

2148-2

Fifth ICTP Workshop on the Theory and Use of Regional Climate Models

31 May - 11 June, 2010

Regional climate studies at MIT using RegCMs

E. Eltahir *MIT USA*

Regional Climate Studies at MIT using RegCMs

Elfatih Eltahir

Jeremy Pal, Jonathan Winter, Marc Marcella, Rebecca Gianotti, Dongfeng Zhang

TOTAL DEFORESTED AREA IN BRAZILIAN AMAZONIA

Nobre et al. (1991)

SUBEX: Incident Surface Solar (NASA-SRB)

> Old Model vs Observations

SUBEX: Mean Surface Temperature (USHCN)

Fig. 1. The land-atmosphere coupling strength diagnostic for boreal summer (the {Omega} difference, dimensionless, describing the impact of soil moisture on precipitation), averaged across the 12 models participating in GLACE

R. D. Koster et al., Science 305, 1138 -1140 (2004)

Published by AAAS

Precipitation (U.S. only)

Initial Root Zone Soil Moisture (June 25)

Source: NCDC, Time Magazine, The New York Times

	NNRP2	NNRP2 +3 °C	EH5OM	EH5OM A1B
IBIS-AS	1984-2005	1984-2005	1984-2005	2080-2099
IBIS-FC	355 ppm	710 ppm	355 ppm	625-700 ppm
BATS-FC	Control Boundary Conditions	Temperature +3 °C; RH unchanged	ECHAM5 GCM 20 th Century	ECHAM5 GCM A1B Scenario
BATS-AS	Control SST	SST +3 °C	ECHAM5 SST	ECHAM5 A1B SST

Conclusions

- Precipitation is sensitive to both climate change scenarios and increases in all numerical experiments conducted.
- Total runoff increases, removing most all of the difference between the increase in precipitation and the increase in latent heat flux.
- The response of soil moisture to both climate change scenarios is negligible.

Role of Land Surface Processes in Shaping Regional Climate of Southwest Asia

Summer Temperature

Surface Temperature Bias

CONT 2m JJA Temperature [C]

42

41

CONT – CRU JJA Avg. Temp. [C]

Albedo: Model vs Observations

Role of Surface Reflectance

ALB - CONT JJA Avg. Shortwave Absorbed [W/m~2]

ALB – CONT JJA Avg. Temp. [C]

From space.... not only desert..

Surface Humidity Bias

Mesopotamian Irrigation and Marshlands

Nearly 36,000 km² of irrigated land in Iraq (FAO & IWMI report-below) used for various crops. AVHRR & country supplied data

Nearly 17,000 km² of marshlands in Iraq and Iran in the early 1970's, about the size of Kuwait.

Effects of Irrigation/Marshlands on Temperature

Effects of Irrigation/Marshlands on Surface Humidity

IRR - ALB JJA Avg. Vapor Pressure

Changes in Extremes: Temperature

Changes in Extremes: Temperature

Again... from space

.....Dust!!

Incoming Shortwave Radiation

Incoming Shortwave Radiation

MODIS/MISR: Dust Emissions

Dust Emissions with Wind Gustiness Included

WIND JJA AOD

DUST JJA AOD

Effects of Dust on Surface Temperatures

WIND-ALB JJA Temp. [C]

Summary of Effects

Model	KW-TA JJA Bias	Regional-TA JJA Bias
Control	+3.5	+2.7
Albedo adjustment	-1aibedo values	s matching SRB
Dust (w/subgrid wind)	-0.6 SWI bias reduce	-0.5 ad by 20-40 W/m²
Irrigation+Marshlands	-0.6 RH bias redu	-0.5 ced by 5-10%
Observational Bias	-0.8	-0.3
Total Expected Bias	+0.5	+0.5

Global Rainfall from Space (TRMM)

Maritime Continent: Rainfall from Space (TRMM)

Land Cover Change in Borneo : Observations 1950-2005, projections to 2020

(UNEP/GRID-Arendal 2007)

Global Climate Change

Comparison to other regions

Supplementary Material Figure S11.37, IPCC Report 2007 Chapter 11

→ Improve ability to simulate climate over Maritime Continent

 \rightarrow Improve understanding of the role of land surface processes / characteristics in shaping regional climate

Diurnal cycle of rainfall, average 1998-2001, from TRMM (3-hourly, 0.25° x 0.25°) Rainfall in mm/day

Diurnal cycle of rainfall, average 1998-2001, from TRMM (3-hourly, 0.25° x 0.25°) Rainfall in mm/day

Model errors: - over land - wet bias (~4.5 mm/day), diurnal peak too high, too early common RCM error (e.g. Wang *et al.* 2007) - over ocean - dry bias (~1 mm/day)

Diurnal cycle of rainfall, average 1998-2001, from RegCM3-BATS1e (DTMAX=0) Rainfall in mm/day

Diurnal cycle of rainfall, average 1998-2001, from RegCM3-BATS1e (DTMAX=0) Rainfall in mm/day

TRMM vs RegCM3-BATS1e rainfall histogram average 1998-2001

Ongoing Work

Model performance varies with surface type:

- Ocean surface fluxes (sensible, latent heat) and rainfall are close to observations
- But land surface rainfall and ET 50% too high, and vertical profiles indicate too much convection
- Current avenues of investigation:
 - Land surface scheme
 - Criterion for trigger of convective adjustment

SST

RegCM3

FVCOM

SST and Wind: distance weighted interpolation Flux: conservative remapping scheme interpolation (From SCRIP software package)

Velocity field

FVCOM

Coupled model

Summary

(i) Our research is problem driven;

(ii) Significant contributions to model development;

(ii) Extensive testing and validation against field and satellite observations.

Maritime Continent: Diurnal Cycle of Rainfall

Diurnal Cycle of Rainfall during Wet (D, J, F) and Dry (J, J, A) seasons, based on CEMORPH satellite data, Qian (2008)

Precipitation-DJF

Precipitation-JJA

Temperature-DJF

Temperature-JJA

Differences in Mean JJA AOD

Model errors: - under-representation of dry periods

- over-representation of low-intensity rainfall (< 8 mm/day)
- improvement with increased vertical resolution

1.0 0.9 0.8 0.7 Probability of occurrence 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.125 - 11 - 22 - 55 - 1010 - 20> 20 < 0.125 Rainfall bin (mm / 3 hr) - TRMM land ----- Model land ----- TRMM ocean ---- Model ocean

TRMM vs RegCM3-BATS1e rainfall histogram average 1998-2001

SUBEX: Precipitation (USHCN)

> Old Model vs Observations

New Model vs Observations

From the ground

Changes in Extremes: Humidity

Changes in Extremes: Humidity

Mean Summertime (JJA) Aerosol Optical Depth

Seasonality Aerosol Optical Depth

Small-scale Processes: Land-Sea Breeze

(Ichikawa and Yasunari 2008)

RegCM3-BATS1e over Maritime Continent

- > Analyzed period 1998-2001, spin-up July-December 1997
- ERA40 for ICBCs
- Emanuel convection scheme, Zeng ocean flux scheme
- > 30 km horizontal resolution, 18 / 29 vertical levels
- Rainfall compared to TRMM (0.25° 3-hrly), GPCP (1° daily), Changi airport meteorological station

Topography (m) & Vegetation Class

Maritime Continent: Diurnal Cycle of Rainfall (Qian (2008))

