

2148-23

Fifth ICTP Workshop on the Theory and Use of Regional Climate Models

31 May - 11 June, 2010

RegCM-CHEM tutorial

A. Zakey ESP-ICTP Trieste ITALY

K.A.Shalaby Egyptian Meteorological Authority & ICTP-ESP Cairo EGYPT

RegCM-CHEM tutorial

A. Shalaby^(a), A. Zakey^(b) Fifth ICTP Workshop on the theory and Use of Regional Climate Models Trieste-Italy, 31 May 2010-11 June 2010

(a) ICTP and Egyptian Meteorological Authority, Cairo, Egypt(b) ICTP

Why Chemistry?

RegCM-CHEM Flow Charts

Emissions Inventories

RETRO	Biomass burning and anthropogenic	1960-2000	0.5°X0.5°	monthly
POET	Biomass burning, anthropogenic and biogenic	1990-2000	1ºX1º	annually
EDGAR	Biomass burning, anthropogenic and biogenic	2000	1ºX1º	annually
GFED v2	Biomass burning	1995-2005	1ºX1º	annually

List of species

Species	POET	RETRO	EDGAR	GFED
со	•	•	•	•
NOx	•	•	•	•
CH4(methane)	•	• (burning only)	•	•
C ₂ H ₆ (ethane)	•	•		
C₂H₄(ethene)	•	•		
C ₃ H ₈ (propane)	•	•		
C ₃ H ₆ (propene)	•	•		
Butane and higher	•	•		
Toluene	•	•		
CH ₃ OH(methanol)	•	•		
C₂H₅OH(ethanol)	•	•		
C ₃ H ₇ OH(propanol)	•	•		

CH ₂ OH(formaldehyde)	•	• (burning only)		
CH ₃ CHO(acetaldehyde)	•	• (burning only)		
CH3COCH3 (acetone)	•	•		
CH3COCH2CH3 (Mek)	•			
C2H2 (ethyne)		•		
C6H6 (benzene)		•		
Xylene		•		
Isoprene (C4Hx)	●(biogenic)	• (burning only)		
Monoterpenes	●(biogenic)	• (burning only)		
H2 (hydrogen)	•	• (burning only)		
N ₂ O	•	• (burning only)	•	•
NH ₃ (ammonia)	•	• (burning only)		
Organic Carbon ('OC')	•	• (burning only)		•

Black Carbon ('BC')			•
Total Carbon ('TC')			
SO2		•	
('PM2.5')			•
NMVOC			•
CO ₂	●(burning only)	•	•
С			•
DMS		•	

Emissions Pre-Process

 All emissions are in NetCDF format, and been read directly and interpolated to model grid

- User can choose among several emission inventories
- User can switch between anthropogenic and biogenic emissions
- The availability to add more emission inventories
- The output is AERO.dat AERO.ctl, AERO.dat is multi month file.

Emission maps

Gas-Phase Mechanisms

Gas-Phase Mechanism is "a set of photolysis, inorganic, and organic reactions of a group of (inorganic and organic gas phase species)"

Example for photolysis reaction to produce ozone.

$NO + O_3 = NO_2 + O_2$	(1)
$NO_2 + hv = NO + O$	(2)
$O + O_2 + M = O_3 + M$	(3)

Each reaction is represent by a certain ordinary differential equation

Model vs. Observation station

RegCM/OBS 2003/08/06 RegCM/OBS 2003/08/04 RegCM/OBS 2003/08/05 100 110

Model vs. Observation stations (cont.)

Model vs. Observation stations (cont.)

RegCM/OBS 2003/08/15

RegCM/OBS 2003/08/16

Thanks for Your Attention

