Consequently, because B is not a local ring and A is complete, we have the canonical decomposition

$$B = A/\mathfrak{a}_1 \times A/\mathfrak{a}_2$$

of the A-algebra B, where \mathfrak{a}_i is an ideal in A such that A/\mathfrak{a}_i is a two-dimensional Cohen-Macaulay local ring for each i = 1, 2. Hence $\mathfrak{a}_1 \cap \mathfrak{a}_2 = (0)$ and $\mathfrak{a}_1 + \mathfrak{a}_2 = \mathfrak{c}$, thanks to the exact sequence

$$0 \to A \to A/\mathfrak{a}_1 \oplus A/\mathfrak{a}_2 \to A/(\mathfrak{a}_1 + \mathfrak{a}_2) \to 0.$$

Let $V = [\mathfrak{c} + \mathfrak{m}^2]/\mathfrak{m}^2 \subseteq \mathfrak{m}/\mathfrak{m}^2$. Then $\dim_k V \ge 3$, because $\mu_A(\mathfrak{m}) = 4$ and $\mathfrak{c} + (a) = \mathfrak{m}$. Since $\mathfrak{a}_1 + \mathfrak{a}_2 = \mathfrak{c}$, we may assume that $\dim_k [\mathfrak{a}_2 + \mathfrak{m}^2]/\mathfrak{m}^2 \ge 2$. Therefore the ideal \mathfrak{a}_2 contains a part z, w of a minimal system of generators of the maximal ideal \mathfrak{m} . We then have $\mu_{A/(z,w)}(\mathfrak{m}/(z,w)) = 2$, whence the epimorphism

$$A/(z,w) \xrightarrow{54} A/\mathfrak{a}_2 \to 0$$

is an isomorphism, because dim $A/(z, w) \ge \dim A/\mathfrak{a}_2 = 2$. Thus $\mathfrak{a}_2 = (z, w)$. Therefore $\dim_k[\mathfrak{a}_1 + \mathfrak{m}^2]/\mathfrak{m}^2 \ge 1$, because $\dim_k V \ge 3$. Choose $y \in \mathfrak{a}_1$ so that y, z, w forms a part of a minimal system of generators of \mathfrak{m} and write $\mathfrak{m} = (x, y, z, w)$. Then A/(y, z, w) is a DVR, because A/(z, w) is a two-dimensional regular local ring with the images of x, y in it a regular system of parameters. Consequently, since $\mathfrak{c} = \mathfrak{a}_1 + \mathfrak{a}_2 \supseteq (y, z, w)$, we have

$$\mathfrak{c}/(y,z,w) = (\overline{x}^n)$$

for some $n \ge 1$, where \overline{x} stands for the image of x in A/(y, z, w). Hence $\mathfrak{c} = (x^n, y, z, w)$ and $n = \ell_A(A/\mathfrak{c})$. On the other hand, because

$$\mathbf{c}/(y,z,w) = [\mathbf{a}_1 + (z,w)]/(y,z,w) = (\overline{x}^n),$$

we find some element $\eta \in \mathfrak{a}_1$ so that $x^n - \eta \in (y, z, w)$. Let

$$x^n - \eta = \alpha y + \beta z + \gamma w$$

with $\alpha, \beta, \gamma \in A$. We then have $x^n - f \in (z, w)$ where $f = \eta + \alpha y$. Hence $\mathfrak{a}_1 = (f, y)$, because

$$\mathfrak{c} = \mathfrak{a}_1 + \mathfrak{a}_2 \supseteq (f, y) \oplus (z, w) \supseteq \mathfrak{c}.$$

Now we choose a regular local ring R with maximal ideal \mathfrak{n} and dim R = 4 together with a surjective homomorphism

$$R \xrightarrow{\phi} A \to 0$$

of rings. Let X, Y, Z, and W be elements of R such that $\phi(X) = x, \phi(Y) = y, \phi(Z) = z$, and $\phi(W) = w$. Then $\mathfrak{n} = (X, Y, Z, W)$, since $\operatorname{Ker} \phi \subseteq \mathfrak{n}^2$. Notice that

$$R/(Z,W) \cong A/(z,w),$$

because A/(z, w) is a two-dimensional regular local ring. Hence $K := \text{Ker } \phi \subseteq (Z, W)$. We look at the exact sequence

$$(*) \quad 0 \to L \to R/(Z, W) \to A/(z, w) \to 0$$

of *R*-modules. Let $F \in R$ such that $\phi(F) = f$. We then have $X^n - F \in (Z, W)$, because $x^n - f \in (z, w)$ and $K \subseteq (Z, W)$. Therefore $(F, Y, Z, W) = (X^n, Y, Z, W)$, so that F, Y, Z, W is a system of parameters of *R*. Hence, because z, w is a regular sequence in the two-dimensional regular local ring $A/\mathfrak{a}_2 = A/(z, w)$, from exact sequence (*) we get the exact sequence

$$0 \longrightarrow L/(Z,W)L \longrightarrow R/(F,Y,Z,W) \stackrel{\varepsilon}{\longrightarrow} A/(f,y,z,w) \longrightarrow 0,$$

in which the homomorphism ε has to be an isomorphism, because

$$\ell_R(R/(F,Y,Z,W)) = \ell_R(R/(X^n,Y,Z,W)) = n$$

and

$$\ell_A(A/(f,y,z,w)) = \ell_A(A/(x^n,y,z,w)) = \ell_A(A/\mathfrak{c}) = n.$$

Thus L = (0) by Nakayama's lemma, so that we have $R/(F, Y) \cong A/(f, y)$. This shows that $K := \text{Ker } \phi \subseteq (F, Y)$, whence $K = (F, Y) \cap (Z, W)$, because $(F, Y) \cap (Z, W)$ is certainly included in K (recall that $(f, y) \cap (z, w) = \mathfrak{a}_1 \cap \mathfrak{a}_2 = (0)$). Thus

$$A \cong R/(F,Y) \cap (Z,W),$$

with $X^n - F \in (Z, W)$ and $n \ge 1$. This proves the implication $(1) \Rightarrow (2)$ in Theorem 8.1 under the assumption that A is complete.

9. Appendix: when
$$\overline{e}_I^1(R) \ge 0$$
?

This is a joint work with J. Hong and M. Mandal [8].

Throughout this section let R be a Noetherian local ring with maximal ideal \mathfrak{m} and $d = \dim R > 0$. Assume that R is analytically unramified, whence the \mathfrak{m} -adic completion \widehat{R} of R is reduced. We fix an \mathfrak{m} -primary ideal I in R and denote by $\overline{I^{n+1}}$ (resp. $\ell_R(R/\overline{I^{n+1}})$) the integral closure of I^{n+1} (resp. the length of $R/\overline{I^{n+1}}$) for each $n \geq 0$. Then the normalized Hilbert function

$$\ell_R(R/\overline{I^{n+1}})$$

of R with respect to I is of polynomial type with degree d and we have integers $\{\overline{e}_{I}^{i}(R)\}_{0\leq i\leq d}$ such that the equality

$$\ell_R(R/\overline{I^{n+1}}) = \overline{e}_I^0(R) \binom{n+d}{d} - \overline{e}_I^1(R) \binom{n+d-1}{d-1} + \dots + (-1)^d \overline{e}_I^d(R)$$

holds true for all $n \gg 0$. We call these integers $\overline{e}_I^i(R)$ the normalized Hilbert coefficients of R with respect to I. In this section we are interested in the analysis of the first normalized Hilbert coefficient $\bar{e}_I^1(R)$. The main purpose is to study the positivity conjecture on $\bar{e}_I^1(R)$ posed by Wolmer V. Vasconcelos [39] and our result is stated as follows.

Theorem 9.1. Let R be an analytically unramified local ring with maximal ideal \mathfrak{m} and $d = \dim R > 0$. If R is unmixed, then

$$\overline{\mathbf{e}}_I^1(R) \ge 0$$

for every \mathfrak{m} -primary ideal I in R.

Here we should note that the conjecture holds true in the case where R is a Cohen-Macaulay local ring ([41, Theorem 2.2]). In fact, generally we have

$$\overline{\mathbf{e}}_I^0(R) = \mathbf{e}_I^0(R),$$

where $e_I^0(R)$ stands for the ordinary Hilbert-Samuel multiplicity of R with respect to I. Therefore $\overline{e}_I^1(R) \ge e_I^1(R)$ and so, if R is a Cohen-Macaulay local ring, we get

$$\overline{\mathbf{e}}_{I}^{1}(R) \ge \mathbf{e}_{I}^{1}(R) \ge 0,$$

because $e_I^1(R) \ge 0$ ([30, Corollary 1]). Mainly based on this fact, the third author M. Mandal, B. Singh, and J. Verma [26] gave several interesting answers in certain special cases and our Theorem 9.1 now affirmatively settles the conjecture in full generality.

We shall prove Theorem 9.1 in Section 2. In Section 3 we will discuss a few results related to the positivity conjecture. We suspect if the integral closure \overline{R} of R is a regular ring and $I\overline{R}$ is normal, that is, $I^n\overline{R}$ is integrally closed for all $n \ge 1$, once $\overline{e}_I^1(R) = 0$ for some **m**-primary ideal I in R. We shall give an affirmative answer in the case where \overline{R} is a Cohen-Macaulay ring.

Proof of Theorem 9.1. We have $\overline{e}_{I\widehat{R}}^1(\widehat{R}) = \overline{e}_I^1(R)$, since $\overline{\mathfrak{a}}\widehat{R} = \overline{\mathfrak{a}}\widehat{R}$ for every **m**-primary ideal \mathfrak{a} in R. Therefore, passing to the **m**-adic completion \widehat{R} of R, without loss of generality we may assume that R is complete. If d = 1, we then have

$$\overline{e}_I^1(R) = \ell_R(\overline{R}/R) \ge 0.$$
57

Suppose that $d \ge 2$ and let $S = \overline{R}$. For each $\mathfrak{p} \in Ass R$ we put $S(\mathfrak{p}) = \overline{R/\mathfrak{p}}$. Then $S(\mathfrak{p})$ is a module-finite extension of R/\mathfrak{p} and we get

$$S = \prod_{\mathfrak{p} \in \operatorname{Ass} R} S(\mathfrak{p}) \text{ and } \overline{I^{n+1}} = \overline{I^{n+1}S} \cap R$$

for all $n \ge 0$. Hence

$$\begin{split} \ell_R(R/\overline{I^{n+1}}) &\leq \ell_R(S/\overline{I^{n+1}S}) &= \sum_{\mathfrak{p}\in \operatorname{Ass} R} \ell_R(S(\mathfrak{p})/\overline{I^{n+1}S(\mathfrak{p})}) \\ &= \sum_{\mathfrak{p}\in \operatorname{Ass} R} \ell_R(S(\mathfrak{p})/\mathfrak{m}_{S(\mathfrak{p})}) \cdot \ell_{S(\mathfrak{p})}(S(\mathfrak{p})/\overline{I^{n+1}S(\mathfrak{p})}), \end{split}$$

where $\mathfrak{m}_{S(\mathfrak{p})}$ denotes the maximal ideal of $S(\mathfrak{p})$. Notice that, since dim $S(\mathfrak{p}) = d$ for each $\mathfrak{p} \in Ass R$, we have

$$\begin{split} \overline{\mathbf{e}}_{I}^{0}(R) &= \mathbf{e}_{I}^{0}(R) = \mathbf{e}_{I}^{0}(S) = \sum_{\mathfrak{p} \in \operatorname{Ass} R} \mathbf{e}_{I}^{0}(S(\mathfrak{p})) \\ &= \sum_{\mathfrak{p} \in \operatorname{Ass} R} {}_{-}R(S(\mathfrak{p})/\mathfrak{m}_{S(\mathfrak{p})}) \cdot \mathbf{e}_{IS(\mathfrak{p})}^{0}(S(\mathfrak{p})) \\ &= \sum_{\mathfrak{p} \in \operatorname{Ass} R} \ell_{R}(S(\mathfrak{p})/\mathfrak{m}_{S(\mathfrak{p})}) \cdot \overline{\mathbf{e}}_{IS(\mathfrak{p})}^{0}(S(\mathfrak{p})), \end{split}$$

whence

$$0 \leq \ell_R(S/\overline{I^{n+1}S}) - \ell_R(R/\overline{I^{n+1}})$$

= $\left[\overline{e}_I^1(R) - \sum_{\mathfrak{p}\in \operatorname{Ass} R} \ell_R(S(\mathfrak{p})/\mathfrak{m}_{S(\mathfrak{p})}) \cdot \overline{e}_{IS(\mathfrak{p})}^1(S(\mathfrak{p}))\right] \binom{n+d-1}{d-1}$
+ (terms of lower degree),

so that

$$\overline{\mathrm{e}}_{I}^{1}(R) \geq \sum_{\mathfrak{p} \in \operatorname{Ass} R} \ell_{R}(S(\mathfrak{p})/\mathfrak{m}_{S(\mathfrak{p})}) \cdot \overline{\mathrm{e}}_{IS(\mathfrak{p})}^{1}(IS(\mathfrak{p})).$$

Thus, in order to see $\overline{e}_{I}^{1}(R) \geq 0$, it suffices to show that $\overline{e}_{IS(\mathfrak{p})}^{1}(S(\mathfrak{p})) \geq 0$ for each $\mathfrak{p} \in \operatorname{Ass} R$. If d = 2, we get

$$\overline{e}^{1}_{IS(\mathfrak{p})}(S(\mathfrak{p})) \ge e^{1}_{IS(\mathfrak{p})}(IS(\mathfrak{p})) \ge 0,$$

because $S(\mathfrak{p})$ is a Cohen-Macaulay local ring. Hence $\overline{e}_I^1(R) \ge 0$.

Suppose that $d \ge 3$ and that our assertion holds true for d-1. Then thanks to the above observation, passing to the ring $S(\mathfrak{p})$, we may assume that R is a normal

complete local ring. Let $I = (a_1, a_2, \ldots, a_\ell)$ with $a_i \in R$, where $\ell = \mu_R(I)$. Let

$$T = R[Z_1, Z_2, \dots, Z_\ell], \quad \mathfrak{q} = \mathfrak{m}T, \quad x = \sum_{i=1}^{\ell} a_i Z_i, \text{ and } D = T/xT,$$

where Z_1, Z_2, \ldots, Z_ℓ are indeterminates over R. Let

$$R' = T_{\mathfrak{q}}, \quad I' = IR', \quad \text{and} \quad D' = D_{\mathfrak{q}}.$$

We then have $\overline{I^{n+1}R'} = \overline{I^{n+1}R'}$ for all $n \ge 0$, so that $\ell_{R'}(R'/\overline{I^{n+1}R'}) = \ell_R(R/\overline{I^{n+1}})$, whence

$$\overline{\mathrm{e}}_{I}^{1}(R) = \overline{\mathrm{e}}_{I'}^{1}(R').$$

Here we notice that Ass $D' = \operatorname{Assh} D'$, because R' is catenary and normal; hence D'is unmixed, as D' is a homomorphic image of a Cohen-Macaulay ring. The ring D' is analytically unramified. To see this, since D' is a Nagata local ring, it suffices to show that D is reduced, that is, $D_P = T_P/xT_P$ is an integral domain for every $P \in \operatorname{Ass}_T D$. Let $\mathfrak{p} = P \cap R$. Then since $\operatorname{ht}_T P = 1$, we have $\operatorname{ht}_R \mathfrak{p} \leq 1$, so that $I \not\subseteq \mathfrak{p}$, because $\operatorname{ht}_R \mathfrak{p} \leq 1 < d = \dim R$. Without loss of generality we may assume that $a_\ell \notin \mathfrak{p}$. Then, because $x = \sum_{i=1}^{\ell} a_i Z_i$ and a_ℓ is a unit of $R_{\mathfrak{p}}$, we get

$$T_{\mathfrak{p}} = R_{\mathfrak{p}}[Z_1, Z_2, \dots, Z_{\ell}] = R_{\mathfrak{p}}[Z_1, Z_2, \dots, Z_{\ell-1}, x],$$

whence the ring

$$T_{\mathfrak{p}}/xT_{\mathfrak{p}} = R_{\mathfrak{p}}[Z_1, Z_2, \dots, Z_{\ell}]/xR_{\mathfrak{p}}[Z_1, Z_2, \dots, Z_{\ell}] = R_{\mathfrak{p}}[Z_1, Z_2, \dots, Z_{\ell-1}]$$

is an integral domain, as it is the polynomial ring with $\ell - 1$ indeterminates over $R_{\mathfrak{p}}$. Therefore for all $P \in \operatorname{Ass}_T D$ the ring $D_P = T_P/xT_P$ is an integral domain, because it is a localization of $R_{\mathfrak{p}}[Z_1, Z_2, \ldots, Z_{\ell-1}]$. Thus D is reduced, whence D' is analytically unramified and unmixed.

Let us denote by \mathcal{A} the extended Rees ring of IT and by $\overline{\mathcal{A}}$ the integral closure of \mathcal{A} in $T[t, t^{-1}]$, where t denotes an indeterminate. Similarly, let us denote by T the extended Rees ring of ID and by $\overline{\mathsf{T}}$ the integral closure of T in $D[t, t^{-1}]$. We put $N = (t^{-1}, It)$ in \mathcal{A} . We look at the homomorphism

$$\psi: T[t,t^{-1}] \mathop{\to}\limits_{59} D[t,t^{-1}]$$

of graded *T*-algebras such that $\psi(t) = t$. Since $\psi(\mathcal{A}) = \mathsf{T}$ and $\overline{\mathsf{T}}$ is a module-finite extension of T , the homomorphism ψ gives rise to the finite homomorphism

$$\varphi:\overline{\mathcal{A}}/xt\overline{\mathcal{A}}\longrightarrow\overline{\mathsf{T}}$$

of graded *T*-algebras. Let $\overline{\mathcal{B}}$ (resp. \overline{U}) denote the integral closure of $\mathcal{B} = \mathcal{A}_{\mathfrak{q}}$ (resp. $U = T_{\mathfrak{q}}$). Then we get the homomorphism

$$\varphi_{\mathfrak{q}}:\overline{\mathcal{B}}/xt\overline{\mathcal{B}}\to\overline{\mathsf{U}}$$

of graded R'-algebras and, thanks to Proof of [22, Theorem 2.1], we furthermore have the following. Let us include a brief proof for the sake of completeness.

Claim 2. The homomorphism

$$\varphi_P: [\overline{\mathcal{A}}/xt\overline{\mathcal{A}}]_P \longrightarrow [\overline{\mathsf{T}}]_P$$

is an isomorphism for all $P \in \operatorname{Spec} \mathcal{A} \setminus V(N)$. Hence the kernel and the cokernel of the homomorphism $\varphi_{\mathfrak{q}} : \overline{\mathcal{B}}/xt\overline{\mathcal{B}} \longrightarrow \overline{\mathsf{U}}$ of graded \mathcal{B} -modules are finitely graded.

Proof. Because $\overline{\mathcal{A}}[t] = T[t, t^{-1}]$ and $xt\overline{\mathcal{A}}[t] = xT[t, t^{-1}]$, the homomorphism $\varphi_{t^{-1}}$ is an isomorphism, whence so is the homomorphism φ_P , if $t^{-1} \notin P$.

Suppose now that $It \not\subseteq P$. We may assume $a_{\ell}t \notin P$. Notice that

and that

$$D[t, t^{-1}]_{a_{\ell}t} = T[t, t^{-1}, \frac{1}{a_{\ell}t}] / x \cdot T[t, t^{-1}, \frac{1}{a_{\ell}t}]$$

$$= T[t, t^{-1}, \frac{1}{a_{\ell}}] / x \cdot T[t, t^{-1}, \frac{1}{a_{\ell}}]$$

$$= R[\frac{1}{a_{\ell}}, Z_1, Z_2, \dots, Z_{\ell}, t, t^{-1}] / x \cdot R[\frac{1}{a_{\ell}}, Z_1, Z_2, \dots, Z_{\ell}, t, t^{-1}]$$

$$= \left(R[\frac{1}{a_{\ell}}, t, t^{-1}] \right) [Z_1, Z_2, \dots, Z_{\ell}] / \left(\sum_{i=1}^{\ell-1} \frac{a_i Z_i}{a_{\ell}} + Z_{\ell} \right)$$

$$= \left([R[t, t^{-1}]] [\frac{1}{a_{\ell}t}] \right) [Z_1, Z_2, \dots, Z_{\ell-1}].$$

Then we get the following commutative diagram

where the vertical homomorphisms are isomorphisms, so that the horizontal homomorphism $\varphi_{a_{\ell}t}$ is injective. Because $\left([\overline{R[It,t^{-1}]}][\frac{1}{a_{\ell}t}]\right)[Z_1,Z_2,\ldots,Z_{\ell-1}]$ is integrally closed in $\left([R[t,t^{-1}]][\frac{1}{a_{\ell}t}]\right)[Z_1,Z_2,\ldots,Z_{\ell-1}]$ and $\varphi_{a_{\ell}t}$ is finite, $\varphi_{a_{\ell}t}$ is an isomorphism, whence $\varphi_P: [\overline{\mathcal{A}}/xt\overline{\mathcal{A}}]_P \longrightarrow [\overline{\mathsf{T}}]_P$

is an isomorphism too. This proves Claim 2.

Because t^{-1}, xt form a regular sequence in the normal ring $\overline{\mathcal{B}}$ and because dim $D' = \dim R' - 1 = d - 1 \ge 2$, thanks to Claim 2, we have

$$\overline{\mathbf{e}}_{I}^{1}(R) = \overline{\mathbf{e}}_{I'}^{1}(R') = \overline{\mathbf{e}}_{ID'}^{1}(D').$$

Thus the hypothesis of induction on d yields the assertion that $\overline{e}_I^1(R) \ge 0$, which completes the proof of Theorem 9.1.

The condition in Theorem 9.1 that R is unmixed is not superfluous. Let us note the simplest example. See [26, Example 2.4] for more examples.

Example 9.2. We look at the local ring

$$R = k[[X, Y, Z]]/\mathfrak{a},$$

where k[[X, Y, Z]] is the formal power series ring over a field k and $\mathfrak{a} = (X) \cap (Y, Z)$. Then dim R = 2, R is mixed, and $\overline{e}_{\mathfrak{m}}^{1}(R) = \overline{e}_{\mathfrak{m}}^{2}(R) = -1$. Hence the famous bad example [29, p. 203, Example 2] of Nagata which is a non-regular local integral domain (A, \mathfrak{n}) of dimension 2 with $e_{\mathfrak{n}}^{0}(A) = 1$ possess $\overline{e}_{\mathfrak{n}}^{1}(A) = \overline{e}_{\mathfrak{n}}^{2}(A) = -1$, because

$$A \cong k[[X, Y, Z]]/[(X) \cap (Y, Z)]$$

for some field k.

Proof. We put T = k[[X, Y, Z]] and $\mathfrak{q} = (X, Y, Z)$ in T. Then $\overline{R} = T/(X) \oplus T/(Y, Z)$ and we have the exact sequence

$$(E) \quad 0 \to R \to T/(X) \oplus T/(Y,Z) \to T/\mathfrak{q} \to 0$$

of T-modules; hence $\mathfrak{m}\overline{R} \subseteq R$. Recall that \mathfrak{m} is a normal ideal in R, that is, $\overline{\mathfrak{m}^n} = \mathfrak{m}^n$ for all $n \geq 1$, since the associated graded ring

$$\operatorname{gr}_{\mathfrak{m}}(R) = k[X, Y, Z]/[(X) \cap (Y, Z)]$$

of \mathfrak{m} is reduced. Therefore, as

$$\mathfrak{m}^{n+1} = \overline{\mathfrak{m}^{n+1}} = \overline{\mathfrak{m}^{n+1}\overline{R}} \cap R = \mathfrak{m}^{n+1}\overline{R} \cap R,$$

thanks to exact sequence (E) above, we get

$$0 \to R/\overline{\mathfrak{m}^{n+1}} \to T/[(X) + \mathfrak{q}^{n+1}] \oplus T/[(Y,Z) + \mathfrak{q}^{n+1}] \to T/\mathfrak{q} \to 0$$

for all $n \ge 0$. Hence

$$\ell_R(R/\overline{\mathfrak{m}^{n+1}}) = \binom{n+2}{2} + \binom{n+1}{1} - 1,$$

= -1.

so that $\overline{e}^1_{\mathfrak{m}}(R) = \overline{e}^2_{\mathfrak{m}}(R) = -1.$

Let us note a consequence of Theorem 9.1.

Corollary 9.3 ([27, Theorem 1]). Let R be an analytically unramified unmixed local ring with maximal ideal \mathfrak{m} and $d = \dim R > 0$. Let I be a parameter ideal in R. If $\overline{e}_{I}^{1}(R) = e_{I}^{1}(R)$, then R is a regular local ring with $\mu_{R}(\mathfrak{m}/I) \leq 1$, whence I is normal *Proof.* We get $e_I^1(R) \ge 0$ by Theorem 9.1, whence by Theorem 1.8 R is a Cohen-Macaulay local ring with $e_I^1(R) = 0$. Because $\overline{e}_{\overline{I}}^1(R) \ge e_{\overline{I}}^1(R)$ and

$$e_{\overline{I}}^1(R) \ge 0$$

([30, Corollary 1]), we furthermore have $e_{\overline{I}}^1(R) = 0$, whence \overline{I} is a parameter ideal in R([30, Corollary 2]). Because parameter ideals contain no proper reductions ([31]), we get $\overline{I} = I$, whence by [7, Theorem (3.1)] R is a regular local ring with $\mu_R(\mathfrak{m}/I) \leq 1$ and I is normal.

Remark 9.4. In Corollary 9.3, unless I is a parameter ideal, R is not necessarily a regular local ring, even though $\overline{e}_{I}^{1}(R) = e_{I}^{1}(R)$. Let us note an example. We look at the local ring

$$R = k[[X, Y, Z]]/(Z^2 - XY),$$

where k[[X, Y, Z]] is the formal power series ring over a field k of characteristic 0. Then R is a rational singularity, so that $\overline{e}_I^1(R) = e_I^1(R)$ for every integrally closed **m**-primary ideal I in R.

References

- [1] Y. Aoyama, Some basic results on canonical modules, J. Math. Kyoto Univ. 23 (1983), 85–94.
- [2] Y. Aoyama and S. Goto, On the endomorphism ring of the canonical module, J. Math. Kyoto Univ. 25-1 (1985), 21–30.
- [3] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, 1993.
- [4] A. Corso, Sally modules of m-primary ideals in local rings, Comm. Algebra, to appear.
- [5] N. T. Cuong, p-standard system of parameters and p-standard ideals in local rings, Acta Mathematica Vietnamica 20 (1995), 145–161.
- [6] N. T. Cuong and D. T. Cuong, On sequentially Cohen-Macaulay modules, Kodai Math. J. 30 (2007), no. 3, 409–428.
 Approximately Cohen-Macaulay rings, J. Algebra 76 (1982), 214–225.
- [7] S. Goto, Integral closedness of complete-intersection ideals, J. Algebra, **108** (1987), 151–160.
- [8] S. Goto, J. Hong, and M. Mandal, The positivity of the first normalized Hilbert coefficients, Preprint 2008.
- [9] S. Goto, Y. Horiuchi and H. Sakurai, Sequentially Cohen-Macaulayness versus parametric decomposition of powers of parameter ideals, Preprint 2008.
- [10] L. Ghezzi, J.-Y. Hong and W. V. Vasconcelos, The signature of the Chern coefficients of local rings, Preprint 2008.
- [11] L. Ghezzi, S. Goto, J. Hong, K. Ozeki, T. T. Phuong, and W. V. Vasconcelos, Cohen-Macaulayness versus the vanishing of the first Hilbert coefficient of parameter ideals, J. London Math. Soc. (to appear).
- [12] L. Ghezzi, S. Goto, J. Hong, K. Ozeki, T. T. Phuong, and W. V. Vasconcelos, Negativity Conjecture for the First Hilbert Coefficient, Preprint (2010)

- [13] S. Goto, S. Iai, and Y. Shimoda, *Gorensteinness in Rees algebras of powers of parameter ideals*, in preparation.
- [14] S. Goto and Y. Nakamura, Multiplicities and tight closures of parameters, J. Algebra 244 (2001), 302–311.
- [15] S. Goto and K. Nishida, Hilbert coefficients and Buchsbaumness of associated graded rings, J. Pure and Appl. Algebra 181 (2003), 61–74.
- [16] S. Goto and K. Ozeki, The structure of Sally modules towards a theory of non-Cohen-Macaulay cases, Preprint 2009.
- [17] S. Goto and K. Ozeki, Buchsbaumness in local rings possessing constant first Hilbert coefficients of parameters, Nagoya Math. J. (to appear).
- [18] S. Goto and K. Ozeki, Uniform bounds for Hilbert coefficients of parameters, Preprint (2010).
- [19] L. T. Hoa, Reduction numbers and Rees Algebras of powers of ideal, Proc. Amer. Math. Soc, 119, 1993, 415–422.
- [20] C. Huneke, On the symmetric and Rees algebra of an ideal generated by a d-sequence, J. Algebra 62 (1980), 268–275.
- [21] F. Hayasaka and E. Hyry, A note on the Buchsbaum-Rim function of a parameter module, Preprint 2009.
- [22] J. Hong and B. Ulrich, Specialization and integral closure, Preprint (2006).
- [23] I. Kaplansky, Commutative Rings, Allyn and Bacon, Inc., Boston, 1970.
- [24] T. Kawasaki, On Cohen-Macaulayfication of certain quasi-projective schemes, J. Math. Soc. Japan 50 (1998), 969–991.
- [25] C. H. Linh and N. V. Trung, Uniform bounds in generalized Cohen-Macaulay rings, J. Algebra, 304 (2006), 1147–1159.
- [26] M. Mandal, B. Singh, and J. Verma, On some conjectures about the Chern numbers of filtrations, arXiv:1001.2822v1 [math. AC].
- [27] M. Moralès, N.V. Trung, and O. Villamayor, Sur la fonction de Hilbert-Samuel des clôtures intégrales des puissances d'idéaux engendrés par un système de paramètres, J. Algebra, 129 (1990), 96–102.
- [28] M. Mandal and J. K. Verma, On the Chern number of an ideal, Preprint 2008.
- [29] M. Nagata, Local Rings, Interscience, 1962.
- [30] M. Narita, A note on the coefficients of Hilbert characteristic functions in semi-regular rings, Proc. Cambridge Philos. Soc. 59 (1963), 269–275.
- [31] D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Camb. Phil. Soc., 50 (1954), 145–158.
- [32] D. Rees, a-transform of local rings and a theorem on multiplicities of ideals, Proc. Cambridge Philos. Soc. 57 (1961), 8–17.
- [33] P. Schenzel, Multiplizitäten in verallgemeinerten Cohen-Macaulay-Moduln, Math. Nachr. 88 (1979), 295–306.
- [34] P. Schenzel, On the dimension filtration and Cohen-Macaulay filtered modules, Van Oystaeyen, Freddy (ed.), Commutative algebra and algebraic geometry, New York: Marcel Dekker. Lect. Notes Pure Appl. Math. 206 (1999), 245–264.
- [35] P. Schenzel, N. V. Trung and N. T. Cuong, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57–73.
- Combinatorics and Commutative Algebra, Second Ed., Birkhäuser, Boston, Basel, Stuttgart, 1996.
 [36] N. V. Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J. 102 (1986), 1–49.
- [37] J. Stückrad, W. Vogel, Buchsbaum Rings and Applications, Springer-Verlag, Berlin, Heidelberg, New York, 1986.
- [38] W. V. Vasconcelos, *Cohomological degrees of graded modules* in "Six lectures on Commutative Algebra", Progress in Mathematics **166**, 345–392, Birkhäuser Verlag, Basel · Boston · Berlin.
- [39] W. V. Vasconcelos, The Chern coefficients of local rings, Michigan Math. J. 57 (2008), 725–743.

- [40] W. V. Vasconcelos, *Homological degrees and the Chern coefficients of local rings*, Private Correspondence.
- [41] C. Polini, B. Ulrich, and W. V. Vasconcelos, Normalization of ideals and Braincon Skoda numbers, Mathematical Research Letters, 12 (2005), 827–842.

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND TECHNOLOGY, MEIJI UNIVERSITY, 1-1-1 HIGASHI-MITA, TAMA-KU, KAWASAKI 214-8571, JAPAN *E-mail address*: goto@math.meiji.ac.jp