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To understand these lectures, it is essential to know some point-set topology,
as in [3, Appendix A], and to have a passing acquaintance with the exterior
calculus of differential forms on a Euclidean space, as in [3, Sections 1–4]. To be
consistent with Eduardo Cattani’s lectures at this summer school, the vector
space of C∞ differential forms on a manifold M will be denoted by A∗(M),
instead of Ω∗(M).

1. Differential Forms on a Manifold

This section introduces smooth differential forms on a manifold and derives
some of their basic properties. More details may be found in the reference [3].

1.1. Manifolds and Smooth Maps. We will be following the convention
of classical differential geometry in which vector fields X1, X2, X3, . . . take on
subscripts, differential forms ω1, ω2, ω3, . . . take on superscripts, and coefficient
functions can have either superscripts or subscripts depending on whether they
are coefficient functions of vector fields or of differential forms. See [3, §4.7,
p. 42] for an explanation of this convention.

A manifold is a higher-dimensional analogue of a smooth curve or surface.
Its prototype is the Euclidean space Rn, with coordinates r1, . . . , rn. Let U
be an open subset of Rn. A real-valued function f : U → R is smooth on U if
the partial derivatives ∂kf/∂rj1 · · · ∂rjk exist on U for all integers k ≥ 1 and
all j1, . . . , jk. A vector-valued function f = (f1, . . . , fm) : U → Rm is smooth
if each component f i is smooth on U . In these lectures we use the words
“smooth” and “C∞” interchangeably.

A topological space M is locally Euclidean of dimension n if, for every point
p in M , there is a homeomorphism φ of a neighborhood U of p with an open
subset of Rn. Such a pair (U, φ : U → Rn) is called a coordinate chart or simply
a chart. If p ∈ U , then we say that (U, φ) is a chart about p. A collection
of charts {(Uα, φα : Uα → Rn)} is C∞ compatible if for every α and β, the
transition function

φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ)

is C∞. A collection of C∞ compatible charts {(Uα, φα : Uα → Rn)} that cover
M is called a C∞ atlas. A C∞ atlas is said to be maximal if it contains every
chart that is C∞ compatible with all the charts in the atlas.

Definition 1.1. A topological manifold is a Hausdorff, second countable, lo-
cally Euclidean topological space. By “second countable,” we mean that the
space has a countable basis of open sets. A smooth or C∞ manifold is a pair
consisting of a topological manifold M and a maximal C∞ atlas {(Uα, φα)} on
M . In these lectures all manifolds will be smooth manifolds.
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In the definition of a manifold, the Hausdorff condition excludes certain
pathological examples, while the second countability condition guarantees the
existence of a partition of unity, a useful technical tool that we will define
shortly.

In practice, to show that a Hausdorff, second countable topological space is
a smooth manifold it suffices to exhibit a C∞ atlas, for by Zorn’s lemma every
C∞ atlas is contained in a unique maximal atlas.

Example 1.2. The unit circle. Let S1 be the circle defined by x2 + y2 = 1 in
R2, with open sets (see Figure 1.1)

U+
x = {(x, y) ∈ S1 | x > 0},

U−
x = {(x, y) ∈ S1 | x < 0},

U+
y = {(x, y) ∈ S1 | y > 0},

U−
y = {(x, y) ∈ S1 | y < 0}.

bc bc

bc

bc

S1 U−
y

U+
y

U−
x U+

x

Figure 1.1. A C∞ atlas on S1.

Then {(U+
x , y), (U

−
x , y), (U

+
y , x), (U

−
y , x)} is a C∞ atlas on S1. For example,

the transition function from

the open interval ]0, 1[ = x(U+
x ∩ U−

y )→ y(U+
x ∩ U−

y ) = ]− 1, 0[

is y = −
√
1− x2, which is C∞ on its domain.

A function f : M → Rn on a manifold M is said to be smooth or C∞ at
p ∈M if there is a chart (U, φ) about p in the maximal atlas of M such that

f ◦ φ−1 : Rm ⊃ φ(U)→ Rn

is C∞. The function f : M → Rn is said to be smooth or C∞ onM if it is C∞ at
every point of M . Recall that an algebra over R is a vector space together with
a bilinear map µ : A× A → A, called multiplication, such that under addition
and multiplication, A becomes a ring. Under pointwise addition, multiplication,
and scalar multiplication, the set of all C∞ functions f : M → R is an algebra
over R, denoted C∞(M).

A map F : N → M between two manifolds is smooth or C∞ at p ∈ N if
there is a chart (U, φ) about p ∈ N and a chart (V, ψ) about F (p) ∈ M with
V ⊃ F (U) such that the composite map ψ ◦ F ◦ φ−1 : Rn ⊃ φ(U) → ψ(V ) ⊂
Rm is C∞ at φ(p). A smooth map F : N →M is called a diffeomorphism if it
has a smooth inverse, i.e., a smooth map G : M → N such that F ◦ G = 1M
and G ◦ F = 1N .
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A typical matrix in linear algebra is usually anm×nmatrix, withm rows and
n columns. Such a matrix represents a linear transformation F : Rn → Rm. For
this reason, we usually write a C∞ map as F : N →M , rather than F : M → N .

1.2. Tangent Vectors. The derivatives of a function f at a point p in Rn de-
pend only on the values of f in an arbitrarily small neighborhood of p. To make
precise what is meant by an “arbitrarily small” neighborhood, we introduce the
concept of the germ of a function. Decree two C∞ functions f : U → R and
g : V → R defined on neighborhoods U and V of p to be equivalent if there is a
neighborhood W of p contained in both U and V such that f = g on W . The
equivalence class of f : U → R is called the germ of f at p.

It is fairly straightforward to verify that addition, multiplication, and scalar
multiplication of functions induce well-defined operations on C∞

p (M), the set
of germs of C∞ real-valued functions at p in M . These three operations make
C∞
p (M) into an algebra over R.

Definition 1.3. A derivation at a point p of a manifold M is a linear map
D : C∞

p (M)→ C∞
p (M) such that for any f, g ∈ C∞

p (M),

D(fg) = (Df)g(p) + f(p)Dg.

A derivation at p is also called a tangent vector at p. The set of all tangent
vectors at p is a vector space TpM , called the tangent space of M at p.

Example. If r1, . . . , rn are the standard coordinates on Rn and p ∈ Rn, then
the usual partial derivatives

∂

∂r1

∣∣∣∣
p

, . . . ,
∂

∂rn

∣∣∣∣
p

are tangent vectors at p that form a basis for the tangent space Tp(R
n).

At a point p in a coordinate chart (U, φ) = (U, x1, . . . , xn), where xi = ri ◦ φ,
we define the coordinate vectors ∂/∂xi|p ∈ TpM by

∂

∂xi

∣∣∣∣
p

f =
∂

∂ri

∣∣∣∣
φ(p)

f ◦ φ−1 for any f ∈ C∞
p (M).

If F : N →M is a C∞ map, then at each point p ∈ N its differential

F∗,p : TpN → TF (p)M, (1.1)

is the linear map defined by

(F∗,pXp)(h) = Xp(h ◦ F )

for Xp ∈ TpN and h ∈ C∞
F (p)(M). Usually the point p is clear from the context

and we write F∗ instead of F∗,p. It is easy to verify that if F : N → M and
G : M → P are C∞ maps, then for any p ∈ N ,

(G ◦ F )∗,p = G∗,F (p) ◦ F∗,p,

or, suppressing the points,

(G ◦ F )∗ = G∗ ◦ F∗.

A vector field X on a manifold M is the assignment of a tangent vector
Xp ∈ TpM to each point p ∈M . At every p in a chart (U, x1, . . . , xn), since the
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coordinate vectors ∂/∂xi|p form a basis of the tangent space TpM , the vector
Xp can be written as a linear combination

Xp =
∑

i

ai(p)
∂

∂xi

∣∣∣∣
p

with ai(p) ∈ R.

As p varies over U , the coefficients ai(p) become functions on U . The vector field
X is said to be smooth or C∞ ifM has a C∞ atlas on each chart (U, x1, . . . , xn)
of which the coefficient functions ai in X =

∑
ai∂/∂xi are C∞. We denote

the set of all C∞ vector fields on M by X(M). It is a vector space under the
addition of vector fields and scalar multiplication by real numbers. As a matter
of notation, we write tangent vectors at p as Xp, Yp, Zp ∈ TpM , or if the point
p is understood from the context, as v1, v2, . . . , vk ∈ TpM .

A frame of vector fields on an open set U ⊂M is a collection of vector fields
X1, . . . ,Xn on U such that at each point p ∈ U , the vectors (X1)p, . . . , (Xn)p
form a basis for the tangent space TpM . For example, in a coordinate chart
(U, x1, . . . , xn), the coordinate vector fields ∂/∂x1, . . . , ∂/∂xn form a frame of
vector fields on U .

If f : N → M is a C∞ map, its differential f∗,p : TpN → Tf(p)M pushes
forward a tangent vector at a point in N to a tangent vector in M . It should
be noted, however, that in general there is no push-forward map f∗ : X(N) →
X(M) for vector fields. For example, when f is not one-to-one, say f(p) = f(q)
for p 6= q in N , it may happen that for some X ∈ X(N), f∗,pXp 6= f∗,qXq;
in this case, there is no way to define f∗X so that (f∗X)f(p) = f∗,pXp for all
p ∈ N . Similarly, if f : N → M is not onto, then there is no natural way to
define f∗X at a point of M not in the image of f . Of course, if f : N → M is
a diffeomorphism, then f∗ : X(N)→ X(M) is well defined.

1.3. Differential Forms. For k ≥ 1, a differential k-form or a differential
form of degree k on M is the assignment to each p in M of an alternating
k-linear function

ωp : TpM × · · · × TpM︸ ︷︷ ︸
k copies

→ R.

Here “alternating” means that for every permutation σ of {1, 2, . . . , k} and
v1, . . . , vk ∈ TpM ,

ωp(vσ(1), . . . , vσ(k)) = (sgn σ)ωp(v1, . . . , vk), (1.2)

where sgnσ, the sign of the permutation σ, is ±1 depending on whether σ is
even or odd. We often drop the adjective “differential” and call ω a k-form or
simply a form. We define a 0-form to be the assignment of a real number to
each p ∈M ; in other words, a 0-form on M is simply a real-valued function on
M . When k = 1, the condition of being alternating is vacuous. Thus, a 1-form
on M is the assignment of a linear function ωp : TpM → R to each p in M . For
k < 0, a k-form is 0 by definition.

An alternating k-linear function on a vector space V is also called a k-
covector on V . As above, a 0-covector is a constant and a 1-covector on V is
a linear function f : V → R. Let Ak(V ) be the vector space of all k-covectors
on V . Then A0(V ) = R and A1(V ) = V ∨ := Hom(V,R), the dual vector
space of V . In this language, a k-form on M is the assignment of a k-covector
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ωp ∈ Ak(TpM) to each point p in M . The addition and scalar multiplication
of k-forms on a manifold are defined pointwise.

Let Sk be the group of all permutations of {1, 2, . . . , k}. A (k, ℓ)-shuffle is a
permutation σ ∈ Sk+ℓ such that

σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(k + ℓ).

The wedge product of a k-covector α and an ℓ-covector β on a vector space V
is by definition the (k + ℓ)-linear function

(α ∧ β)(v1, . . . , vk+ℓ) =
∑

(sgnσ)α(vσ(1) , . . . , vσ(k))β(vσ(k+1), . . . , vσ(k+ℓ)),

(1.3)
where the sum is over all (k, ℓ)-shuffles. For example, if α and β are 1-covectors,
then

(α ∧ β)(v1, v2) = α(v1)β(v2)− α(v2)β(v1).
The wedge of a 0-covector, i.e., a constant c, with another covector ω is simply
scalar multiplication. In this case, in keeping with the traditional notation for
scalar multiplication, we often replace the wedge by a dot or even by nothing:
c ∧ ω = c · ω = c ω.

The wedge product α ∧ β is a (k + ℓ)-covector; moreover, the wedge op-
eration ∧ is bilinear, associative, and anticommutative in its two arguments.
Anticommutativity means that

α ∧ β = (−1)deg αdeg ββ ∧ α.
Proposition 1.4. If α1, . . . , αn is a basis for the 1-covectors on a vector space
V , then a basis for the k-covectors on V is the set

{αi1 ∧ · · · ∧ αik | 1 ≤ i1 < · · · < ik ≤ n}.
A k-tuple of integers I = (i1, . . . , ik) is called a multi-index. If i1 ≤ · · · ≤ ik,

we call I an ascending multi-index, and if i1 < · · · < ik, we call I a strictly
ascending multi-index. To simplify the notation, we will write αI = αi1 ∧ · · · ∧
αik .

As noted earlier, at a point p in a coordinate chart (U, x1, . . . , xn), a basis
for the tangent space TpM is

∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

.

Let (dx1)p, . . . , (dx
n)p be the dual basis for the cotangent space A1(TpM) =

T ∗
pM , i.e.,

(dxi)p

(
∂

∂xj

∣∣∣∣
p

)
= δij .

By Proposition 1.4, if ω is a k-form on M , then at each p ∈ U , ωp is a linear
combination:

ωp =
∑

aI(p)(dx
I)p =

∑
aI(p)(dx

i1)p ∧ · · · ∧ (dxik)p.

We say that the k-form ω is smooth if M has an atlas {(U, x1, . . . , xn)} such
that on each U , the coefficients aI : U → R of ω are C∞.

A frame of k-forms on an open set U ⊂M is a collection of k-forms ω1, . . . , ωr
on U such that at each point p ∈ U , the k-covectors (ω1)p, . . . , (ωr)p form a
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basis for the vector space Ak(TpM) of k-covectors on the tangent space at p.
For example, on a coordinate chart (U, x1, . . . , xn), the k-forms dxI = dxi1 ∧
· · ·∧dxik , 1 ≤ i1 < · · · < ik ≤ n, constitute a frame of C∞ k-forms on U , called
the coordinate frame of k-forms on U .

Let R be a commutative ring. A subset B of a left R-module V is called a
basis if every element of V can be written uniquely as a finite linear combination∑
rib

i, where ri ∈ R and bi ∈ B. An R-module is said to be free if it has a
basis, and if the basis is finite with n elements, then the free R-module is said
to be of rank n. It can be shown that if a free R-module has a finite basis,
then any two bases have the same number of elements, so that the rank is well
defined. We denote the rank of V by rkV .

Let Ak(M) denote the vector space of C∞ k-forms on M and let

A∗(M) =
n⊕

k=0

Ak(M).

If (U, x1, . . . , xn) is a coordinate chart on M , then Ak(U) is a free module over
C∞(U) of rank

(
n
k

)
, with coordinate frame {dxI} as above.

An algebra A is said to be graded if it can be written as a direct sum
A =

⊕∞
k=0A

k of vector spaces such that under multiplication, Ak ·Aℓ ⊂ Ak+ℓ.
A graded algebra A =

⊕∞
k=0A

k is said to be graded commutative or anticom-

mutative if for all x ∈ Ak and y ∈ Aℓ,
x · y = (−1)kℓy · x.

The wedge product ∧ makes A∗(M) into an anticommutative graded algebra
over R.

1.4. Exterior Differentiation. On any manifoldM there is a linear operator
d : A∗(M)→ A∗(M), called exterior differentiation, uniquely characterized by
three properties:

(1) d is an antiderivation of degree 1, i.e., d increases the degree by 1 and
for ω ∈ Ak(M) and τ ∈ Aℓ(M),

d(ω ∧ τ) = dω ∧ τ + (−1)kω ∧ dτ ;
(2) d2 = d ◦ d = 0;
(3) on a 0-form f ∈ C∞(M),

(df)p(Xp) = Xpf for p ∈M, Xp ∈ TpM.

By induction the antiderivation property (1) extends to more than two fac-
tors; for example,

d(ω ∧ τ ∧ η) = dω ∧ τ ∧ η + (−1)deg ωω ∧ dτ ∧ η + (−1)deg ω∧τω ∧ τ ∧ dη.
The existence and uniqueness of exterior differentiation on a general manifold

is established in [3, Section 19, p. 189]. To develop some facility with this
operator, we will examine the case when M is covered by a single coordinate
chart (U, x1, . . . , xn). To prove its existence on U , we define d by the two
formulas:

(i) if f ∈ A0(U), then df =
∑

(∂f/∂xi) dxi;
(iii) if ω =

∑
aI dx

I ∈ Ak(U) for k ≥ 1, then dω =
∑
daI ∧ dxI .
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Next we check that so defined, d satisfies the three properties of exterior
differentiation.

(1) For ω ∈ Ak(U) and τ ∈ Aℓ(U),

d(ω ∧ τ) = (dω) ∧ τ + (−1)kω ∧ dτ. (1.4)

Proof. Suppose ω =
∑
aI dx

I and τ =
∑
bJ dx

J . On functions, d(fg) =
(df)g + f(dg) is simply another manifestation of the ordinary product rule,
since

d(fg) =
∑ ∂

∂xi
(fg) dxi

=
∑(

∂f

∂xi
g + f

∂g

∂xi

)
dxi

=

(∑ ∂f

∂xi
dxi
)
g + f

∑ ∂g

∂xi
dxi

= (df) g + f dg.

Next suppose k ≥ 1. Since d is linear and ∧ is bilinear over R, we may
assume that ω = aI dx

I and τ = bJ dx
J each consist of a single term. Then

d(ω ∧ τ) = d(aIbJ dx
I ∧ dxJ)

= d(aIbJ) ∧ dxI ∧ dxJ (definition of d)

= (daI)bJ ∧ dxI ∧ dxJ + aI dbJ ∧ dxI ∧ dxJ

(by the degree 0 case)

= daI ∧ dxI ∧ bJ dxJ + (−1)kaI dxI ∧ dbJ ∧ dxJ

= dω ∧ τ + (−1)kω ∧ dτ. �

(2) d2 = 0 on Ak(U).

Proof. This is a consequence of the fact that the mixed partials of a function
are equal. For f ∈ A0(U),

d2f = d

(
n∑

i=1

∂f

∂xi
dxi

)
=

n∑

j=1

n∑

i=1

∂2f

∂xj∂xi
dxj ∧ dxi.

In this double sum, the factors ∂2f/∂xj∂xi are symmetric in i, j, while dxj∧dxi
are skew-symmetric in i, j. Hence, for each pair i < j there are two terms

∂2f

∂xi∂xj
dxi ∧ dxj , ∂2f

∂xj∂xi
dxj ∧ dxi

that add up to zero. It follows that d2f = 0.
For ω =

∑
aI dx

I ∈ Ak(U), where k ≥ 1,

d2ω = d
(∑

daI ∧ dxI
)

(by the definition of dω)

=
∑

(d2aI) ∧ dxI + daI ∧ d(dxI)
= 0.
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In this computation, d2aI = 0 by the degree 0 case, and d(dxI) = 0 follows by
the antiderivation property (1) and the degree 0 case.

(3) Suppose X =
∑
aj ∂/∂xj . Then

(df)(X) =

(∑ ∂f

∂xi
dxi
)(∑

aj
∂

∂xj

)
=
∑

ai
∂f

∂xi
= X(f). �

The exterior derivative d generalizes the gradient, curl, and divergence of
vector calculus.

1.5. Pullback of Differential Forms. Unlike vector fields, which in general
cannot be pushed forward under a C∞ map, differential forms can always be
pulled back. Let F : N → M be a C∞ map. The pullback of a C∞ function
f on M is the C∞ function F ∗f := f ◦ F on N . This defines the pullback on
C∞ 0-forms. For k > 0, the pullback of a k-form ω on M is the k-form F ∗ω on
N defined by

(F ∗ω)p(v1, . . . , vk) = ωF (p)(F∗,pv1, . . . , F∗,pvk)

for p ∈ N and v1, . . . , vk ∈ TpM . From this definition, it is not obvious that
the pullback F ∗ω of a C∞ form ω is C∞. To show this, we first derive a few
basic properties of the pullback.

Proposition 1.5. Let F : N →M be a C∞ map of manifolds. If ω and τ are
k-forms and σ is an ℓ-form on M , then

(i) F ∗(ω + τ) = F ∗ω + F ∗τ ;
(ii) for any real number a, F ∗(aω) = aF ∗ω;
(iii) F ∗(ω ∧ τ) = F ∗ω ∧ F ∗τ ;
(iv) for any C∞ function h, dF ∗h = F ∗dh.

Proof. The first three properties (i), (ii), (iii) follow directly from the defini-
tions. To prove (iv), let p ∈ N and Xp ∈ TpN . Then

(dF ∗h)p(Xp) = Xp(F
∗h) (property (3) of d)

= Xp(h ◦ F ) (definition of F ∗h)

and

(F ∗dh)p(Xp) = (dh)F (p)(F∗,pXp) (definition of F ∗)

= (F∗,pXp)h (property (3) of d)

= Xp(h ◦ F ). (definition of F∗,p)

Hence,

dF ∗h = F ∗dh. �

We now prove that the pullback of a C∞ form is C∞. On a coordinate chart
(U, x1, . . . , xn) in M , a C∞ k-form ω can be written as a linear combination

ω =
∑

aI dx
i1 ∧ · · · ∧ dxik ,
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where the coefficients aI are C
∞ functions on U . By the preceding proposition,

F ∗ω =
∑

(F ∗aI) d(F
∗xi1) ∧ · · · ∧ d(F ∗xik)

=
∑

(aI ◦ F ) d(xi1 ◦ F ) ∧ · · · ∧ d(xik ◦ F ),

which shows that F ∗ω is C∞, because it is a sum of products of C∞ functions
and C∞ 1-forms.

Proposition 1.6. Suppose F : N → M is a smooth map. On C∞ k-forms,
dF ∗ = F ∗d.

Proof. Let ω ∈ Ak(M) and p ∈M . Choose a chart (U, x1, . . . , xn) about p in
M . On U ,

ω =
∑

aI dx
i1 ∧ · · · ∧ dxik .

As computed above,

F ∗ω =
∑

(aI ◦ F ) d(xi1 ◦ F ) ∧ · · · ∧ d(xik ◦ F ).

Hence,

dF ∗ω =
∑

d(aI ◦ F ) ∧ d(xi1 ◦ F ) ∧ · · · ∧ d(xik ◦ F )

=
∑

d(F ∗aI) ∧ d(F ∗xi1) ∧ · · · ∧ d(F ∗xik)

=
∑

F ∗daI ∧ F ∗dxi1 ∧ · · · ∧ F ∗dxik

(dF ∗ = F ∗d on functions by Proposition 1.5(iv))

=
∑

F ∗(daI ∧ dxi1 ∧ · · · ∧ dxik)
(F ∗ preserves the wedge product by Proposition 1.5(iii))

= F ∗dω. �

In summary, for any C∞ map F : N →M , the pullback map F ∗ : A∗(M)→
A∗(N) is an algebra homomorphism that commutes with the exterior derivative
d.

Example 1.7. Pullback under the inclusion of an immersed submanifold. Let N
and M be manifolds. A C∞ map f : N → M is called an immersion if for all
p ∈ N , the differential f∗,p : TpN → Tf(p)M is injective. A subset S of M with
a manifold structure such that the inclusion map i : S →M is an immersion is
called an immersed submanifold of M . An example is the image of a line with
irrational slope in the torus R2/Z2. An immersed submanifold need not have
the subspace topology.

If ω ∈ Ak(M), p ∈ S, and v1, . . . , vk ∈ TpS, then by the definition of the
pullback,

(i∗ω)p(v1, . . . , vk) = ωi(p)(i∗v1, . . . , i∗vk) = ωp(v1, . . . , vk).

Thus, the pullback of ω under the inclusion map i is simply the restriction of
ω to the submanifold S. We also adopt the more suggestive notation ω|S for
i∗ω.
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1.6. Real Projective Space. To conclude, we give another example of a man-
ifold, the real projective space RPn. It is defined as the quotient space of
Rn+1 − {0} by the equivalence relation:

x ∼ y ⇐⇒ y = tx for some nonzero real number t,

where x, y ∈ Rn+1−{0}. We denote the equivalence class of a point (a0, . . . , an) ∈
Rn+1−{0} by [a0, . . . , an] and let π : Rn+1−{0} → RPn be the projection. We
call [a0, . . . , an] the homogeneous coordinates on RPn.

Geometrically, two nonzero points in Rn+1 are equivalent if and only if they
lie on the same line through the origin, so RPn can be interpreted as the
set of all lines through the origin in Rn+1. Each line through the origin in

b

b

b

Figure 1.2. A line through 0 in R3 corresponds to a pair of
antipodal points on S2.

Rn+1 meets the unit sphere Sn in a pair of antipodal points, and conversely,
a pair of antipodal points on Sn determines a unique line through the origin
(Figure 1.2). This suggests that we define an equivalence relation ∼ on Sn by
identifying antipodal points

x ∼ y ⇐⇒ x = ±y, x, y ∈ Sn.
We then have a bijection RPn ↔ Sn/∼. As a quotient space of a sphere, the
real projective space RPn is the image of a compact space under a continuous
map and is therefore compact.

Next we construct a C∞ atlas on RPn. Let [a0, . . . , an] be homogeneous
coordinates on the projective space RPn. Although a0 is not a well-defined
function on RPn, the condition a0 6= 0 is independent of the choice of a rep-
resentative for [a0, . . . , an]. Hence, the condition a0 6= 0 makes sense on RPn,
and we may define

U0 := {[a0, . . . , an] ∈ RPn | a0 6= 0}.
Similarly, for each i = 1, . . . , n, let

Ui := {[a0, . . . , an] ∈ RPn | ai 6= 0}.
Define

φ0 : U0 → Rn

by

[a0, . . . , an] 7→
(
a1

a0
, . . . ,

an

a0

)
.

This map has a continuous inverse

(b1, . . . , bn) 7→ [1, b1, . . . , bn]
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and is therefore a homeomorphism. Similarly, for i = 1, . . . , n there are home-
omorphisms

φi : Ui → Rn,

[a0, . . . , an] 7→
(
a0

ai
, . . . ,

âi

ai
, . . . ,

an

ai

)
,

where the caret sign ̂ over ai/ai means that that entry is to be omitted. This
proves that RPn is locally Euclidean with the (Ui, φi) as charts.

On the intersection U0∩U1, a
0 6= 0 and a1 6= 0, and there are two coordinate

systems

[a0, a1, a2, . . . , an]

(
a0

a1
,
a2

a1
, . . . ,

an

a1

)
.

(
a1

a0
,
a2

a0
, . . . ,

an

a0

)
φ1φ0

We will refer to the coordinate functions on U0 as x1, . . . , xn, and the coor-
dinate functions on U1 as y1, . . . , yn. On U0,

xi =
ai

a0
, i = 1, . . . , n,

and on U1,

y1 =
a0

a1
, y2 =

a2

a1
, . . . , yn =

an

a1
.

Then on U0 ∩ U1,

y1 =
1

x1
, y2 =

x2

x1
, y3 =

x3

x1
, . . . , yn =

xn

x1
,

so

(φ1 ◦ φ−1
0 )(x) =

(
1

x1
,
x2

x1
,
x3

x1
, . . . ,

xn

x1

)
.

This is a C∞ function because x1 6= 0 on φ0(U0 ∩ U1). On any other Ui ∩ Uj
an analogous formula holds. Therefore, the collection {(Ui, φi)}i=0,...,n is a C∞

atlas for RPn, called the standard atlas. For a proof that RPn is Hausdorff and
second countable, see [3, Cor. 7.15 and Prop. 7.16, p. 71]. It follows that RPn

is a C∞ manifold.

Problems

1.1. Connected Components

(a) The connected component of a point p in a topological space S is the largest
connected subset of S containing p. Show that the connected components of
a manifold are open.

(b) Let Q be the set of rational numbers considered as a subspace of the real line
R. Show that the connected component of p ∈ Q is the singleton set {p},
which is not open in Q. Which condition in the definition of a manifold does
Q violate?
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1.2. Connected Components Versus Path Components
The path component of a point p in a topological space S is the set of all points q ∈ S
that can be connected to p via a continuous path. Show that for a manifold, the path
components are the same as the connected components.

1.3. Unit n-Sphere
The unit n-sphere Sn in Rn+1 is the solution set of the equation

(x0)2 + · · ·+ (xn)2 = 1.

Generalizing Example 1.2, find a C∞ atlas on Sn.
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2. The de Rham Complex

A basic goal in algebraic topology is to associate to a manifoldM an algebraic
object F (M) so that the algebraic properties of F (M) reflect the topological
properties of M . Such an association is formalized in the notion of a functor.
In this section we define the de Rham complex and the de Rham cohomology
of a manifold. It will turn out to be one of the most important functors from
manifolds to algebras.

2.1. Categories and Functors. A category K consists of a collection of ob-
jects and for any two objects A and B in K a set Mor(A,B) of morphisms from
A to B, satisfying the following properties:

(i) If f ∈ Mor(A,B) and g ∈Mor(B,C), then there is a law of composition
so that the composite morphism g ◦ f ∈ Mor(A,C) is defined.

(ii) The composition of morphisms is associative: (h ◦ g) ◦ f = h ◦ (g ◦ f).
(iii) For every object A there is a morphism 1A ∈ Mor(A,A) that serves

as the identity under composition: for every morphism f ∈ Mor(A,B),
f = f ◦ 1A = 1B ◦ f .

If f ∈ Mor(A,B), we also write f : A→ B.

Example. The collection of groups together with group homomorphisms is a
category.

Example. The collection of smooth manifolds together with C∞ maps between
manifolds is a category.

A covariant functor from a category K to a category L associates to every
object A in K an object F (A) in L and to every morphism f : A → B in K a
morphism F (f) : F (A) → F (B) in L such that F preserves composition and
identity:

F (g ◦ f) = F (g) ◦ F (f),

F (1A) = 1F (A).

If F reverses the arrows, i.e., F (f) : F (B)→ F (A) such that F (g ◦ f) = F (f) ◦

F (g) and F (1B) = 1F (B), then it is said to be a contravariant functor .

Example. A pointed manifold is a pair (M,p) where M is a manifold and p is
a point in M . For any two pointed manifolds (M,p) and (N, q), define a mor-
phism f : (N, q)→ (M,p) to be a C∞ map f : N →M such that f(q) = p. To
every pointed manifold (M,p), we associate its tangent space F (M,p) = TpM ,
and to every morphism of pointed manifolds f : (N, q) → (M,p) we associate
the differential F (f) = f∗,q : TqN → TpM . Then F is a covariant functor from
the category of pointed manifolds and morphisms of pointed manifolds to the
category of finite-dimensional vector spaces and linear maps.

A morphism f : A → B in a category is called an isomorphism if it has a
two-sided inverse, that is, a morphism g : B → A such that g ◦ f = 1A and
f ◦ g = 1B . Two objects A and B in a category are said to be isomorphic if
there is an isomorphism f : A→ B between them.
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Proposition 2.1. A functor F from a category K to a category L takes an
isomorphism in K to an isomorphism in L.

Proof. We prove the proposition for a covariant functor F . The proof is
equally valid, mutatis mutandis, for a contravariant functor. Let f : A→ B be
an isomorphism in K with two-sided inverse g : B → A. By functoriality, i.e.,
since F is a covariant functor,

F (g ◦ f) = F (g) ◦ F (f).

On the other hand,

F (g ◦ f) = F (1A) = 1F (A).

Hence, F (g) ◦ F (f) = 1F (A). Similarly, reversing the roles of f and g gives
F (f) ◦ F (g) = 1F (B). This shows that F (f) has a two-sided inverse F (g) and
is therefore an isomorphism. �

Remark. It follows from this proposition that under a functor F from a category
K to a category L, if two objects F (A) and F (B) are not isomorphic in L, then
the two objects A and B are not isomorphic in K. In this way a functor
distinguishes nonisomorphic objects in the category K.

2.2. De Rham Cohomology. A functor F from the category of smooth man-
ifolds and smooth maps to another category L associates to each manifold M a
well-defined object F (M) in L. For the functor to be useful, it should be com-
plex enough to distinguish many nondiffeomorphic manifolds and yet simple
enough to be computable.

As a first candidate, one might consider the vector space X(M) of all C∞

vector fields on M . One problem with vector fields is that in general they
cannot be pushed forward or pulled back under smooth maps. Thus, X(M) is
not a functor on the category of smooth manifolds.

A great advantage of differential forms is that they pull back under smooth
maps. Assigning to each manifoldM the algebra A∗(M) of C∞ forms onM and
to each smooth map f : N →M the pullback map f∗ : A∗(M)→ A∗(N) gives a
contravariant functor from the category of smooth manifolds and smooth maps
to the category of anticommutative graded algebras and their homomorphisms.
However, the algebra A∗(M) is too large to be a computable invariant. In
fact, unlessM is a finite set of points, A0(M) is already an infinite-dimensional
vector space.

The de Rham complex of the manifold M is the sequence of vector spaces
and linear maps

0 −→ A0(M)
d0−→ A1(M)

d1−→ · · · dk−1−→ Ak(M)
dk−→ · · · ,

where dk = d|Ak is exterior differentiation. Since dk ◦ dk−1 = 0, the image
im dk−1 is a subspace of the kernel ker dk, and so it is possible to take the
quotient of ker dk by im dk−1 with the hope of obtaining a finite-dimensional
quotient space. A differential k-form ω is said to be closed if dω = 0; ω is said
to be exact if there is a (k − 1)-form τ such that ω = dτ . Let Zk(M) = ker dk
denote the vector space of closed k-forms on M , and Bk(M) = im dk−1 the
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vector space of exact k-forms on M . The kth de Rham cohomology of M is by
definition the quotient vector space

Hk(M) :=
Zk(M)

Bk(M)
=
{closed k-forms on M}
{exact k-forms on M} .

If ω is a closed k-form on M , its equivalence class in Hk(M), denoted [ω], is
called the cohomology class of ω. It can be shown that the de Rham cohomology
Hk(M) of a compact manifold M is a finite-dimensional vector space for all k
[1, Prop. 5.3.1, p. 43].

The letter Z for closed forms comes from the German word Zyklus for a
cycle and the letter B for exact forms comes from the English word boundary,
as such elements are called in the general theory of homology.

Let H∗(M) =
⊕∞

k=0H
k(M). A priori, H∗(M) is a vector space. By the

antiderivation property

d(ω ∧ τ) = (dω) ∧ τ + (−1)deg ωω ∧ dτ,
if ω is closed, then

ω ∧ dτ = ±d(ω ∧ τ),
i.e., the wedge product of a closed form with an exact form is exact. It follows
that the wedge product induces a well-defined product in cohomology

∧ : Hk(M)×Hℓ(M)→ Hk+ℓ(M),

[ω] ∧ [τ ] = [ω ∧ τ ]. (2.1)

This makes the de Rham cohomology H∗(M) into an anticommutative graded
algebra.

2.3. Cochain Complexes and Cochain Maps. A cochain complex C in the
category of vector spaces is a sequence of vector spaces and linear maps

· · · −→ C0 d0−→ C1 d1−→ C2 d2−→ · · · , k ∈ Z

such that dk ◦ dk−1 = 0. In principle, this sequence extends to infinity in
both directions; in practice, we are interested only in cochain complexes for
which Ck = 0 for all k < 0, called nonnegative cochain complexes. Effectively,
nonnegative cochain complexes will start with

0 −→ C0 d0−→ C1 d1−→ · · · .
To simplify the notation, we often omit the subscript and write d instead dk.
An element c ∈ Ck is a cocycle of degree k or a k-cocycle if dc = 0. It is a
k-coboundary if there exists an element b ∈ Ck−1 such that c = db. Let Zk(C)
be the space of k-cocycles and Bk(C) the space of k-coboundaries in C. The
kth cohomology of C is defined to be the quotient vector space

Hk(C) =
Zk(C)

Bk(C)
=

{k-cocycles}
{k-coboundaries} .

An element of Hk(C) determined by a k-cocycle c ∈ Zk(C) is denoted [c].
If A and B are two cochain complexes, then a cochain map h : A → B is a

collection of linear maps hk : A
k → Bk such that hk+1 ◦ d = d ◦ hk for all k.
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This is equivalent to the commutativity of the diagram

Ak+1
hk+1 // Bk+1

Ak
hk

//

d

OO

Bk

d

OO

for all k.
A cochain map h : A → B takes cocycles in A to cocycles in B, because if

a ∈ Zk(A), then

d(hka) = hk+1(da) = hk+1(0) = 0.

Similarly, it takes coboundaries in A to coboundaries in B, since hk(da) =
d(hk−1a). Therefore, a cochain map h : A → B induces a linear map in coho-
mology,

h# : H∗(A)→ H∗(B),

h#[a] = [h(a)].

Returning to the de Rham complex, a C∞ map f : N → M of manifolds
induces a pullback map f∗ : Ak(M)→ Ak(N) of differential forms, which pre-
serves degree. The commutativity of f∗ with the exterior derivative d says
precisely that f∗ : A∗(M)→ A∗(N) is a cochain map of degree 0. Therefore, it
induces a linear map in cohomology:

f# : Hk(M)→ Hk(N),

f#[ω] = [f∗ω].

Since the pullback f∗ of differential forms is an algebra homomorphism,

f#[ω ∧ τ ] = [f∗(ω ∧ τ)]
= [f∗ω ∧ f∗τ ] = [f∗ω] ∧ [f∗τ ] (by (2.1))

= f#[ω] ∧ f#[τ ].
Similar computations show that f# preserves addition and scalar multiplica-
tion in cohomology. Hence, the pullback f# in cohomology is also an algebra
homomorphism. Thus, the de Rham cohomology H∗(M) gives a contravari-
ant functor from the category of smooth manifolds and smooth maps to the
category of anticommutative graded algebras and algebra homomorphisms. In
practice, we write f∗ also for the pullback in cohomology, instead of f#. By
Proposition 2.1, the de Rham cohomology algebras of diffeomorphic manifolds
are isomorphic as algebras. In this sense, de Rham cohomology is a diffeomor-
phism invariant of C∞ manifolds.

2.4. Cohomology in Degree Zero. A function f : S → T from a topological
space S to a to topological space T is said to be locally constant if every point
p ∈ S has a neighborhood U on which f is constant. Since a constant function
is continuous, a locally constant function on S is continuous at every point
p ∈ S and therefore continuous on S.

Lemma 2.2. On a connected topological space S, a locally constant function
is constant.
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Proof. Problem 2.2. �

Proposition 2.3. If a manifoldM hasm connected components, then H0(M) =
Rm.

Proof. Since there are no forms of degree −1 other than 0, the only exact 0-
form is 0. A closed C∞ 0-form is a C∞ function f ∈ A0(M) such that df = 0.
If f is closed, on any coordinate chart (U, x1, . . . , xn),

df =
∑ ∂f

∂xi
dxi = 0.

Because dx1, . . . , dxn are linearly independent at every point of U , ∂f/∂xi = 0
on U for all i. By the mean-value theorem from calculus, f is locally constant
on U (see Problem 2.1). Hence, f is locally constant on M .

By Lemma 2.2, f is constant on each connected component of M . If M =⋃m
i=1Mi is the decomposition of M into its connected components, then

H0(M) ≃ Z0(M) = {locally constant functions f on M}
= {(r1, r2, . . . , rm) | ri ∈ R, f = ri on Mi}
= Rm.

Because a manifold M is by definition second countable, every open cover of
M has a countable subcover [3, Problem A.8, p. 297]. Since every connected
component of a manifold is open (Problem 1.1), a manifold must have countably
many components. If a manifold M has infinitely many components, say M =⋃∞
i=1Mi, then

H0(M) ≃ Z0(M) = {locally constant functions f on M}
= {(r1, r2, . . .) | ri ∈ R, f = ri on Mi}

=
∞∏

i=1

R. �

2.5. Cohomology of Rn. Since R1 is connected, by Theorem 2.3, H0(R1) = R
with generator the constant function 1. Since R1 is 1-dimensional, there are no
nonzero k-forms on R1 for k ≥ 2. Hence, Hk(R1) = 0 for k ≥ 2. It remains to
compute H1(R1).

The space of closed 1-forms on R1 is

Z1(R1) = A1(R1) = {f(x) dx | f(x) ∈ C∞(R1)}.

The space of exact 1-forms on R1 is

B1(R1) = {dg | g ∈ C∞(R1)} = {g′(x) dx | g(x) ∈ C∞(R1)}.

The question then becomes the following: for every C∞ function f on R1, is
there a C∞ function g on R1 such that f(x) = g′(x)?

Define

g(x) =

∫ x

0
f(t) dt.
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By the fundamental theorem of calculus, g′(x) = f(x). Hence, every closed
1-form on R1 is exact. Therefore,

H1(R1) =
Z1(R1)

B1(R1)
=
B1(R1)

B1(R1)
= 0.

When n > 1, the computation of the de Rham cohomology of Rn is not
as straightforward. Henri Poincaré first computed Hk(Rn) for k = 1, 2, 3 in
1887. The general result on the cohomology of Rn now bears his name (see
Corollary 4.11).

Problems

2.1. Vanishing of All Partial Derivatives
Let f be a differentiable function on a coordinate neighborhood (U, x1, . . . , xn) in a
manifold M . Prove that if ∂f/∂xi ≡ 0 on U for all i, then f is locally constant on U .
(Hint : First consider the case U ⊂ Rn. For any p ∈ U , choose a convex neighborhood
V of p contained in U . If x ∈ V , define h(t) = f(p+ t(x− p)) for t ∈ [0, 1]. Apply the
mean-value theorem to h(t).)

2.2. Locally Constant Functions
Prove that on a connected topological space, a locally constant function is constant.

2.3. Cohomology of a Disjoint Union
A manifold is the disjoint union of its connected components. Prove that the coho-
mology of a disjoint union is the Cartesian product of the cohomology groups of the
components:

H∗

(∐

α

Mα

)
=
∏

α

H∗(Mα).
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3. Mayer–Vietoris Sequences

When a manifold M is covered by two open subsets U and V , the Mayer–
Vietoris sequence provides a tool for calculating the cohomology vector space
of M from those of U , V , and U ∩ V . It is based on a basic result of homo-
logical algebra: a short exact sequence of cochain complexes induces a long
exact sequence in cohomology. To illustrate the technique, we will compute the
cohomology of a circle.

3.1. Exact Sequences. A sequence of vector spaces and linear maps

· · · → V k−1 fk−1−→ V k fk−→ V k+1 → · · ·

is said to be exact at V k if the kernel of fk is equal to the image of its predecessor
fk−1. The sequence is exact if it is exact at V k for all k. Note that a cochain
complex C is exact if and only if its cohomology Hk(C) = 0 for all k. Thus, the
cohomology of a cochain complex may be viewed as a measure of the deviation
of the complex from exactness.

An exact sequence of vector spaces of the form

0→ A
i→ B

j→ C → 0

is called a short exact sequence. In such a sequence, ker i = im 0 = 0, so that
i is injective, and im j = ker 0 = C, so that j is surjective. Moreover, by
exactness and the first isomorphism theorem of linear algebra,

B

i(A)
=

B

ker j
≃ im j = C.

These three properties, the injectivity of i, the surjectivity of j, and the iso-
morphism C ≃ B/i(A), characterize a short exact sequence (Problem 3.1).

Now supposeA, B, and C are cochain complexes and i : A→ B and j : B→ C

are cochain maps. The sequence

0→ A
i→ B

j→ C→ 0 (3.1)

is a short exact sequence of complexes if in every degree k,

0→ Ak
i→ Bk j→ Ck → 0

is a short exact sequence of vector spaces.
In the short exact sequence of complexes (3.1), since i : A→ B and j : B→ C

are cochain maps, they induce linear maps i∗ : Hk(A)→ Hk(B) and j∗ : Hk(B)→
Hk(C) in cohomology by the formulas

i∗[a] = [i(a)], j∗[b] = [j(b)].

There is in addition a linear map

d∗ : Hk(C)→ Hk+1(A),

called the connecting homomorphism and defined as follows.
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The short exact sequence of complexes (3.1) is in fact an infinite diagram of
commutative squares

OO

0 // Ak+1 i // Bk+1

OO

j // Ck+1

OO

// 0

0 // Ak

d

OO

i
// Bk

d

OO

j
// Ck

d

OO

// 0.OO OO OO

To reduce visual clutter, we will often omit the parentheses around the argu-
ment of a map and write, for example, ia and db instead of i(a) and d(b). Let
[c] ∈ Hk(C) with c a cocycle in Ck. By the surjectivity of j : Bk → Ck, there
is an element b ∈ Bk such that j(b) = c. Because j(db) = dj(b) = dc = 0 and
because the rows are exact, db = i(a) for some a ∈ Ak+1. By the injectivity of
i, the element a is unique. This a is a cocycle since

i(da) = d(ia) = d(db) = 0,

from which it follows by the injectivity of i again that da = 0. Therefore, a
determines a cohomology class [a] ∈ Hk+1(A). We define d∗[c] = [a].

Remark 3.1. In making this definition, we have made two choices: the choice
of a cocycle c ∈ Ck to represent the class [c] ∈ Hk(C) and the choice of an ele-
ment b ∈ Bk such that j(b) = c. It is not difficult to show that [a] is independent
of these choices (see [3, Exercise 24.6, p. 317]), so that d∗ : Hk(C)→ Hk+1(A)
is a well-defined map. As easily verified, it is in fact a linear map.

The construction of the connecting homomorphism d∗ can be summarized
by the diagrams

Ak+1 // // Bk+1

Bk

d

OO

// // Ck,

a � // db

b
_

OO

� // c.

Proposition 3.2 (Zig-zag lemma). A short exact sequence of cochain com-
plexes

0→ A
i→ B

j→ C→ 0

gives rise to a long exact sequence in cohomology:

· · · → Hk−1(C)
d∗→ Hk(A)

i∗→ Hk(B)
j∗→ Hk(C)

d∗→ Hk+1(A)→ · · · .
The proof consists of unravelling the definitions and is an exercise in what

is commonly called diagram-chasing. See [3, p. 247] for more details. The long
exact sequence extends to infinity in both directions. For cochain complexes
for which the terms in negative degrees are zero, the long exact sequence will
start with

0→ H0(A)
i∗→ H0(B)

j∗→ H0(C)
d∗→ H1(A)→ · · · .

In such a sequence the map i∗ : H0(A)→ H0(B) is injective.
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3.2. Partitions of Unity. In order to prove the exactness of the Mayer–
Vietoris sequence, we will need a C∞ partition of unity. The support of a
real-valued function f on a manifold M is defined to be the closure in M of the
subset on which f 6= 0:

supp f = clM (f−1(R×)) = closure of {q ∈M | f(q) 6= 0} in M.

If {Ui}i∈I is a finite open cover of M , a C∞ partition of unity subordinate to
{Ui} is a collection of nonnegative C∞ functions {ρi : M → R}i∈I such that
suppρi ⊂ Ui and ∑

ρi = 1. (3.2)

When I is an infinite set, for the sum in (3.2) to make sense, we will impose
a local finiteness condition. A collection {Aα} of subsets of a topological space
S is said to be locally finite if every point q in S has a neighborhood that meets
only finitely many of the sets Aα. In particular, every q in S is contained in
only finitely many of the Aα’s.

Example. An open cover that is not locally finite. Let Ur,n be the open interval]
r − 1

n
, r + 1

n

[
in the real line R. The open cover {Ur,n | r ∈ Q, n ∈ Z+} of R is

not locally finite.

Definition 3.3. A C∞ partition of unity on a manifold is a collection of
nonnegative C∞ functions {ρα : M → R}α∈A such that

(i) the collection of supports, {supp ρα}α∈A, is locally finite,
(ii)

∑
ρα = 1.

Given an open cover {Uα}α∈A of M , we say that a partition of unity {ρα}α∈A
is subordinate to the open cover {Uα} if suppρα ⊂ Uα for every α ∈ A.

Since the collection of supports, {supp ρα}, is locally finite (Condition (i)),
every point q lies in finitely many of the sets suppρα. Hence ρα(q) 6= 0 for only
finitely many α. It follows that the sum in (ii) is a finite sum at every point.

Example. Let U and V be the open intervals ]− ∞, 2[ and ]− 1,∞[ in R
respectively, and let ρV be a C∞ function with graph as in Figure 3.1. Define
ρU = 1 − ρV . Then suppρV ⊂ V and supp ρU ⊂ U . Thus, {ρU , ρV } is a
partition of unity subordinate to the open cover {U, V }.

1 2−1−2

1 ρV

R1

U

V

)

(

Figure 3.1. A partition of unity {ρU , ρV } subordinate to an
open cover {U, V }.
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Theorem 3.4 (Existence of a C∞ partition of unity). Let {Uα}α∈A be an open
cover of a manifold M .

(i) There is a C∞ partition of unity {ϕk}∞k=1 with every ϕk having compact
support such that for each k, suppϕk ⊂ Uα for some α ∈ A.

(ii) If we do not require compact support, then there is a C∞ partition of
unity {ρα} subordinate to {Uα}.

3.3. The Mayer–Vietoris Sequence for de Rham Cohomology. Suppose
a manifoldM is the union of two open subsets U and V . There are four inclusion
maps

U �
u

iU
((QQQQQQ

U ∩ V
(

�

jU 55kkkkkk

�
v

jV
))SSSSSS

M.

V )

	

iV

66mmmmmm

They induce four restriction maps on differential forms

Ak(U) ii i∗U
SSSSSS

Ak(U ∩ V )
tt
j∗
U jjjjjj

jj

j∗
V

TTTTTT

Ak(M).

Ak(V )
uu

i∗
V

kkkkkk

Define i : Ak(M)→ Ak(U)⊕Ak(V ) to be the restriction

i(σ) = (i∗Uσ, i
∗
V σ) = (σ|U , σ|V )

and j : Ak(U)⊕Ak(V )→ Ak(U ∩ V ) to be the difference of restrictions

j(ωU , ωV ) = j∗V ωV − j∗UωU = ωV |U∩V − ωU |U∩V .

To simplify the notation, we will often suppress the restrictions and simply
write j(ωU , ωV ) = ωV − ωU .
Proposition 3.5 (Mayer–Vietoris sequence for forms). If {U, V } is an open
cover of a manifold M , then

0→ A∗(M)
i→ A∗(U)⊕A∗(V )

j→ A∗(U ∩ V )→ 0 (3.3)

is a short exact sequence of cochain complexes.

Proof. The exactness is clear except at A∗(U ∩V ) (see Problem 3.4). We will
prove exactness at A∗(U ∩V ), i.e., the surjectivity of j. Consider first the case
of C∞ functions on M = R1. Let f be a C∞ function on U ∩ V with graph as
in Figure 3.2.
We need to write f as the difference of a C∞ function gV on V and a C∞

function gU on U .
Let {ρU , ρV } be a C∞ partition of unity onM subordinate to the open cover

{U, V }. Thus, suppρU ⊂ U , supp ρV ⊂ V , and ρU + ρV = 1. Note that ρUf , a
priori a function on U ∩ V , can be extended by zero to a C∞ function on V ,
which we still denote by ρUf . Similarly, ρV f can be extended by zero to a C∞

function on U—to get a function on an open set in the cover, we multiply by
the partition function of the other open set. On U ∩ V , since

j(−ρV f, ρUf) = ρUf − (−ρV f) = f,
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( )

f

(

)
U

V

( )

(

)

ρU

ρVU

V

fρUf

Figure 3.2. Writing f as the difference of a C∞ function on V
and a C∞ function on U .

the map j : A0(U)⊕A0(V )→ A0(U ∩ V ) is surjective.
For a general manifold M , again let {ρU , ρV } be a C∞ partition of unity

on M subordinate to the open cover {U, V }. If ω ∈ Ak(U ∩ V ), we define
ξV ∈ Ak(V ) to be the extension by zero of ρUω from U ∩ V to V :

ξV =

{
ρUω on U ∩ V ,
0 on V − (U ∩ V ).

(3.4)

Similarly, define ξU ∈ Ak(U) to be the extension by zero of −ρV ω from U ∩ V
to U :

ξU =

{
−ρV ω on U ∩ V ,
0 on U − (U ∩ V ).

On U ∩ V ,

j(ξU , ξV ) = ξV − ξU = ρU ω − (−ρV ω) = ω.

This proves the surjectivity of j : Ak(U)⊕Ak(V )→ Ak(U ∩ V ). �

By Theorem 3.2, the short exact Mayer–Vietoris sequence (3.3) induces a
long exact sequence in cohomology, also called a Mayer–Vietoris sequence,

Hk+1(M)
i∗ // · · · .

Hk(M)
i∗ // Hk(U)⊕Hk(V )

j∗ // Hk(U ∩ V )
BCED

89
d∗

?> //

· · · j∗ // Hk−1(U ∩ V )
:;=<

89
d∗

?> // (3.5)

Since the de Rham complex A∗(M) is a nonnegative cochain complex, in the
long exact sequence Hk = 0 for all k < 0. Hence, the Mayer–Vietoris sequence
in cohomology starts with

0→ H0(M)
i∗→ H0(U)⊕H0(V )

j∗→ · · · .
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Example 3.6. Cohomology of a circle. Cover the circle S1 with two open sets U
and V as in Figure 3.3. The intersection U ∩V has two connected components
that we call A and B. By Theorem 2.3 and Problem 2.3,

U V

)(

)(

A

B

Figure 3.3. An open cover of the circle.

H0(S1) ≃ R, H0(U) ≃ R, H0(V ) ≃ R,

and
H0(U ∩ V ) ≃ H0(A)⊕H0(B) ≃ R⊕ R,

represented by constant functions on each connected component.
The Mayer–Vietoris sequence in cohomology gives

S1 U ∐ V U ∩ V

H1 H1(S1) // 0 // 0.

H0 0 // R
i∗ // R⊕ R

j∗ // R⊕ R

BCED
89

d∗

?> //

The maps i∗ and j∗ are given by

i∗(a) = (a, a), j∗(b, c) = (c− b, c− b). (3.6)

Thus, im j∗ ≃ R. From the Mayer–Vietoris sequence in cohomology,

H1(S1) = im d∗

≃ R⊕ R

ker d∗
=

R⊕ R

im j∗
≃ R⊕ R

R
≃ R.

Problems

3.1. Characterization of a Short Exact Sequence
Show that a sequence

0→ A
i→ B

j→ C → 0

of vector spaces and linear maps is exact if and only if

(i) i is injective,
(ii) j is surjective, and
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(iii) j induces an isomorphism B/i(A) ≃ C.
3.2. Exact Sequences
Prove that

(i) if 0→ A→ 0 is an exact sequence of vector spaces, then A = 0;

(ii) if 0→ A
f−→ B → 0 is an exact sequence of vector spaces, then f : A

∼→ B is
a linear isomorphism.

3.3. Kernel and Cokernel of a Linear Map
The cokernel coker f of a linear map f : B → C is by definition the quotient space
C/ im f . Prove that in an exact sequence

0→ A→ B
f→ C → D → 0,

A ≃ ker f and D ≃ coker f .

3.4. Exactness of the Mayer–Vietoris Sequence for Forms
Prove that the Mayer–Vietoris sequence for forms (3.3) is exact at A∗(M) and at
A∗(U)⊕A∗(V ).
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4. Homotopy Invariance

The homotopy axiom is a powerful tool for computing de Rham cohomol-
ogy. While homotopy is normally defined in the continuous category, since
we are primarily interested in smooth manifolds and smooth maps, our notion
of homotopy will be smooth homotopy. It differs from the usual homotopy in
topology only in that all the maps are assumed to be smooth. In this section we
define smooth homotopy, state the homotopy axiom for de Rham cohomology,
and compute a few examples.

4.1. Smooth Homotopy. Let M and N be manifolds, and I the closed inter-
val [0, 1]. A map F : M×I → N is said to be C∞ if it is C∞ on a neighborhood
of M × I in M ×R. Two C∞ maps f0, f1 : M → N are (smoothly) homotopic,
written f0 ∼ f1, if there is a C∞ map F : M × I → N such that

F (x, 0) = f0(x) and F (x, 1) = f1(x)

for all x ∈ M ; the map F is called a homotopy from f0 to f1. A homotopy F
from f0 to f1 can be viewed as a smoothly varying family of maps {ft : M →
N | t ∈ R}. We can think of the parameter t as time and a homotopy as an
evolution through time of the map f0 : M → N .

Example. Straight-line homotopy. Let f and g be C∞ maps from a manifold
M to Rn. Define F : M × R→ Rn by

F (x, t) = f(x) + t(g(x) − f(x))
= (1− t)f(x) + tg(x).

Then F is a homotopy from f to g, called the straight-line homotopy from f
to g (Figure 4.1).

b

b

f(x)

g(x)

Figure 4.1. Straight-line homotopy.

4.2. Homotopy Type. As usual, 1M denotes the identity map on a manifold
M .

Definition 4.1. A map f : M → N is a homotopy equivalence if it has a
homotopy inverse, i.e., a map g : N → M such that g ◦ f is homotopic to the
identity 1M on M and f ◦ g is homotopic to the identity 1N on N :

g ◦ f ∼ 1M and f ◦ g ∼ 1N .

In this case we say thatM is homotopy equivalent to N , or thatM and N have
the same homotopy type.

Example. A diffeomorphism is a homotopy equivalence.
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bc

b

b

x

x
‖x‖

Figure 4.2. The punctured plane retracts to the unit circle.

Example 4.2. Homotopy type of the punctured plane. Let i : S1 → R2 − {0} be
the inclusion map and let r : R2 − {0} → S1 be the map

r(x) =
x

‖x‖ .

Then r ◦ i is the identity map on S1.
We claim that

i ◦ r : R2 − {0} → R2 − {0}
is homotopic to the identity map. Indeed, the line segment from x to x/‖x‖
(Figure 4.2) allows us to define the straight-line homotopy

F : (R2 − {0}) × [0, 1]→ R2 − {0},

F (x, t) = (1− t)x+ t
x

‖x‖ , 0 ≤ t ≤ 1.

Then F (x, 0) = x = 1(x) and F (x, 1) = x/‖x‖ = (i ◦ r)(x). Therefore,
F : (R2−{0})×R→ R2−{0} provides a homotopy between the identity map
on R2−{0} and i ◦ r (Figure 4.2). It follows that r and i are homotopy inverse
to each other, and R2 − {0} and S1 have the same homotopy type.

Definition 4.3. A manifold is contractible if it has the homotopy type of a
point.

In this definition, by “the homotopy type of a point” we mean the homotopy
type of a set {p} whose single element is a point. Such a set is called a singleton
set or just a singleton.

Example 4.4. The Euclidean space Rn is contractible. Let p be a point in Rn,
i : {p} → Rn the inclusion map, and r : Rn → {p} the constant map. Then
r ◦ i = 1{p}, the identity map on {p}. The straight-line homotopy provides
a homotopy between the constant map i ◦ r : Rn → Rn and the identity map
on Rn:

F (x, t) = (1− t)x+ t r(x) = (1− t)x+ tp.

Hence, the Euclidean space Rn and the set {p} have the same homotopy type.
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4.3. Deformation Retractions. Let S be a submanifold of a manifold M ,
with i : S →M the inclusion map.

Definition 4.5. A retraction from M to S is a map r : M → S that restricts
to the identity map on S; in other words, r ◦ i = 1S. If there is a retraction
from M to S, we say that S is a retract of M .

Definition 4.6. A deformation retraction fromM to S is a map F : M×R→
M such that for all x ∈M ,

(i) F (x, 0) = x,
(ii) there is a retraction r : M → S such that F (x, 1) = r(x),
(iii) for all s ∈ S and t ∈ R, F (s, t) = s.

If there is a deformation retraction fromM to S, we say that S is a deformation
retract of M .

Setting ft(x) = F (x, t), we can think of a deformation retraction F : M×R→
M as a family of maps ft : M →M such that

(i) f0 is the identity map on M ,
(ii) f1(x) = r(x) for some retraction r : M → S,
(iii) for every t the map ft : M →M restricts to the identity on S.

We may rephrase Condition (ii) in the definition as follows: there is a retraction
r : M → S such that f1 = i ◦ r. Thus, a deformation retraction is a homotopy
between the identity map 1M and i ◦ r for a retraction r : M → S such that
this homotopy leaves S fixed for all time t.

Example. Any point p in a manifold M is a retract of M ; simply take a
retraction to be the constant map r : M → {p}.

Example. The map F in Example 4.2 is a deformation retraction from the
punctured plane R2 − {0} to the unit circle S1. The map F in Example 4.4 is
a deformation retraction from Rn to a singleton {p}.

Generalizing Example 4.2, we prove the following theorem.

Proposition 4.7. If S ⊂ M is a deformation retract of M , then S and M
have the same homotopy type.

Proof. Let F : M×R→M be a deformation retraction and let r(x) = f1(x) =
F (x, 1) be the retraction. Because r is a retraction, the composite

S
i→M

r→ S, r ◦ i = 1S,

is the identity map on S. By the definition of a deformation retraction, the
composite

M
r→ S

i→M

is f1 and the deformation retraction provides a homotopy

f1 = i ◦ r ∼ f0 = 1M .

Therefore, r : M → S is a homotopy equivalence, with homotopy inverse
i : S →M . �
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4.4. The Homotopy Axiom for de Rham Cohomology. We state here
the homotopy axiom and derive a few consequences. For a proof, see [3, Section
28, p. 273].

Theorem 4.8 (Homotopy axiom for de Rham cohomology). Homotopic maps
f0, f1 : M → N induce the same map f∗0 = f∗1 : H

∗(N) → H∗(M) in cohomol-
ogy.

Corollary 4.9. If f : M → N is a homotopy equivalence, then the induced
map in cohomology

f∗ : H∗(N)→ H∗(M)

is an isomorphism.

Proof (of Corollary). Let g : N →M be a homotopy inverse to f . Then

g ◦ f ∼ 1M , f ◦ g ∼ 1N .

By the homotopy axiom,

(g ◦ f)∗ = 1H∗(M), (f ◦ g)∗ = 1H∗(N).

By functoriality,

f∗ ◦ g∗ = 1H∗(M), g∗ ◦ f∗ = 1H∗(N).

Therefore, f∗ is an isomorphism in cohomology. �

Corollary 4.10. Suppose S is a submanifold of a manifold M and F is a
deformation retraction from M to S. Let r : M → S be the retraction r(x) =
F (x, 1). Then r induces an isomorphism in cohomology

r∗ : H∗(S)
∼→ H∗(M).

Proof. The proof of Proposition 4.7 shows that a retraction r : M → S is a
homotopy equivalence. Apply Corollary 4.9. �

Corollary 4.11 (Poincaré lemma). Since Rn has the homotopy type of a point,
the cohomology of Rn is

Hk(Rn) =

{
R for k = 0,

0 for k > 0.

More generally, any contractible manifold will have the same cohomology as
a point. As a consequence, on a contractible manifold a closed form of positive
degree is necessary exact.

Example. Cohomology of a punctured plane. For any p ∈ R2, the translation
x 7→ x−p is a diffeomorphism of R2−{p} with R2−{0}. Because the punctured
plane R2−{0} and the circle S1 have the same homotopy type (Example 4.2),
they have isomorphic cohomology. Hence, Hk(R2−{p}) ≃ Hk(S1) for all k ≥ 0.

Example. The central circle of an open Möbius bandM is a deformation retract
of M (Figure 4.3). Thus, the open Möbius band has the homotopy type of a
circle. By the homotopy axiom,

Hk(M) = Hk(S1) =

{
R for k = 0, 1,

0 for k > 1.
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Figure 4.3. The Möbius band deformation retracts to its cen-
tral circle.

4.5. Computation of de Rham Cohomology. In this subsection, we dis-
cuss the de Rham cohomology of three examples—the sphere, the punctured
Euclidean space, and the complex projective space.

Example 4.12. The sphere. Let A be an open band about the equator in the
sphere Sn. Let U be the union of the upper hemisphere and A, and V be the
union of the lower hemisphere and A. Then Sn = U ∪V and A = U ∩V . Using
the Mayer–Vietoris sequence and induction, one can compute the de Rham
cohomology of Sn to be

Hk(Sn) =

{
R for k = 0, n,

0 otherwise.

We leave the details as an exercise (Problem 4.1).

Example 4.13. Punctured Euclidean space. The unit sphere Sn−1 in Rn is a
deformation retract of Rn − {0} via the deformation retraction

F : (Rn − {0}) × I → Rn − {0}, F (x, t) = (1− t)x+ t
x

‖x‖ .

Therefore, H∗(Rn − {0}) ≃ H∗(Sn−1).

In the definition of a smooth manifold, if Rn is replaced by Cn, and smooth
maps by holomorphic maps, then the resulting object is called a complex man-
ifold. Since homomorphic maps are smooth and Cn is isomorphic to R2n as a
vector space, a complex manifold of complex dimension n is a smooth mani-
fold of real dimension 2n. An important example of complex manifold is the
complex projective space CPn, defined in the same way as the real projective
space, but with C instead of R. As a set, CPn is the set of all 1-dimensional
complex subspaces of the complex vector space Cn+1.

Example 4.14. Cohomology of the complex projective line. We will use the
Mayer–Vietoris sequence to compute the cohomology of CP 1. The standard
atlas {U0, U1} on CP 1 consists of two open sets Ui ≃ C ≃ R2, and their
intersection is

U0 ∩ U1 = {[z0, z1] ∈ CP 1 | z0 6= 0 and z1 6= 0}
= {[w, 1] = [z0/z1, 1] ∈ CP 1 | w 6= 0} ≃ C×,
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the set of nonzero complex numbers. Therefore, U0∩U1 has the homotopy type
of a circle and the Mayer–Vietoris sequence gives

CP 1 U0 ∐ U1 U0 ∩ U1

H2 → H2(CP 1) → 0 → 0

H1 d∗→ H1(CP 1) → 0 → R

H0 0 → R
i∗→ R⊕ R

j∗→ R

In the bottom row, elements of H0 are represented by locally constant func-
tions, i∗ is the restriction, and j∗ is the difference of restrictions. Thus,

i∗(a) = (a, a) and j∗(u, v) = v − u.
It is then clear that j∗ is surjective. Since ker d∗ = im j∗ = R, d∗ is the zero
map. So the H1 row is

0→ H1(CP 1)→ 0→ R.

Since H1(CP 1) is trapped between two zeros, H1(CP 1) = 0.
From the H1 and H2 rows, we get the exact sequence

0→ R→ H2(CP 1)→ 0.

By Problem 3.2, H2(CP 1) = R. In summary,

Hk(CP 1) =

{
R for k = 0, 2,

0 otherwise.

The same calculation as in the preceding example proves the following propo-
sition.

Proposition 4.15. In the Mayer–Vietoris sequence, if U , V , and U ∩ V are
connected and nonempty, then

(i) M is connected and

0→ H0(M)→ H0(U)⊕H0(V )→ H0(U ∩ V )→ 0

is exact;
(ii) we may start the Mayer–Vietoris sequence with

0→ H1(M)
i∗→ H1(U)⊕H1(V )

j∗→ H1(U ∩ V )→ · · · .

Example 4.16. Cohomology of the complex projective plane. We will again
use the Mayer–Vietoris sequence to compute the cohomology of CP 2. As an
open cover of CP 2, we take U to be the chart {[z0, z1, z2] ∈ CP 2 | z2 6= 0}
and V to be the punctured projective plane CP 2 − {[0, 0, 1]}. Note that U is
diffeomorphic to C2 via

[z0, z1, z2] 7→
(
z0

z2
,
z1

z2

)
,

[w0, w1, 1]← [ (w0, w1).
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Let L = {[z0, z1, 0] ∈ CP 2}. Then L is diffeomorphic to CP 1 and is called a
line at infinity of CP 2. It is easy to verify that the map F : V × [0, 1]→ V ,

F ([z0, z1, z2], t) = [z0, z1, (1 − t)z2]
is a deformation retraction from V to L. By the homotopy axiom (Corol-
lary 4.10), V has the same cohomology as CP 1.

Since the intersection U ∩ V is a punctured C2, it has the homotopy type of
S3 (Example 4.13). By Proposition 4.15, the Mayer–Vietoris sequence for the
open cover {U, V } then gives

CP 2 U ∐ V U ∩ V
∼ C2 ∐ CP 1 ∼ S3

H4 → H4(CP 2) → 0 → 0

H3 → H3(CP 2) → 0 → R

H2 → H2(CP 2) → R → 0

H1 0
d∗→ H1(CP 2) → 0 → 0

Thus,

Hk(CP 2) =

{
R for k = 0, 2, 4,

0 otherwise.

By induction on n, this same method computes the cohomology of CPn to
be

Hk(CPn) =

{
R for k = 0, 2, . . . , 2n,

0 otherwise.

Problems

4.1. Cohomology of an n-Sphere
Following the indications in Example 4.12, compute the de Rham cohomology of Sn.

4.2. Cohomology of CPn

As in Example 4.16, calculate the cohomology of CPn.
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5. Presheaves and Čech Cohomology

5.1. Presheaves. The functor A∗( ) that assigns to every open set U on a
manifold the vector space of C∞ forms on U is an example of a presheaf. By
definition a presheaf F on a topological space X is a function that assigns to
every open set U in X an abelian group F(U) and to every inclusion of open
sets iVU : V → U a group homomorphism, called the restriction from U to V ,

F(iVU ) := ρUV : F(U)→ F(V ),

satisfying the following properties:

(i) (identity) ρUU = identity map on F(U);
(ii) (transitivity) if W ⊂ V ⊂ U , then ρVW ◦ ρUV = ρUW .

We refer to elements of F(U) as sections of F over U .
If F and G are presheaves on X, a morphism f : F → G of presheaves is a

collection of group homomorphisms fU : F(U) → G(U), one for each open set
U in X, that commute with the restrictions:

F(U)
fU //

ρUV
��

F(U)

ρUV
��

F(V )
fV

// G(V ).

(5.1)

If we write ω|U for ρUV (ω), then the diagram (5.1) is equivalent to fV (ω|V ) =
fU(ω)|V for all ω ∈ F(U).

For any topological space X, let Open(X) be the category whose objects are
open subsets of X and for any two open subsets U, V of X,

Mor(V,U) =

{
{inclusion iVU : V → U} if V ⊂ U,
∅ otherwise.

In functorial language, a presheaf is simply a contravariant functor from the
category Open(X) to the category of abelian groups, and a homomorphism
of presheaves is a natural transformation from the functor F to the functor
G. What we have defined are presheaves of abelian groups; it is possible to
define similarly presheaves of vector spaces, algebras, and indeed objects in
any category.

If G is an abelian group, we define the presheaf of locally constant G-valued
functions on X to be the presheaf G that associates to every open set U in X
the group

G(U) = {locally constant functions f : U → G}
and to every inclusion of open sets V ⊂ U , the restriction ρUV : G(U) → G(V )
of locally constant functions.

5.2. Čech Cohomology of an Open Cover. Let U = {Uα}α∈A be an open
cover of the topological space X indexed by an ordered set A, and F a presheaf
of abelian groups on X. To simplify the notation, we will write the (p+1)-fold
intersection Uα0

∩ · · · ∩ Uαp as Uα0...αp . Define the group

Cp(U,F) =
∏

α0<···<αp

F(Uα0...αp).
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An element ω of Cp(U,F) is called a p-cochain on U with values in the presheaf
F; it is a function that assigns to each (p + 1)-fold intersection Uα0...αp an
element ωα0...αp ∈ F(Uα0...αp). We will write ω = (ωα0...αp), where the subscript

ranges over all α0 < · · · < αp. Define the Čech coboundary operator

δ = δp : C
p(U,F)→ Cp+1(U,F)

to be the alternating sum

(δω)α0...αp+1
=

p+1∑

i=0

(−1)iωα0...α̂i...αp+1
,

where on the right-hand side the restriction of ωα0...α̂i...αp+1
from Uα0...α̂i...αp+1

to Uα0...αp+1
is suppressed.

Proposition 5.1. If δ is the Čech coboundary operator, then δ2 = 0.

Proof. Basically this is true because in (δ2ω)α0...αp+2
, we omit two indices αi,

αj twice with opposite signs. To be precise,

(δ2ω)α0...αp+2
=
∑

(−1)i(δω)α0...α̂i...αp+2

=
∑

j<i

(−1)i(−1)jωα0...α̂j ...α̂i...αp+2

+
∑

j>i

(−1)i(−1)j−1ωα0...α̂i...α̂j ...αp+2

= 0. �

Convention. Up until now the indices in ωα0...αp are all in increasing order
α0 < · · ·αp. More generally, we will allow indices in any order, even with
repetitions, subject to the convention that when two indices are interchanged,
the Čech component becomes its negative:

ω...α...β... = −ω...β...α....
In particular, a component ω...α...α... with repeated indices is 0.

It follows from Proposition 5.1 that C∗(U,F) :=
⊕∞

p=0C
p(U,F) is a cochain

complex with differential δ. In fact, one can extend p to all integers by setting
Cp(U,F) = 0 for p < 0. The cohomology of the complex (C∗(U,F), δ),

Ȟp(U,F) =
ker δp
im δp−1

=
{p-cocylces}

{p-coboundaries} ,

is called the Čech cohomology of the open cover U with values in the presheaf
F.

5.3. The Direct Limit. To define the Čech cohomology groups of a topo-
logical space, we introduce in this section an algebraic construction called the
direct limit of a direct system of abelian groups.

A directed set is a set I with a binary relation < satisfying

(i) (reflexivity) a < a for all a ∈ I;
(ii) (transitivity) if a < b and b < c, then a < c;
(iii) (upper bound) for an a, b ∈ I, there is an element c ∈ I, called an upper

bound such that a < c and b < c.
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We often write b > a if a < b.
On a topological space X, an open cover V = {Vβ}β∈B refines an open cover

U = {Uα}α∈A if every Vβ is a subset of some Uα. If V refines U, we also say that
V is a refinement of U or that U is refined by V. Note that V refines U if and
only if there is a map φ : B → A (in general not unique), called a refinement
map, such that for every β ∈ B, Vβ ⊂ Uφ(β). We write U ≺ V to mean “U is
refined by V.”

Example. Let V be a proper open set in a topological space X. The two open
covers U = {X} and V = {X,V } refine each other, but U 6= V.

This example shows that the relation of refinement ≺ is not antisymmetric,
so it is not a partial order. However, it is clearly reflexive and transitive. Any
two open covers U = {Uα}α∈A and V = {Vβ}β∈B of a topological space X have
a common refinement {Uα ∩ Vβ}(α,β)∈A×B. Thus, the refinement relation ≺
makes the set of all open covers of X into a directed set.

A direct system of groups is a collection of groups {Gi}i∈I indexed by a
directed set I such that for any pair a < b in I there is a group homomorphism
fab : Ga → Gb satisfying for all a, b, c ∈ I,

(i) faa = identity;
(ii) fac = f bc ◦ fab if a < b < c.

On the disjoint union ∐iGi we introduce an equivalence relation ∼ by decreeing
two elements ga in Ga and gb in Gb to be equivalent if for some upper bound
c of a and b, we have fac (ga) = f bc (gb) in Gc. The direct limit of the direct
system, denoted by lim−→i∈I

Gi, is the quotient of the disjoint union ∐iGi by the

equivalence relation ∼; in other words, two elements of ∐iGi represent the same
element in the direct limit if they are “eventually equal.” We make the direct
limit lim−→Gi into a group by defining [ga] + [gb] = [fac (ga) + f bc (gb)], where c is

an upper bound of a and b and [ga] is the equivalence class of ga. It is easy to
check that the direct limit lim−→Gi is indeed a group; moreover, if all the groups
Gi are abelian, so is their direct limit. Instead of groups, one can obviously
also consider direct systems of modules, rings, algebras, and so on.

Example. Fix a point p in a manifoldM and let I be the directed set consisting
of all neighborhoods of p in M , with < being reverse inclusion: U < V if
and only if V ⊂ U . Let C∞(U) be the ring of C∞ functions on U . Then
{C∞(U)}U∈I is a direct system of rings and its direct limit lim−→p∈U

C∞(U) is

precisely the ring of germs of C∞ functions at p.

Example. Stalks of a presheaf. If F is a presheaf of abelian groups on a topo-
logical space X and p is a point in X, then {F(U)}p∈U is a direct system of
abelian groups. The direct Fp := lim−→p∈U

F(U) is called the stalk of F at p. An

element of the stalk Fp is a germ of sections at p.
A morphism of presheaves ϕ : F→ G induces a morphism of stalks ϕp : Fp →

Gp by sending the germ of a section s ∈ F(U) to the germ of the section
ϕ(s) ∈ G(U).

5.4. Čech Cohomology of a Topological Space. Let F be a presheaf on
the topological space X. Suppose the open cover V = {Vβ}β∈B of X is a
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refinement of the open cover U = {Uα}α∈A with refinement map φ : B → A.
Then there is an induced group homomorphism

φ# : Cp(U,F)→ Cp(V,F),

(φ#ω)β0...βp = ωφ(β0)...φ(βp)|Vβ1...βp for ω ∈ Cp(U,F).
On the right-hand side, we usually omit the restriction.

Lemma 5.2. The induced group homomorphism φ# is a cochain map, i.e., it
commutes with the coboundary operator δ.

Proof. For ω ∈ Cp(U,F),

(δφ#ω)β0...βp+1
=
∑

(−1)i(φ#ω)
β0...β̂i...βp+1

=
∑

(−1)iω
φ(β0)...φ̂(βi)...φ(βp+1)

.

On the other hand,

(φ#δω)β0...βp+1
= (δω)φ(β0)...φ(βp+1)

= (−1)iω
φ(β0)...φ̂(βi)...φ(βp+1)

. �

A standard method for showing that two cochain maps f, g : (A, d)→ (B, d)
induce the same map in cohomology is to find a linear map K : Ak → Bk−1 of
degree −1 such that

f − g = d ◦ K +K ◦ d,

for on the right-hand side d ◦ K+K ◦ d maps cocycles to coboundaries and in-
duces the zero map in cohomology. Such a map K is called a cochain homotopy
between f and g, and f and g are said to be cochain homotopic.

Suppose U = {Uα}α∈A is an open cover of the topological space X and V =
{Vβ}β∈B is a refinement of U, with two refinement maps φ and ψ : B→ A. The

following lemma shows that the induced cochain maps φ# and ψ# : Cp(U,F)→
Cp(V,F) are cochain homotopic.

Lemma 5.3. Define K : Cp(U,F)→ Cp−1(V,F) by

(Kω)β0...βp−1
=
∑

(−1)iωφ(α0)...φ(βi)ψ(βi)...ψ(βp−1).

Then

ψ# − φ# = δK +Kδ.

Proof. The proof is a straightforward but long and delicate verification of the
definitions. We leave it as an exercise. �

It follows that φ# and ψ# induce the same homomorphism in cohomology

(φ#)∗ = (ψ#)∗ : Ȟ∗(U,F)→ Ȟ∗(V,F).

Thus, if U < V, then any refinement map for V as a refinement of U induces a
group homomorphism in cohomology

ρUV = (φ#)∗ : Ȟ∗(U,F)→ Ȟ∗(V,F),
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which is independent of the refinement map. This makes the collection {Ȟ∗(U,F)}U
of cohomology groups into a direct system of groups indexed by the directed
set of all open covers of X. The direct limit of this direct system

Ȟ∗(X,F) := lim−→
U

Ȟ∗(U,F)

is the Čech cohomology of the topological space X with values in the presheaf
F.

5.5. Cohomology with Coefficients in the Presheaf of C∞ q-Forms. To
show the vanishing of the Čech cohomology with coefficients in the presheaf Aq

of C∞ q-forms, we will find a cochain homotopy K between the identity map
1 : C∗(U,Aq)→ C∗(U,Aq) and the zero map.

Proposition 5.4. Let Aq be the presheaf of C∞ q-forms on a manifold M .
Then the Čech cohomology Ȟk(M,Aq) = 0 for all k > 0.

Proof. Let U = {Uα} be an open cover of M and let {ρα} be a C∞ partition
of unity subordinate to {Uα}. For k ≥ 1, define K : Ck(U,Aq) → Ck−1(U,Aq)
by

(Kω)α0...αk−1
=
∑

α

ραωαα0...αk−1
.

Then

(δKω)α0 ...αk
=

k∑

i=0

(−1)i(Kω)α0...α̂i...αk

=

k∑

i=0

∑

α

(−1)iραωαα0...α̂i...αk

and

(Kδω)α0...αk
=
∑

α

ρα(δω)αα0 ...αk

=
∑

α

ραωα0...αk
+
∑

α

k∑

i=0

(−1)i+1ραωαα0...α̂i...αk
.

Hence,

((δK +Kδ)ω)α0...αk
=

(∑

α

ρα

)
ωα0...αk

= ωα0...αk
.

So for k ≥ 1,

δ ◦ K +K ◦ δ = 1 : Ck(U,Aq)→ Ck(U,Aq). (5.2)

By the discussion preceding this proposition, Hk(U,Aq) = 0 for k ≥ 1. Since
this is true for all open covers U of the manifold M , Hk(M,Aq) = 0 for k ≥
1. �

When k = 0, the equality (5.2) does not hold. Indeed,

Ȟ0(M,Aq) = ker δ :
∏

i

Aq(Ui)→
∏

i,j

Aq(Uij)

= {C∞ q-forms on M}.
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Problems

Figure 5.1. An open cover of the circle.

5.1. Čech Cohomology of an Open Cover
Let U = {U0, U1, U2} be the good cover of the circle in Figure 5.1. Suppose F is a
presheaf on S1 that associates to every nonempty intersection of U the group Z, with
restriction homomorphisms:

ρ001 = ρ101 = 1,

ρ112 = ρ212 = 1,

ρ202 = 1, ρ202 = 1,

where ρiij the the restriction from Ui to Uij . Compute Ȟ∗(U,F). (Hint : The answer

is not H0 = 0 and H1 = 0.)
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6. Sheaves and the Čech–de Rham isomorphism

In this section we introduce the concept of a sheaf and use an acyclic resolu-
tion of the constant sheaf R to prove an isomorphism between Čech cohomology
with coefficients in the constant sheaf R and de Rham cohomology.

6.1. Sheaves. The stalk of a presheaf at a point embodies in it the local char-
acter of the presheaf about the point. However, in general, there is no relation
between the global sections and the stalks of a presheaf. For example, if G is
an abelian group and F is the presheaf on a topological space X defined by
F(X) = G and F(U) = 0 for all U 6= X, then all the stalks Fp vanish but F is
not the zero presheaf.

A sheaf is a presheaf with two additional properties, which link the global
and local sections of the presheaf. In practice, most of the presheaves we
encounter are sheaves.

Definition 6.1. A sheaf F of abelian groups on a topological space X is a
presheaf satisfying two additional conditions for any open set U ⊂ X and any
open cover {Ui} of U :

(i) (uniqueness) if s ∈ F(U) is a section such that s|Ui
= 0 for all i, then

s = 0 on U ;
(ii) (patching-up) if {si ∈ F(Ui)} is a collection of sections such that si|Ui∩Uj

=
sj|Ui∩Uj

for all i, j, then there is a section s ∈ F(U) such that s|Ui
= si.

Consider the sequence of maps

0→ F(U)
r→
∏

i

F(Ui)
δ→
∏

i,j

F(Ui ∩ Uj), (6.1)

where r is the restriction r(ω) = (ω|Ui
) and δ is the Čech coboundary operator

(δω)ij = ωj − ωi.
Then the two sheaf conditions (i) and (ii) are equivalent to the exactness of the
sequence (6.1), i.e., the map r is injective and ker δ = im r.

Example. For any open subset U of a topological space X, let F(U) be the
abelian group of constant real-valued functions on U . If V ⊂ U , let ρUV : F(U)→
F(V ) be the restriction of functions. Then F is a presheaf on X. The presheaf F
satisfies the uniqueness condition but not the patching-up condition of a sheaf:
if U1 and U2 are disjoint open sets in X, and s1 ∈ F(U1) and s2 ∈ F(U2) have
different values, then there is no constant function s on U1 ∪ U2 that restricts
to s1 on U1 and to s2 on U2.

Example. Let R be the presheaf on a topological space X that associates to
every open set U ⊂ X the abelian group R(U) consisting of all locally constant
functions on U . Then R is a presheaf that is also a sheaf.

Example. The presheaf Ak on a manifold that assigns to each open set U the
abelian group of C∞ k-forms on U is a sheaf.

Example. The presheaf Zk on a manifold that associates to each open set U
the abelian group of closed C∞ k-forms on U is a sheaf.
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6.2. Čech Cohomology in Degree Zero. The two defining properties of a
sheaf F on a space X allow us to identify the zeroth cohomology Ȟ0(X,F) with
its space of global sections.

Proposition 6.2. If F is a sheaf on a topological space X, then Ȟ0(X,F) =
F(X).

Proof. Let U = {Uα}α∈A be an open cover of X. In terms of Čech cochain
groups, the sequence (6.1) assumes the form

0→ F(X)
r→ C0(U,F)

δ→ C1(U,F).

By the exactness of this sequence,

Ȟ0(U,F) = ker δ = im r ≃ F(X).

If V is an open cover of X that refines U, then there is a commutative diagram

Ȟ0(U,F)
∼ //

ρU
V

��

F(X)

Ȟ0(V,F)
∼ // F(X).

Taking the direct limit, we obtain Ȟ0(X,F) = lim−→U
Ȟ0(U,F) ≃ F(X). �

6.3. Sheaf Associated to a Presheaf. Let F be a presheaf on a topological
space X. For any open set U ⊂ X, we call a function s : U → ∐

p∈U Fp for

which s(p) ∈ Fp for all p ∈ U a section of
∐
p∈U Fp over U . If t ∈ F(U) and

p ∈ U , we let tp be the germ of t at p in the stalk Fp. A section of
∐
p∈U Fp

is said to be locally given by sections of F is for every p ∈ U , there are a
neighborhood V of p contained in U and a section t ∈ F(V ) such that for every
q ∈ V , s(q) = tq ∈ Fp.

Define

F+(U) = {sections s : U →
∐

p∈U

Fp locally given by sections of F}.

Then F+ is easily seen to be a sheaf, called the sheafification of F or the sheaf
associated to the presheaf F. There is an obvious map θ : F → F+ that sends
a section s ∈ F(U) to the function p 7→ sp ∈ Fp, p ∈ U .

Proposition 6.3. For every sheaf G and every presheaf morphism ϕ : F → G,
there is a unique sheaf morphism ϕ+ : F+ → G such that the diagram

F+

ϕ+

  @
@

@

@

F

θ

OO

ϕ
// G

(6.2)

commutes.

Proof. The proof is straightforward and is left as an exercise. �
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6.4. Sheaf Morphisms. A morphism of sheaves ϕ : F → G is by definition
a morphism of presheaves. If ϕ : F → G is a morphism of sheaves, then the
presheaf kernel

U 7→ ker(ϕU : F(U)→ G(U))

is a sheaf, called the kernel of ϕ and written kerϕ. The presheaf image

U 7→ im(ϕU : F(U)→ G(U)),

however, is not always a sheaf. The image of ϕ, denoted imϕ, is defined to be
the sheaf associated to the presheaf image of ϕ.

A morphism of sheaves ϕ : F → G is said to be injective if kerϕ = 0, and
surjective if imϕ = G.

Proposition 6.4. (i) A morphism of sheaves ϕ : F→ G is injective if and
only if the stalk map ϕp : Fp → Gp is injective for every p.

(ii) A morphism of sheaves ϕ : F → G is surjective if and only if the stalk
map ϕp : Fp → Gp is surjective for every p.

Proof. Exercise. �

In this proposition, while (i) is true also for morphism of presheaves, (ii)
is not necessarily so. It is the truth of (ii) that makes sheaves so much more
useful than presheaves.

6.5. Exact Sequences of Sheaves. A sequence of sheaves

· · · −→ F1
d1−→ F2

d2−→ F3
d3−→ · · ·

is said to be exact at Fk if im dk−1 = ker dk. An exact sequence of sheaves of
the form

0→ E→ F→ G→ 0

is said to be short-exact.

Theorem 6.5. A short exact sequence of sheaves

0→ E→ F→ G→ 0

on a topological space X gives rise to a long exact sequence in cohomology

Ȟk+1(X,E) // · · · .

Ȟk(X,E) // Ȟk(X,F) // Ȟk(X,G)
BCED

89
d∗

?> //

· · · // Ȟk−1(X,G)
:;=<

89
d∗

?> //

Proof. See [4]. �
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6.6. The Čech–de Rham Isomorphism. Let R be the sheaf of locally con-
stant functions with valued in R and let Ak be the sheaf of C∞ k-forms on a
manifold M . For every open set U in M , the exterior derivative d : Ak(U) →
Ak+1(U) induces a morphism of sheaves d : Ak → Ak+1.

Proposition 6.6. On any manifold M of dimension n, the sequence of sheaves

0→ R→ A0 d→ A1 d→ · · · d→ An → 0 (6.3)

is exact.

Proof. Exactness at A0 is equivalent to the exactness of the sequence of stalk

maps Rp → A0
p

d→ A1
p for all p ∈ M . Fix a point p ∈ M . Suppose [f ] ∈ A0

p is

the germ of a C∞ function (U, f) such that d[f ] = [0] in A1
p. Then there is a

neighborhood V ⊂ U of p on which df ≡ 0. Hence, f is locally constant on V
and [f ] ∈ Rp. Conversely, if [f ] ∈ Rp, then d[f ] = 0. This proves the exactness

of the sequence (6.3) at A0.
Next, suppose [ω] ∈ Ak

p is the germ of a C∞ k-form on some neighborhood of

p such that d[ω] ∈ Ak+1
p . This means there is a neighborhood V of p on which

dω ≡ 0. By making V smaller, we may assume that V is contractible. By the
Poincaré lemma, ω is exact on V , say ω = dτ for some τ ∈ Ak−1(V ). Hence,
[ω] = d([τ ]). �

Let Zk be the sheaf of closed C∞ k-forms on a manifold M . Then Zk =
ker(d : Ak → Ak+1) and by the exactness of (6.3), Zk = im(d : Ak−1 → Ak).
The long exact sequence (6.3) can be broken up into a collection of short-exact
sequences:

0→ R→ A0 d→ Z1 → 0, (1)

0→ Z1 → A1 d→ Z2 → 0, (2)

...

0→ Zk−1 → Ak−1 d→ Zk → 0. (k)

By the long exact sequence in cohomology of a short exact sequence of
sheaves, we get from (1) the exact sequence

Ȟk−1(M,A0)→ Ȟk−1(M,Z1)→ Ȟk(M,R)→ Ȟk(M,A0).

Since A0 is acyclic, Ȟk−1(A0) = Ȟk(A0) = 0 for k > 1. Thus,

Ȟk(M,R) ≃ Ȟk−1(M,Z1).

By the same argument, (2) gives

Ȟk−1(M,Z1) ≃ Ȟk−2(M,Z2)

for k > 2. Continuing in this way, we get

Ȟk(M,R) ≃ Ȟk−1(M,Z1) ≃ Ȟk−2(M,Z2) ≃ · · · ≃ Ȟ1(M,Zk−1).

From the final short exact sequence (k), wet get

Ȟ0(M,Ak−1)
d→ Ȟ0(M,Zk)→ Ȟ1(M,Zk−1)→ 0.
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Hence,

Ȟ1(M,Zk−1) ≃ Ȟ0(M,Zk)

im d
≃ Zk(M)

d(Ak−1(M))
≃ Ȟk(M).

Putting all the isomorphisms together gives

Ȟk(M,R) ≃ Hk(M).

Thus, the Čech cohomology of a manifold M with coefficients in the sheaf of
locally constant real-valued functions is isomorphic to the de Rham cohomology
of M .

In general, an exact sequence of sheaves

0→ A→ F0 → F1 → F2 → · · ·
on a topological space X is called a resolution of the sheaf A. The resolution
is acyclic if each sheaf Fq is acyclic on X, i.e., Ȟk(X,Fq) = 0 for all k > 0.
Exactly the same proof as that of the Čech–de Rham isomorphism proves the
following theorem.

Theorem 6.7. Let

0→ A→ F0 d→ F1 d→ F2 d→ · · ·
be an acyclic resolution of the sheaf A on a topological space X. Then there is
an isomorphism

Ȟk(X,A) ≃ ker d : Fk(X)→ Fk+1(X)

im d : Fk−1(X)→ Fk(X)
.
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