

2148-25

Fifth ICTP Workshop on the Theory and Use of Regional Climate Models

31 May - 11 June, 2010

Recent climate change studies with RegCM in NCC

GAO Xuejie National Climate Center Chinese Meteorological Administration 46 Zhongguancun Nandajie, 100081 Beijing PEOPLE'S REPUBLIC OF CHINA

RegCM in NCC

<u>Gao Xuejie</u>, Shi Ying, Zhang Dongfeng, Wu Jia, Ji Zhenmin, Xu Chonghai, Xu Ying, ESP/ICTP

National Climate Center, CMA, Beijing, China The Abdus Salam International Centre for Theoretical Physics,, Italy

> Fifth ICTP Workshop on the Theory and Use of Regional Climate Models Trieste - Italy, 31 May 2010 - 11 June 2010

Outline:

- 1. The aerosol effects on climate over China
- 2. Climate change and dust events in China
- **3. Three-Gorge Dam and climate**
- 4. Comparison of 2 high resolution climate change simulations over East Asia - monsoon precipitation
- 5. Gridding the daily data CN05
- 6. Interpolation of the climate and climate change scenario to 1 km
- 7. CORDEX East Asia
- 8. Discussions and future work plan

1. The aerosol effects on climate over China

2×15 years (1987-2002, +1 year spin-up) simulations, driven by NCEP re-analysis, resolution 50 km L16, Direct effects.

Anthropogenic aerosol emission of sulfate, BC and OC over Asia (units are 10⁻⁹, 10⁻¹⁰ and 10⁻¹⁰ kg/m²/s), REAS from Japan

The observed and simulated AOD in DJF and JJA

TOA and SRF radiative forcing in DJF and JJA (W/m²)

2. Climate change and dust events in China

Driven by a AOGCM (CCSR/NIES/FRCGC MIROC3.2_hires), changes in dust events under global warming are simulated by 50km RegCM3

4 simulations: 1991-2000 with and without feedback, 2091-2100 with and without feedback (A1B).

Case study: simulation of April, 2006 (burden, mg/m²)

The observed (MISR) and simulated AOD in MAM and JJA

Climate effects-temperature: present and future

3. Three-Gorge Dam and climate

The TGD is the largest hydroelectric project and the TGR the largest artificial water body in the world. The designed final water level is of 175 m.

It extends for **660 km** along the waterway of the Yangtze River. Being a typical river-type reservoir, the TGR is narrow, having a width of ~**1.1 km**.

Climate effects of TGD?

Experimental design:

The physics are using the default configuration Integration period 01/01/1995 to 01/01/2007, the first year is the spin-up

Exp 50: 50 km over East Asia, driven by NCEP
Exp 10-2: 10 km over TGD region (128×90), 5×5 sub-bats is used to reach 2×2 km resolution for land surface. ICBC from Exp 50.
Exp TGR: same as Exp 10-2, with water surface along TGR, and climatology of daily WST is used

Domains and topography (m) for the 50km and 10-2km simulations

Climatology of WST in two stations in the top and end of TGR is calculated based on the mean of the 4 years daily observation data. Then SSW is interpolated bilaterally to each of the 2 km grids along TGR

Temperature in JJA:

Observation and simulation by the 50km and 10-2km (°C)

(b) 50 km simulated mean temp, JJA, °C 33N 32N -31N 0 30N -29N 28N 10[']4E 105E 106E 107E 108E 109E 110E 11'1E 112E 113E 18 21 24 27 12 15 30 3 6 9 (c) 10 km simulated mean temp, JJA, °C 33N -32N -31N -0 30N -29N 28N 108E 109E 110E 111E 112E 105E 106E 107E 11[']3E 104E 18 21 24 27 15 12 3 6 9

Precipitation in JJA:

Observation and simulation by the 50km and 10-2km (°C)

Changes in temperature (°C) and precipitation (%) in DJF and JJA

Mean change in temperature in DJF and JJA

Mean change in precipitation in DJF

4. Comparison of 2 high resolution climate change simulations over East Asia - monsoon precipitation

Two simulations conducted:

FvGCM - RegCM, 1961-1990, 2071-2100 (A2), 20km

MIROC_hires - RegCM, 1951-2100, A1B, 25km

Inter-comparison of the monsoon precipitation (MJJAS) in two runs, 1961-1990; 2071-2100

MIROC3.2_hires: CCSR (Center for Climate System Research, University of Tokyo) /*NIES* (National Institute for Environmental Studies) /*FRCGC* (Frontier Research Center for Global Change)

Mean precipitation in MJJAS in 1961-1990 (mm)

1.30F

140E

150F

Changes in precipitation and 700 hpa wind circulation in MJJAS

2071-2100 vs 1961-1990

5. Gridding the daily data - CN05

Motivation: the need for gridded daily temperature data in validating high resolution RCM simulations.

The dataset is based on the interpolation from 751 (CRU: ~200) observing stations over China, comprises 3 variables: Tm, Tmin, and Tmax. Period: 1961–2008. Resolution: 0.5°×0.5°.

Method: "anomaly approach" as CRU data.

Mean: 1971–2000, by thin-plate smoothing splines (ANUSPLIN).

Anomaly: 1961–2005, by angular distance weighting (ADW).

(b) Tm CN05-CRU, 1961-2002, Jul, °C

Upper panel: Difference with CRU, Tm in January and July

Lower panel: Elapse rate derived and used in the interpolation

6. Interpolation the climate and climate change scenario to 1 km

Temperature in January over Northwest China (Xinjiang)

25 km model (left), 1km interpolation (right)

Climate change signal: precipitation in July, 2050-2000

25 km model (left), 1km interpolation (right)

7. CORDEX - East Asia

Simulation period: 1989.1 - 2002.1, first 12 months for spin-up **ICBC: ERA-Interim Resolution: 50km** Grids: jx=225, iy=186 **Observation: Xie (2007), CRU Convection: Grell-AS**

Model set-up, 2 years simulation: precipitation over the ocean, JJA

Model set-up, 2 years simulation: extreme precipitation over China

RR50: annual number of days with precipitation >50 mm/day

Results: temperature, observation and bias (°C)

Results: precipitation, observation (mm) and bias (%)

Results: extremes in precipitation, observation and simulation

8. Discussions and future work plan

Further collection and interpolation of daily data:

More stations (~2000), more variables, higher resolution (~0.25°)

Improvements of the RegCM performances over China:

warm bias over the high latitudes in DJF, cold bias in general; underestimation of precipitation over southern China, DJF

> Inter-comparison with other RCM(s)

ACCC project of the Sino-UK collaboration: RegCM and PRECIS, ERA-interim, ECHAM5, HadCM3-Qump, and RCP runs, over the CORDEX domain

> Further analysis of the existed runs

Communication with impact society

Interpretation of model results, data processing and distribution (user-friendly,

web-site: http://www.climatechange-data.cn)

