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Abstract. The goal of this expository article is first of all to show that

Hodge theory provides naturally defined subvarieties of any moduli space

parameterizing smooth varieties, the “Hodge loci”, although only the Hodge

conjecture would guarantee that these subvarieties are defined on a finite

extension of the base field. We will show how these subsets can be studied

locally in the Euclidean topology and introduce a number of related Hodge-

theoretic notions. The article will culminate with two results by Deligne,

Cattani-Deligne-Kaplan respectively. The first one says that Hodge classes

are absolute Hodge on abelian varieties, (a statement which we will rephrase

in terms of Hodge loci and is enough to guarantee that Hodge loci are closed

algebraic, defined on a finite extension of the base field), and the second tells

us that Hodge loci are in general closed algebraic, as predicted by the Hodge

conjecture.

1. Introduction

These notes are devoted to the study of Hodge loci associated to a family of
smooth complex projective varieties π : X → B. The Hodge loci are quite easy
to define set theoretically and also, locally on B for the classical topology, as a
countable union of analytic subschemes; the local components are indeed endowed
with a natural analytic schematic structure, which we will describe and can be
studied using Griffiths theory of variations of Hodge structures. On the other
hand, the right approach to give a global definition of the Hodge loci is the notion
of “locus of Hodge classes” introduced in [7]. This locus of Hodge classes is not a
subset of B, but a subset of some Hodge bundle on B, associated to π.

Griffiths’ theory has several interesting local consequences on Hodge loci, eg
their expected codimension and density properties. However, it only gives a local
and transcendental approach to the subject, which makes it hard to understand
the global structure of the Hodge loci. As we will explain in section 1.1 below, the
Hodge conjecture predicts in fact that, assuming X , B are quasi-projective, Hodge
loci are closed algebraic subsets of B, which makes them relevant to the topic of
this book. One of our main goals in this paper is to motivate and explain the main
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theorem of [7] proving that Hodge loci are indeed closed algebraic, as predicted by
the Hodge conjecture. As a consequence of this result, Hodge loci provide natu-
rally defined subvarieties of any quasiprojective variety B parameterizing smooth
projective varieties.

Finally, there are several arithmetic aspects of the question that we also want
to describe. First of all, one question which is not addressed by Cattani, Deligne
and Kaplan is whether, assuming everything is defined over a number field, the
Hodge loci are also defined over a number field. Following [36], we will explain
a partial result in this direction, together with the relation between this question
and the question whether Hodge classes are “absolute Hodge”.

A last aspect of the question, also related to arithmetic, is the study of the set
of points of B(Q) not belonging to the Hodge locus, assuming as before the family
and the base are defined over a number field. This study cannot be done within
the framework of Betti cohomology and variations of Hodge structures. Complex
geometers would usually just say that the Hodge locus is a countable union of
proper closed algebraic subsets, hence that there are complex points in B(C) out-
side the Hodge locus. But this countability argument does not say anything on
the existence of points in B(Q) outside this locus. We will explain a partial ap-
proach to this, which uses results of Terasoma comparing Galois and monodromy
groups, but works under an assumption which would be also implied by the Hodge
conjecture, namely that “Hodge classes are Tate classes” (see subsection 1.2).

The rest of this introduction will make precise a number of notions used
above.

1.1. Hodge structure and Hodge classes

LetX be a smooth projective complex variety, and k be a nonnegative integer.
The Hodge structure on H2k(X,Q) is given by the Hodge decomposition of the
complexified vector space H2k(X,C) = H2k(X,Q) ⊗ C into components of type
(p, q):

H2k(X,C) = ⊕p+q=2kH
p,q(X),

where Hp,q(X) is the set of complex cohomology classes which can be represented
by a closed form of type (p, q). The Hodge symmetry property says thatHp,q(X) =
Hq,p(X), where complex conjugation acts naturally on H2k(X,C) = H2k(X,R)⊗
C.

Definition 1.1. A Hodge class of degree 2k on X is a rational cohomology class
α ∈ H2k(X,Q) which is also in Hk,k(X). The set of Hodge classes of degree 2k
will be denoted by Hdg2k(X).

Remark 1.2. One could of course also speak of integral Hodge class, and their
study can lead to interesting invariants of varieties (cf. [8], [37]). Furthermore,
even if we will focus here on rational Hodge classes, we will see that the integral
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structure on cohomology should be kept in mind, in order to establish finiteness
results for the monodromy action (cf. subsection 4.1).

Remark 1.3. Notice that by Hodge symmetry, for a class α ∈ H2k(X,Q), being
in Hk,k(X) is equivalent to being in

F kH2k(X,C) := H2k,0(X)⊕H2k−1,1(X)⊕ . . .⊕Hk,k(X).

The Hodge conjecture states the following:

Conjecture 1.4. (Hodge 1950) Hodge classes on X are combinations with ra-
tional coefficients of classes [Z] ∈ H2k(X,Q) of algebraic subvarieties Z of X of
codimension k.

1.2. Hodge loci and moduli spaces

Let π : X → B be a smooth projective morphism between irreducible complex
analytic spaces. Fix a nonnegative integer k. We sketch several possible definitions
of the Hodge locus for this family.

Definition 1.5. The Hodge locus for degree 2k Hodge classes is the sublocus of B
consisting of points t where the number ρ2k(Xt) := dimQ Hdg

2k(Xt) does not take
the minimal value.

This locus is also sometimes called the jumping locus, because the number
ρ2k(Xt) is uppersemicontinuous. In fact, we have the following statement which
will follow immediately from the local description given below (see also section
3.1):

Lemma 1.6. Locally for the classical topology on B, for t taken away from a
countable union of closed proper analytic subsets, the following holds: any Hodge
class α ∈ Hdg2k(Xt) remains Hodge (that is of type (k, k)) on Xt′ , for t′ in a
neighborhood of t.

Here we use the parallel transport of cohomology to see α ∈ Hdg2k(Xt) ⊂
H2k(Xt,Q) as a cohomology class on Xt′ for t′ close to t. Note that, by analytic
continuation, the conclusion will then hold everywhere on B, as B is irreducible.

This lemma is a consequence of the following more precise result (Lemma
1.7): Here we choose a small contractible open set U ⊂ B, so that the family
X → B becomes topologically trivial over U . Let t ∈ U . The topological triviality
shows that any degree 2k rational cohomology class α on Xt can be extended to
a constant section α̃ of the sheaf R2kπ∗Q on U . We will show in section 3.1 the
following:

Lemma 1.7. Given a class α ∈ H2k(Xt,Q), the set Uα ⊂ U consisting of points
t′ ∈ U such that α̃t′ is a Hodge class is a closed analytic subset of U .
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It is then clear that the Hodge locus for our family restricted to U is the
countable union over those α for which Uα 6= U of the corresponding Uα, as the
set of Hodge classes on the fiber Xt is locally constant, hence of constant dimension,
for t away from this locus. This dimension is then minimal as the Hodge classes
on Xt for t very general as above, remain Hodge everywhere.

If we now assume the Hodge conjecture 1.4, we see that the expected structure
of the Hodge locus is much more precise: indeed, the presence of a degree 2k Hodge
class on Xt is then equivalent to the presence of an algebraic cycle of codimension
k in Xt. Such algebraic cycles are parameterized over B by a countable union
of fiber-products of relative Hilbert schemes for the family X → B. A standard
countability argument then shows that, assuming the Hodge conjecture, for each
local component of the Hodge locus as described below, we can find a (local piece
of) a relative Hilbert scheme which dominates it, and we then finally get by analytic
continuation the following conclusion:

(*) Assuming the Hodge conjecture, the Hodge locus is a countable union of
proper closed algebraic subsets of B.

This prediction has been made into a theorem by Cattani, Deligne and Ka-
plan (cf. [7]) as we will explain with some detail in section 7.

1.3. Arithmetic aspects: Absolute Hodge classes and Tate classes

The rough prediction above can be made more precise taking into account
the definition field K of the family, which usually will be a number field, as we are
interested in moduli spaces. We simply observe that the relative Hilbert schemes
of the family π : X → B are defined over K, so that its irreducible components
are defined over a finite extension of K, and furthermore Gal (K/K) acts on the
set of irreducible components. We thus have the following refinement of (*) :

(**) Assuming the Hodge conjecture, the Hodge locus is a countable union of
proper closed algebraic subsets of B, defined over a finite extension of the definition
field K. This union is stable under Gal (K/K).

There is no general result available on this question, but in sections 5 and
7.3, we will explain first of all that (**) is just a very weak version of the following
conjecture, which is implied by the Hodge conjecture:

Conjecture 1.8. Hodge classes are absolute Hodge.

Here we are alluding only to the de Rham aspect of the notion of absolute
Hodge class introduced by Deligne in [10]. Note that conjecture 1.8 has been
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proved by Deligne in [10] for abelian varieties. We will explain the strategy of the
proof in section 6.

The general problem seems to be very hard, but we will give in subsection 7.3
a criterion for (**) to hold. This criterion however concerns only the “geometric
aspect” of conjecture 1.8, and says something only when the components of the
Hodge locus do not consist of isolated points.

We finish this introduction by giving some more detail on another arithmetic
aspect of the study of the Hodge locus. As already mentioned, and assuming that
everything is defined over a number field, it is not clear at all from the descriptions
above that there are any points in B(Q) outside the Hodge locus.

The first result in this direction was due to Shioda. Recall that the Noether-
Lefschetz theorem says that if S ⊂ P3 is a very general surface of degree d ≥ 4,
ρ(S) = 1. Shioda proved in [30] the following:

Theorem 1.9. For d ≥ 5, d prime, there exist smooth surfaces S ⊂ P3 of degree
d defined over Q and satisfying the conclusion of Noether-Lefschetz theorem.

The proof by Shioda involved an explicit construction of surfaces with large
automorphism group. Later on, Terasoma proved in [33] a result comparing Galois
groups acting on étale cohomology of “most” closed geometric fibers (even defined
over a number field) and the l-adic geometric monodromy group acting on the
Betti cohomology of the same fiber with Ql-coefficients (cf. section 4.4).

The main consequence of Terasoma’s result is the fact that, if the geometric
monodromy group is big, which is one of the standard proofs towards Noether-
Lefschetz type theorems (cf. [38, II, 3.3.2]), then so is the image of the Galois
group. This allows to prove for many families that there are no Tate classes in
the varying part of the cohomology of many fibers defined over a number field of
a given family. Here Tate classes are defined as étale Ql-cohomology classes with
finite Galois orbit.

In order to apply this to the original question concerning “jumping” Hodge
classes, which must lie in the varying part of the cohomology of a family, on
fibers defined over a number field, we see that what is needed is the answer to the
following question:

Conjecture 1.10. Hodge classes are Tate classes.

This conjecture is of course implied by the Hodge conjecture, so it has a
positive answer in the degree 2 case, where the Hodge conjecture is known as the
Lefschetz (1, 1)-theorem. It is also essentially related to the “étale aspect” of the
question whether Hodge classes are absolute Hodge classes (cf. [10]).

The conclusion is then the following (cf. [1], [33] for various versions of this
result).

Theorem 1.11. Assuming conjecture 1.10, and the family X → B is defined over
a number field, there are many points in B(Q) outside the Hodge locus.
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2. Variations of Hodge structures

2.1. Hodge bundles and Gauss-Manin connection

Let π : X → B be a smooth projective morphism of complex varieties, which
we first endow with the classical topology. Locally over B for the classical topology,
the family X is topologically trivial, which provides local systems

Hi
Z := Riπ∗Z, Hi

C := Riπ∗C.

Consider the associated holomorphic vector bundles

Hi := Hi
C ⊗C OB .

They are endowed with the Gauss-Manin connection

∇ : Hi → Hi ⊗ ΩB ,

which is the flat connection characterized by the fact that the sections ofHi
C are the

sections of Hi annihilated by ∇ (i.e. the flat sections). The holomorphic bundles
Hi can be described in the following way: let ΩX/B,hol : ΩX /π∗ΩB where ΩX is the
sheaf of holomorphic 1-forms, and more generally Ω•X/B,hol :=

∧•ΩX/B,hol, with
differential dX/B induced by the exterior differential. The relative holomorphic
Poincaré lemma tells that Ω•X/B,hol is a resolution of the sheaf π−1OB , so that

Hi = Riπ∗Ω•X/B,hol.

The complex Ω•X/B,hol has the näıve (or Hodge) filtration

F kΩ•X/B,hol := Ω•≥kX/B,hol

whose graded pieces are the sheaves GrkFΩ•X/B,hol = ΩkX/B,hol.
The filtration above induces on each fiber Xt of π the Frölicher spectral

sequence. Its degeneracy at E1 for every t (cf. [38, I, 8.3.3]) implies that the
coherent sheaves Rqπ∗ΩkX/B are locally free (and satisfy base change), and also
that the coherent subsheaves

F kHi := Im (Riπ∗Ω•≥kX/B,hol → Riπ∗Ω•X/B,hol)

are locally free subsheaves, in fact isomorphic to Riπ∗Ω•≥kX/B,hol, and satisfying
base-change. These bundles are called the Hodge bundles.

By Hodge theory, and degeneracy at E1 of the Frölicher spectral sequence,
the Hodge filtration F kHi(Xt,C) = F kHit can be described fiberwise as follows
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(see [38, I, 8.3.3]): Let Hi(Xt,C) = ⊕p+q=iHp,q(Xt) be the Hodge decomposition.
then

F kHi(Xt,C) = ⊕p≥k,p+q=iHp,q(Xt).(2.1)

2.2. Transversality

An extremely useful tool in the theory of infinitesimal variations of Hodge
structure is the following “transversality” statement, due to Griffiths ([16]), see
also [38, I, 10.1.2].

Theorem 2.1. The Hodge filtration is shifted infinitesimally by −1 under the
Gauss-Manin connection:

∇(F kHi) ⊂ F k−1Hi ⊗ ΩB .

Griffiths’ proof of this fact involves the explicit description of the Gauss-
Manin connection with respect to a vector field v on B as induced by the Lie
derivative of forms along an horizontal vector field in X lifting v. In the next
subsection, we will give another proof, based on the Katz-Oda description [20]
of the Gauss-Manin connection. (Of course, there remains to prove that this
description is equivalent to the differential geometric one. This can be found in
[38, II, 5.1.1]).

We conclude with the following by-product of Griffiths computation: The
transversality property (Theorem 2.1) allows to construct OB-linear maps

∇ : GrkFHi =: Hk,i−k → Grk−1
F Hi ⊗ ΩB = Hk−1,i−k+1 ⊗ ΩB .

The fiber of the bundle Hp,q at the point t ∈ B identifies to Hq(Xt,ΩpXt).
Let us specialize the map ∇ at the point t and see it by adjunction as a map

t∇t : TB,t → Hom (Hi−k(Xt,ΩkXt), H
i−k+1(Xt,Ωk−1

Xt )).

We then have:

Theorem 2.2. (Griffiths) The map t∇t is the composition of the Kodaira-Spencer
map ρ : TB,t → H1(Xt, TXt) and of the contraction-cup-product map:

H1(Xt, TXt)→ Hom (Hi−k(Xt,ΩkXt), H
i−k+1(Xt,Ωk−1

Xt )).

2.3. Algebraic de Rham cohomology

Let us see now π as a morphism of algebraic varieties. We will then denote by
πalg the map π seen as a morphism of algebraic varieties endowed with the Zariski
topology. We can consider the sheaf ΩX/B,alg of Kähler differentials, which is a
locally free coherent sheaf on X , and more generally the relative algebraic de Rham
complex Ω•X/B,alg, endowed with the natural differential dX/B . Here and as before

ΩiX/B,alg =
∧i ΩX/B,alg. Using local parameters, it is obvious that the natural

map
ΩanX/B,alg → ΩX/B,hol
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is an isomorphism, where in the left hand side, the superscript “an” stands for the
corresponding analytic coherent sheaf.

An immediate application of Serre’s GAGA principle in the relative setting
shows the following (see Grothendieck [19]):

Theorem 2.3. One has a canonical isomorphism of analytic coherent sheaves on
B:

F kHi = Riπ∗Ω•≥kX/B,hol = (Riπalg∗ Ω•≥kX/B,alg)
an.(2.2)

The importance of this remark in our setting is first of all the fact that the
total space of the locally free sheaf F kHi (a holomorphic vector bundle that we will
denote by F kHi) is in fact an algebraic vector bundle on B, hence in particular an
algebraic variety. From a more arithmetic point of view, observe that if everything,
namely X , B and πalg, is defined over K, so is the algebraic relative de Rham
complex Ω•X/B,hol and its näıve filtration. It thus follows that the algebraic vector
bundle F kHi is in fact an algebraic variety defined over K. If K = Q, the field
automorphisms of C act on the complex points of this algebraic variety. On the
other hand, (2.2) together with the description given in (2.1) of the fibers of F kHi
(or equivalently F kHi) shows that complex points of this algebraic variety are
exactly pairs (t, α) where t ∈ B(C), and α ∈ F kHi(Xt,C) = ⊕p≥kHp,i−p(Xt).

The action of AutC on the set of such pairs will allow us to define absolute
Hodge classes (in the de Rham sense) in section 5.

To conclude, let us explain the Katz-Oda construction of the Gauss-Manin
connection, which will make obvious that it is in fact algebraic and defined over
the definition field K. Consider the exact sequence of holomorphic differentials on
X :

0→ π∗ΩB,hol → ΩX ,hol → ΩX/B,hol → 0.

This exact sequence induces a filtration L• on the holomorphic de Rham complex
of X (where L stands for “Leray”, as this filtration is directly related to the Leray
filtration, see [38, II, 4.1.3]):

LrΩiX ,hol := π∗ΩrB,hol ∧ Ωi−rX ,hol.

We have then an exact sequence of complexes on X :

0→ π∗ΩB,hol ⊗ Ω•−1
X/B,hol → Ω•X ,hol/L

2Ω•X ,hol → Ω•X/B,hol → 0.

Applying Rπ∗ to this exact sequence, and using the fact that

Riπ∗Ω•X ,hol = Hi, Ri+1π∗Ω•−1
X ,hol = Hi

gives a connecting map (which is only C-linear, due to the fact that the exact
sequence above is not an exact sequence of complexes of OB-modules)

δ : Hi → ΩB,hol ⊗Hi.

The result is then:
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Theorem 2.4. (Katz-Oda, see also [38, II, 5.1.1]) The map δ is the connection
∇.

This formal construction shows that the Gauss-Manin connection is algebraic,
as the exact sequence of relative differentials exists as well at the level of algebraic
differentials. This exact sequence being defined over the definition field K, we also
get that ∇ is defined over K.

3. Hodge loci

3.1. Local structure

In the abstract setting of a variation of Hodge structure of even weight 2k
on B, described by the data

H2k
Q , H2k = H2k

Q ⊗OB , F iH2k ⊂ H2k,

satisfying Griffiths transversality

∇F iH2k ⊂ F i−1H2k ⊗ ΩB ,

let us describe locally the analytic components of the Hodge locus.
We will give two equivalent descriptions: in both cases, we restrict to an

Euclidean open set U of B which is a connected and simply connected neighbor-
hood of 0. Then we have a trivialization of H2k

Q on U which allows to identify
α ∈ H2k(X0,Q) to a section α̃ ∈ H2k

Q .
Using Remark 1.3, the Hodge locus in U is then the countable union of the

Uα’s, taken over the set of α ∈ H2k(X0,Q) such that Uα 6= U , where

Uα = {t ∈ U, α̃t ∈ F kH2k
t }.

Lemma 3.1. (cf. [39], [38, II, 5.3.1]) Each Uα ⊂ U is a closed analytic subset
of U , which can be defined locally schematically by at most hk−1,k+1 holomorphic
equations, where hk−1,k+1 := rank F k−1H2k/F kH2k.

Proof. Uα is defined by the annulation of the projection in the quotient
vector bundle H2k/F kH2k of the flat, hence holomorphic, section α̃ ∈ H2k. This
proves the first statement and also provides a natural analytic schematic struc-
ture for Uα. The second statement is a consequence of transversality. Choose a
holomorphic splitting of the quotient H2k/F kH2k above as

H2k/F kH2k = Hk−1,k+1 ⊕F , F ∼= H2k/F k−1H2k,

where Hk−1,k+1 := F k−1H2k/F kH2k. Let U ′α ⊂ U be defined by the vanishing of
the projection of α̃ to the first summand. Clearly Uα ⊂ U ′α. The claim is that
this inclusion is a scheme-theoretic isomorphism along Uα. At first order, this is
exactly the content of the transversality property, which implies that along the
Hodge locus Uα, the differentials of the equations

{α̃ = 0 mod. F kH2k} and {α̃ = 0 mod. F kH2k ⊕F}
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are the same. The general study is done by finite order expansion (cf. [38, II,
5.3.1]).

The following gives an explicit description of the differential of the above local
equations. We refer to [38, II, 5.3.2] for the proof, which follows in a straightfor-
ward way from the definition of the map t∇.

Proposition 3.2. The Zariski tangent space to Uα at t is described as

TUα,t = Ker (t∇αk,k : TU,t → Hk−1,k+1
t ).

Here t ∈ Uα so that α ∈ F kH2k
t , and αk,k is the projection of α to Hk,kt .

The map t∇ has been introduced in section 2.2. Lemma 3.1 and Proposition 3.2
imply:

Corollary 3.3. The analytic subset Uα is smooth of codimension hk−1,k+1 at a
point t where the map t∇αk,k is surjective.

The second description is closer in spirit to the point of view we will adopt in
section 3.3. We observe that each Uα has a natural lift in the total space F kH2k

of the bundle F kH2k. Indeed, by definition, along Uα, the section α̃ of H2k takes
values in F kH2k and this gives the desired lift. Let us now describe in another
way the corresponding analytic subset Vα of F kH2k. Using the trivialization of
the bundle H2k on U , we get a holomorphic map

Φ : F kH2k → H2k(X0,C),

which sends a element γt ∈ F kH2k
t ⊂ H2k

t to its parallel transport to 0. Thinking
a little, we get the following:

Lemma 3.4. The analytic subset Vα identifies schematically to the fiber Φ−1(α).

This lemma gives another way of considering the Hodge locus: it is the
projection to U of Φ−1(H2k(X0,Q)) or, rather, of the union of components of
Φ−1(H2k(X0,Q)) which do not dominate U .

3.2. Weight 2: a density criterion

Let us use Lemma 3.4 to give a simple criterion, due to M. Green, for the
topological density of the Hodge locus in weight 2 (it is then usually called the
Noether-Lefschetz locus by reference to the Noether-Lefschetz theorem). We as-
sume below that there is no locally constant rational class which is of type (1, 1)
everywhere, which we can always do by splitting off a locally trivial subvariation
of Hodge substructure purely of type (1, 1). We will put everywhere a subscript
var (for ”varying part”) to indicate that we made this operation.
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Theorem 3.5. Assume B is connected and there exist t ∈ B, and λ ∈ H1,1
var,t such

that
t∇λ : TB,t → H0,2

t

is surjective. Then the Hodge locus is dense (for the Euclidean topology) in B.

Here, the map t∇ has been introduced in section 2.2.

Proof. The condition is Zariski open on t ∈ B and also on λ ∈ H1,1
var,t. Thus

it is satisfied over a Zariski open set of B. As a non empty Zariski open set is
dense for the classical topology, it suffices to show density near a point t0 satisfying
the condition above. Next observe that by Hodge symmetry, the complex vector
spaces H1,1

var,t, t ∈ B have a real structure,

H1,1
var,t = H1,1

var,t,R ⊗ C,

as they can be identified to F 1H2
var,t ∩F 1H2

var,t so that complex conjugation acts
on them. So if the condition is satisfied for one λ ∈ F 1H2

var,t0 , it is satisfied as
well for one λ ∈ H1,1

var,t0,R. Lifting H1,1
var,t0 to F 1H2

var,t0 ⊂ H
2
var,t0 via the Hodge

decomposition, λ is then lifted to a real element λ̃ ∈ H2
var,t0,R ∩ F

1H2
var,t0 . The

following lemma 3.6, for which we refer to [38, II, 5.3.4], tells then that the map
Φ is of maximal rank at λ̃.

Lemma 3.6. The map Φ : F 1H2
var → H2(Xvar,t0 ,C) is of maximal rank at λ̃ if

and only if the map t∇λ : TB,t0 → H
0,2
t0 is surjective, where λ is the projection of

λ̃ in H1,1
var,t0 .

We then conclude as follows: Since Φ is open near λ̃, so is the restricted map:

ΦR : Φ−1(H2(Xt0 ,R)var) = F 1H2
var ∩H2

var,R → H2(Xt0 ,R)var.

The left hand side is the total space of the real analytic vector bundle H1,1
var,R with

fiber H1,1
var,t′,R over t′ ∈ B. The right hand side contains H2(Xt0 ,Q)var as a topo-

logically dense subset. Hence, as ΦR is open, Φ−1
R (H2(Xt0 ,Q)var) is topologically

dense in H1,1
var,R near λ̃. But the projection to U of Φ−1

R (H2(Xt0 ,Q)var) is nothing
but the Hodge locus, as shown by Lemma 3.4, and because by definition of the
“varying part”, no component of Φ−1

R (H2(Xt0 ,Q)var) dominates U .

3.3. Locus of Hodge classes

None of the local descriptions given in section 3.1 can be made global, due
to the fact that they use a local trivialization of the bundle H2k, which is highly
transcendent. It is not even clear from these descriptions that the Hodge locus is
a countable union of closed analytic subsets.

In [7], Cattani, Deligne and Kaplan consider rather the locus of Hodge classes,
a locus that will lead to a better definition of the Hodge locus and its components,
and a local version of which has been already considered in the previous section.
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Definition 3.7. Given a variation of Hodge structure of even weight 2k over a
basis B, the locus of Hodge classes is the subset of F kH2k consisting of pairs
(t, αt), t ∈ B, αt ∈ F kH2k

t , such that αt ∈ H2k
t,Q.

This definition was already implicit in our second description of the Hodge
locus in previous section. In fact that description gave as well a local description
of the locus of Hodge classes. Later on, for arithmetic purposes, we will be led
to slightly change this definition, and to consider rather (2ιπ)k times the above
locus.

The components of the Hodge locus can then be globally defined as the
projections to B of the connected components of the locus of Hodge classes. Note
that, even with the local description given in Lemma 3.4, it is still not clear
that these components have a good global structure. One of our main goals in
section 7 will be to sketch the proof of the following result, (where the variation
of Hodge structure is assumed to come from a smooth projective family over a
quasiprojective basis B):

Theorem 3.8. (see [7]) The connected components of the locus of Hodge classes
are closed algebraic subsets of F kH2k. In particular, the components of the Hodge
locus are algebraic.

This theorem makes sense using the algebraic structure of the bundle F kH2k

described in section 2.3.

4. Monodromy

4.1. Monodromy and Hodge classes

We come back to the general setting of a variation of Hodge structure of
weight 2k coming from a smooth projective family π : X → B, where B is con-
nected. For any point t ∈ B, there is the monodromy representation

ρ : π1(B, t)→ AutH2k(Xt,Q)

associated to the local system R2kπ∗Q. Let t ∈ B be a very general point in the
analytic sense (that means that locally on B, t can be taken away from a countable
union of closed analytic subsets). Consider the subspace Hdg2k(Xt) ⊂ H2k(Xt,Q).

Theorem 4.1. The monodromy group Imρ acting on H2k(Xt,Q) leaves stable
Hdg2k(Xt) and acts via a finite group on Hdg2k(Xt).

Proof. The fact that Hdg2k(Xt) is stable under monodromy is a consequence
of analytic continuation. Indeed, consider a simply connected open set U ⊂ B and
take t in U to be away from the Hodge locus (see section 3.1). By definition
then, any rational cohomology class α ∈ H2k(Xt,Q) which is Hodge (that is of
type (k, k)) at t is Hodge everywhere on U . But then, extending α by parallel
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transport along real analytic paths in B, it is Hodge everywhere on B by analytic
continuation along these paths.

Let us show that the monodromy action is finite on Hdg2k(Xt,Q). We first
of all remark that everything has an integral structure which is preserved by the
monodromy action. Namely we could have worked with the local system of integral
cohomology modulo torsion instead of rational cohomology. Next we show that
there is a positive rational intersection form on Hdg2k(Xt,Q) (which of course
can be made integral by scaling). This clearly implies the claim since then the
monodromy group acts via the finite orthogonal group of a lattice endowed with
a definite intersection form.

The intersection form is simply obtained by choosing a relatively ample line
bundle H on X . The class h = c1(H) of this line bundle provides for each fiber
Xt a monodromy invariant Lefschetz decomposition of H2k(Xt,Q), and as h is a
Hodge class, the Lefschetz isomorphisms are isomorphisms of Hodge structures,
hence preserve the set of Hodge classes in all degrees, which implies that there is an
induced Lefschetz decomposition on the subspace (which is monodromy invariant
for very general t) Hdg2k(Xt). Assume first that k ≤ n = dimXt and write this
decomposition as

Hdg2k(Xt) = ⊕r≤khk−rHdg2k−2r(Xt).(4.1)

We finally use the rational monodromy invariant intersection pairing on
H2k(Xt,Q) given by

(α, β) =
∫
Xt
hn−k ∪ α ∪ β.

This pairing is not positive definite on Hdg2k(Xt), but the monodromy invariant
Lefschetz decomposition (4.1) is orthogonal for this pairing, and furthermore this
pairing is of a definite sign on each term hk−rHdg2k−2r(Xt) (cf. [38, I, 6.3.2]).
Modifying the pairing above by changing its sign where needed on certain pieces
of the decomposition (4.1) gives the desired positive intersection pairing.

The case k ≥ n follows then from the case k ≤ n and from the Lefschetz
isomorphism

h2k−n : H2n−2k(Xt,Q) ∼= H2k(Xt,Q).

Remark 4.2. Theorem 4.1 is coherent with the Hodge conjecture. Indeed, mon-
odromy also acts via a finite group on cycle classes at a very general point, because
these cycles come by restriction from relative cycles defined on a finite cover of the
base B.

4.2. Mumford-Tate groups

This is a very important notion in Hodge theory, although this may seem
quite abstract. This plays a crucial role in the study of Hodge loci for abelian
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varieties. Let HQ, H
p,q, p+ q = r be a rational Hodge structure of weight r. The

Hodge decomposition satisfying Hodge symmetry provides an algebraic action of
the group C∗, seen as real algebraic group, on HR, given by:

µ(z) · hp,q := zpzqhp,q, ∀hp,q ∈ Hp,q.(4.2)

Definition 4.3. The Mumford-Tate group MT (H) of the considered Hodge struc-
ture H is the smallest algebraic subgroup of AutHR which is defined over Q and
contains Imµ. The special Mumford-Tate group SMT (H) of H is the smallest
algebraic subgroup of AutHR which is defined over Q and contains µ(S1).

Remark 4.4. Being defined over Q, the Mumford-Tate groups could be defined
as well as subgroups of AutHQ.

Remark 4.5. The interest of the special Mumford-Tate group is that it leaves
pointwise invariant Hodge classes (eg assuming r = 2k). Indeed, S1 = {z ∈
C∗, zz = 1} so that µ(S1) acts by Id on Hk,k.

Remark 4.5 quickly leads in fact to the following characterization of the
Mumford-Tate group:

Theorem 4.6. If H is a polarized Hodge structure, the Mumford-Tate group of
H is the subgroup of AutHQ fixing up to a scalar finitely many Hodge classes in
(even weights) tensor powers H⊗I of H (where the index set I may involve positive
and negative exponents). Similarly, the special Mumford-Tate group of H is the
subgroup of AutHQ leaving invariant finitely many Hodge classes in (even weights)
tensor powers of H.

Proof. This is a consequence of Theorem 4.7 below. Having this, the general
theory of reductive groups tells that there are finitely many tensor powers H⊗IQ
(where the index set I involves positive and negative numbers, with the convention
that H⊗−1 = H∗) of HQ and elements hI of H⊗IQ such that our special Mumford-
Tate group is the subgroup of AutHQ leaving hI invariant up to a scalar. To
conclude we now observe that a rational element hI as above is invariant under
µ(S1) up to a scalar if and only if it is Hodge for the Hodge structure on H⊗IQ ,
if and only if it is in fact actually invariant under µ(S1). This immediately gives
both statements.

Theorem 4.7. Mumford-Tate groups of polarized Hodge structures are reductive.

Corollary 4.8. The Mumford-Tate group of Hk(X,Q), where X is a smooth
projective complex variety, is reductive.

Proof. We use for this the Lefschetz decomposition with respect to some
ample divisor class l = c1(L) ∈ H2(X,Q). As it is a decomposition into rational
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Hodge substructures, the definition of MT (Hk(X,Q)) shows that it is the direct
product of the Mumford-Tate groups of each Lefschetz summand. But the in-
tersection form (a, b) =

∫
X
ln−k ∪ a ∪ b, n = dimX, polarizes (up to sign) each

Lefschetz summand by [38, I, 6.3.2].

Proof of Theorem 4.7. We just show the result for the special Mumford-
Tate group SMT (H), where H is polarized. As both differ by a factor Gm, this
is in fact equivalent. We use the following characterization of a reductive complex
algebraic group G: G is reductive, if it admits a real form GR for which G(R) is
compact. The trick is that we will not use for this the natural real structure given
by the given intersection pairing on H and its associated Hermitian intersection
pairing, but a twisted form of it. Namely, in G = SMT (H), we have the element
C = µ(ι), where µ is defined in (4.2). As C2 is a homothety, conjugation by C is
an involution acting on G. We take the involution g 7→ C−1gC as the one defining
a real structure on G. Then real elements in G for this real structure are those
which satisfy

g = C−1gC.(4.3)

But elements of G leave invariant the rational intersection pairing <,> on H given
by the polarization, (because µ(S1) does,) and thus elements of G(R) also leave
invariant the Hermitian intersection pairing ( , )C on HC given by

(a, b)C :=< Ca, b >

because they satisfy equality (4.3). By definition of a polarization (cf. [38, I,
7.1.2]), this pairing is definite. Hence the real part of GC for this real structure is
compact.

We have the following corollary:

Corollary 4.9. Let π : X → B be a smooth projective morphism. The spe-
cial Mumford-Tate group of the Hodge structure on Hr(Xt,Q) at a very general
point contains a finite index subgroup of the monodromy group Im (π1(B, t) →
AutHr(Xt,Q)).

Proof. Indeed, we know by Theorem 4.6 that the special Mumford-Tate
group is characterized as leaving invariant a finite number of Hodge classes hI
in some tensor powers of Hr(Xt,Q). But t being very general, by Theorem 4.1,
the monodromy preserves the spaces of Hodge classes on each of these tensor
powers and acts via a finite group on them. Thus a finite index subgroup of the
monodromy group leaves invariant all the hI ’s and thus is contained in the special
Mumford-Tate group.
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Theorem 4.6 tells that Hodge loci for a given variation of Hodge structure
have a natural refinement, namely loci with jumping Mumford-Tate groups (which
exist as well for variations of Hodge structure of odd weight). These loci are then
obtained as the union of Hodge loci for all tensor powers of the considered variation
of Hodge structure. A priori, there could be no bound for the multidegree of the
considered tensor powers. The following result due to Deligne shows in particular
that there is such a bound, for a given variation of Hodge structure:

Theorem 4.10. (Deligne, [11]) Given a smooth projective family π : X → B,
and an integer r, there are only finitely many conjugacy classes of subgroups of
AutHr(Xt,C) arising as Mumford-Tate groups of Hodge structures on Hr(Xt′ ,Q),
t′ ∈ B.

Proof. Notice that, as one can see by considering the case of C∗ actions
on a given complex vector space, it is not true that there are in general only
finitely many conjugacy classes of reductive subgroups of a given reductive group.
However, Mumford-Tate groups are special, due to their definition starting from
a given representation

µt′ : C∗ → AutHR

of the real algebraic group C∗. Here, H ∼= Hr(Xt′ ,Q) for any t′ ∈ B, the isomor-
phism depending on a choice of path from t to t′, so that µt′ is defined only up to
conjugacy by monodromy. The special Mumford-Tate group MT (t′) of the Hodge
structure on Hr(Xt′ ,Q) is defined as the smallest algebraic subgroup of AutH
containing µt′(S1). Instead of µt′ , consider the algebraic action of the complex
algebraic group C∗ on HC given by

µ′t′(z) · hp,q = zp−q, ∀hp,q ∈ Hp,q(Xt′) ⊂ Hr(Xt′ ,C).

Then because the two actions coincide on S1 ⊂ C∗, SMT (t′) is also the small-
est algebraic subgroup of AutH containing Imµ′t′ . Another convenient way to
describe it is then as follows: Any field automorphism τ ∈ AutC acts on HC,
and thus on the 1-parameter subgroups of AutHC. As SMT (t′) is defined over
Q and contains Imµ′t′ , it has to contain Imµ′t′,τ as well. Consider the subgroup
G′ ⊂ AutHC generated by the 1-parameter subgroups Imµ′t′,τ , for τ ∈ AutC.
Then G′ is defined over Q and contains Imµ′t′ , hence must contain SMT (t′). It
has thus to be equal to SMT (t′) as we already noticed that it is contained in
SMT (t′).

Finally, notice that the 1-parameter subgroups Imµ′t′,τ belong to a finite
set, independent of t′, of conjugacy classes of 1-parameter subgroups of AutHC.
Indeed, only the characters z 7→ zp−q, p + q = r, p ≥ 0, q ≥ 0 can appear non
trivially.

The result is then a consequence of the following more general result concern-
ing finiteness of conjugacy classes of reductive subgroups G′ ⊂ G over C satisfying
an extra condition as in next Proposition.
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Proposition 4.11. Fix a maximal torus T ⊂ G and choose a finite set M of
1-parameter subgroups µ : C∗ → T . Then there are only finitely many reductive
subgroups G′ of G which are generated by images of morphisms ν : C∗ → G

conjugate under G to some µ ∈M .

4.3. Noether-Lefschetz type theorems

Noether-Lefschetz type theorems concern particular variations of Hodge struc-
tures obtained as follows: Start from a smooth projective variety Y of dimension
n + 1, n = 2k, and choose a sufficiently ample line bundle H on Y (the result
will depend on making precise “sufficiently ample”). Consider the linear system
|H| and let B ⊂ |H| be the Zariski open set parameterizing smooth hypersurfaces
Xf = {f = 0} ⊂ Y . Let

X := {(y, f), y ∈ Xf , f ∈ B},

with projection π = pr2 : X → B. For t ∈ B, let jt : Xt ↪→ Y be the inclu-
sion. Lefschetz theorem on hyperplane sections tells that the restriction maps
j∗t : Hi(Y,Z) → Hi(Xt,Z) are isomorphisms for i ≤ n − 1 and are injective with
torsion free cokernel for i = n. These maps are morphisms of Hodge structures. We
will be interested in the variation of Hodge structure on the cohomology groups
Hn(Xt,Q)van, t ∈ B, which are defined as the cokernel of the restriction map
above, or as the orthogonal complement of its image with respect to the inter-
section pairing on Xt. The classical Noether-Lefschetz theorem concerns the case
where Y = P3.

Theorem 4.12. A very general surface S of degree d ≥ 4 in P3 has no non zero
vanishing Hodge class. Hence its Picard group is cyclic, generated by c1(OS(1)).

In general, let us assume n = 2k. The same proof will give as well:

Theorem 4.13. Assume H is sufficiently ample. Then for a very general t ∈ B,
there are no non zero Hodge classes in H2k(Xt,Q)van.

Sketch of proof. There are two types of proofs for such statements. The
first type is a direct extension of the Lefschetz proof of Theorem 4.12. The only
ampleness condition on H is then the following:

a) H is very ample and there should be at least one hypersurface Xt ⊂ Y ,
t ∈ |H|, with only ordinary double points as singularities.

b) The Hodge number hk−1,k+1 for the Hodge structure on H2k(Xt,Q)van is
non zero.

That b) is satisfied for H ample enough follows from Griffiths’ description of
the Hodge structure on the vanishing cohomology of an hypersurface (see [17] and
[38, II, 6.1.2]). In fact, an assumption weaker than b) is necessary for the Lefschetz
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proof, but b) is needed for the infinitesimal proof and also for Terasoma’s Theorem
in next section.

The second proof is infinitesimal and needs a Macaulay type statement for
the infinitesimal variation of Hodge structure on H2k(Xt,Q)van (see [38, II, 6.2.2]).
We will focus on the first proof.

The argument is then as follows: as t is very general, we know by Theo-
rem 4.1 that the monodromy group Imρ acting on H2k(Xt,Q)van leaves stable
Hdg2k(Xt)van. Assumption b) makes sure that Hdg2k(Xt)van ⊂ H2k(Xt,Q)van is
a proper subspace. Then we conclude using the fact that under assumption a), the
monodromy action on H2k(Xt,Q)van is irreducible (cf. [38, II, 3.2.3]). This fol-
lows from Picard-Lefschetz formula and from the irreducibility of the discriminant
hypersurface which makes all the vanishing cycles conjugate (up to sign) under
monodromy (cf. [38, II, 3.2.2]). Thus the proper globally invariant subspace

Hdg2k(Xt)van ⊂ H2k(Xt)van

has to be 0.

Remark 4.14. We have not been completely careful in stating Theorem 4.13.
Indeed, it is clear that the result holds away from the Hodge locus, and we still do
not know that the Hodge locus is a countable union of closed algebraic subsets.
This will be proved later on.

4.4. Monodromy versus Galois; Terasoma theorem

We consider the same situation as before, but assume (Y,H) is defined over
a number field K. There are then only countably many points of B defined over
Q, and Theorem 4.13 a priori does not apply to them, since it concerns very
general points in B. In this section, we would like to explain a beautiful result
due Terasoma [33], which proves, unconditionally for n = 2 and under some extra
hypothesis which we explain below and would be implied by the Hodge conjecture
for the considered hypersurfaces, the following result:

Theorem 4.15. (Terasoma) Assume that for smooth hypersurfaces defined over
a number field in Y , Hodge classes are Hodge-Tate classes. Under the same as-
sumption as in Theorem 4.13, there exists a point (in fact many) t ∈ B(Q) such
that the conclusion of Theorem 4.13 holds for Xt.

Before sketching the proof, let us explain the assumption. In this section, to
avoid confusion, we will denote for any complex point t ∈ B the Betti cohomology
of the corresponding fiber Xt by Hi

B(Xt). Assume t is defined over a subfield
K(t) ⊂ C, we will also have the étale cohomology groups Hi

et(Xt) with value in
adequate coefficients, where Xt is the corresponding closed geometric fiber defined
over K(t) ⊂ C.
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If X is a smooth projective variety over a finitely generated subfield K of
C (say a number field), a degree 2k Tate class on X is a cohomology class in
H2k
et (XK ,Ql(k)) whose orbit under Gal(K/K) is finite. Given a codimension-

k cycle Z on XK , its étale cohomology class is a Tate class, because Z can be
defined over a finite extension of K. The Tate conjecture asserts the converse,
that Tate classes are classes of algebraic cycles.

A degree 2k Hodge-Tate class is a Hodge class whose image under the com-
parison isomorphism H2k

B (X,Q)⊗Ql
∼= H2k

et (XK ,Ql(k)) is a Tate class.
If the Hodge conjecture is true, then Hodge classes are Hodge-Tate. In par-

ticular, if k = 1, where the Hodge conjecture is known as the Lefschetz theorem
on (1, 1)-classes, Hodge classes are Hodge-Tate.

Theorem 4.15 is an immediate consequence of the fact that Hodge classes on
hypersurfaces Xt ⊂ Y , t ∈ B(Q) are supposed to be Tate, and of the following
theorem :

Theorem 4.16. With the same assumptions as in Theorem 4.13, for many points
t ∈ B(Q), any Hodge-Tate class in H2k

et (Xb,Ql(k)) comes from the image of the
restriction map j∗

t
in étale cohomology.

Proof. The proof is obtained by combining a similar statement with Galois
group replaced by monodromy group (Lemma 4.17) and a comparison lemma
between Galois groups of special fiber and l-adic monodromy groups (Lemma
4.18).

First of all, the profinite completion of the fundamental group ̂π1(B, b) acts on
H2k
B (Xb,Ql)van, this action, which we denote by ρl, being induced by the classical

monodromy action.

Lemma 4.17. Under the same assumptions as in Theorem 4.13, and assuming
both Hodge numbers hk,k and hk−1,k+1 for the variation of Hodge structure on
H2k
B (Xt,Q)van are non zero, the l-adic monodromy group

Im ( ̂π1(B, b)→ AutH2k
B (Xb,Ql)van)

acts with no non zero finit orbit.

Proof. It clearly suffices to prove the same result for the usual monodromy
group

Imπ1(Ban, b)→ H2k(X anb ,Q)van.

Observe now that the set of classes α ∈ H2k(X anb ,Q)van with finite orbit under
π1(Ban, b) is a Q-vector subspace of H2k(X anb ,Q)van stable under π1(Ban, b). By
irreducibility of the monodromy action, one concludes that if there is a non zero fi-
nite orbit, the monodromy action is finite onH2k(X anb ,Q)van. But the monodromy
group is generated by Picard-Lefschetz reflections with respect to (integral) van-
ishing classes, and furthermore it acts irreducibly on the set of vanishing classes,
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which generate H2k
B (Xb,Q)van (cf. [38, II, 2.3.3]). One uses then a classical result

in group theory, which says that this is possible only when the intersection pairing
on the lattice H2k

B (Xb,Z)van is definite.
By the second Hodge-Riemann bilinear relations, using the fact thatH2k

B (Xb,Q)van
is contained in primitive cohomology of Xb, the intersection pairing onH2k

B (Xb,Q)van
cannot be of a definite sign if both Hodge numbers hk,k and hk−1,k+1 for the Hodge
structure on H2k

B (Xb,Q)van are non zero. This leads to a contradiction which con-
cludes the proof.

The next step is to pass from the l-adic monodromy to the Galois group
Gal (K(b)/K(b)), where b is supposed to be defined over a finite extension of K.

To do this, we first go to the generic point and introduce much bigger groups:
- The Galois group Gal (K(B)/K(B)) of the generic geometric point acts nat-

urally on the étale cohomology group H2k
et (Xη,Ql(k))van of the geometric generic

fiber of X → B, where the subscript “van” means as before that we consider the
cokernel of the natural map

j∗η : H2k
et (Y ×K SpecK(B),Ql(k))→ H2k

et (Xη,Ql(k)).

.
- On the other hand, Gal (K(B)/K(B)) contains the subgroupGal (Q(B)/Q(B))

defined as the kernel of the natural map Gal (K(B)/K(B)) → Gal (Q/K). The
group Gal (Q(B)/Q(B)), which can be understood as the group of birational deck
transformations of the projective limit of ramified covers of B, admits now as a

quotient a group conjugate to ̂π1(B, b), acting on the projective limit of unram-
ified covers of B. The action of Gal (Q(B)/Q(B)) on H2k

et (Xη,Ql(k))van factors
through this quotient and induces the l-adic monodromy representation on

H2k
B (Xb,Ql)van = H2k

et (Xb,Ql(k))

for an adequately chosen isomorphism

H2k
et (Xb,Ql(k))van ∼= H2k

et (Xη,Ql(k))van.

We conclude from this that the image of the Galois representation ofGal (K(B)/K(B))
on H2k

et (Xη,Ql(k))van contains (via the isomorphisms above) Imρl and in partic-
ular still satisfies the conclusion of Lemma 4.17.

Finally, note that for any point t ∈ B(Q), there is also the groupGal (K(t)/K(t))
acting on H2k

et (Xt,Ql(k)). The last step which concludes the proof of Theorem 4.16
is Lemma 4.18 due to Terasoma, which compares the action of the Galois group
of the generic geometric point on étale cohomology of the geometric generic fiber
of X → B and the action of the Galois group of the closed geometric point t on
étale cohomology of the closed geometric fiber Xt.



Claire Voisin 21

Lemma 4.18. (see [33]) For many points t ∈ B(Q), the image of the Galois
representation

Gal(Q/K(t))→ AutH2k
et (Xt,Ql(k))

contains the image of the Galois representation Gal(K(B)/K(B))→ AutH2k
et (Xη̄,Ql(k)).

Remark 4.19. Terasoma’s result concerns the particular situation of a family of
hypersurfaces or complete intersections in a given variety. Using the Deligne global
invariant cycles theorem 5.8, one can prove a similar Noether-Lefschetz type result
for points defined over a small field in a much more general situation. We refer to
[1], section 5, for this.

Remark 4.20. In any case, such statements remain subject to the assumption
that Hodge classes in fibers should be Hodge-Tate. This is true in degree 2 (by
the Lefschetz theorem on (1, 1)-classes, and the cases considered by Terasoma
are Fano fourfolds, for which the Hodge conjecture is known to hold (cf. [4]).
André considers more general Hodge classes for which the Hodge conjecture is not
necessarily known, but which are clearly Hodge-Tate (eg those classes appearing
in the standard conjectures, cf. [21]).

To conclude this section, I mention the recent work of Maulik and Poonen
[24], which provides a new approach to the Noether-Lefschetz locus (for general
families X → B), via crystalline cohomology. They are then able to strengthen
Terasoma’s type theorems by proving that the Noether-Lefschetz locus is nowhere
p-adically dense, under adequate assumptions on p.

5. Absolute Hodge classes

5.1. Algebraic cycle class and absolute Hodge classes

Let X be a smooth projective variety defined over K and Z ⊂ X be a local
complete intersection closed algebraic subset of X, also defined over K. Following
Bloch [3], we construct a cycle class

[Z]alg ∈ H2k
dR(X/K)

which by construction lies in fact in

F kH2k
dR(X/K) := Im (H2k(X,Ω•≥kX/K)→ H2k(X,Ω•X/K)).

Being a local complete intersection, Z can be locally in the Zariski topology
defined by k equations f1, . . . , fk. On a Zariski open set U where these k equations
define U ∩ Z, we have a covering of U by k open sets

Ui := {x ∈ U, fi(x) 6= 0}.
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On the intersection U1 ∩ . . . ∩ Uk, the closed degree k algebraic differential form
df1
f1
∧ . . . ∧ dfk

fk
has no poles hence defines a section of ΩkU/K which is in fact a

closed form. We can see it as a Čech cocycle on U relative to the open cover
above, with value in Ωk,cU/K , where the superscript c stands for “closed”. We thus

get an element e of Hk−1(U,Ωk,cU/K). Observe now that there is an obvious map of
complexes

Ωk,cX/K → Ω•≥kX/K ,

where the left hand side should be put in degree k. Applying this morphism to e,
we thus get a class in

H2k−1(U,Ω•≥kU/K) ∼= H2k
Z∩U (U,Ω•≥kU/K).

This class can be shown to be independent of the choice of equations fi. These
locally defined classes thus provide a global section of the sheaf of hypercohomology
with support H2k

Z (Ω•≥kX/K). Examining the local to global spectral sequence for

H2k
Z (X,Ω•≥kX/K), one finds now that it is very degenerate, so that

H0(Z,H2k
Z (Ω•≥kX/K)) = H2k

Z (X,Ω•≥kX/K)

which provides us with a class in H2k
Z (X,Ω•≥kX/K). Using the natural map

H2k
Z (X,Ω•≥kX/K)→ H2k(X,Ω•≥kX/K),

we finally get the desired cycle class [Z]alg.
Let now X be a smooth projective variety defined over C and Z ⊂ X be as

above. Recall from section 2.3 (applied to the case where B is a point) that there
is a natural isomorphism:

H2k(X,Ω•≥kX/C) ∼= F kH2k
B (X,C),(5.1)

where the subscript B on the right denotes Betti cohomology of the corresponding
complex manifold. The following comparison result can be verified to hold as a
consequence of Cauchy formula or rather multiple residue formula:

Theorem 5.1. Via the isomorphism (5.1) in degree 2k, one has

[Z]alg = (2ιπ)k[Z],

where [Z] ∈ Hdg2k(X) is the topological or Betti cycle class of Z.

This leads us to the definition of absolute cycle classes (in the de Rham
sense), as introduced by Deligne [10]. Let X ⊂ PN be a smooth algebraic variety,
defined by equations Pi = 0, i ∈ I. Let τ ∈ AutC be any field automorphism.
Let Xτ ⊂ PN be the smooth complex algebraic variety defined by the equations
P τi = 0, where P τi is deduced from Pi by letting τ act on the coefficients of Pi.
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It follows from the definition of algebraic de Rham cohomology that there is
a natural τ -linear isomorphism, preserving the Hodge filtrations on both sides:

H2k(X,Ω•X/C) ∼= H2k(Xτ ,Ω•Xτ/C).(5.2)

Let now α ∈ Hdg2k(X) and consider

α′ := (2ιπ)kα ∈ F kH2k
B (X,C) ∼= H2k(X,Ω•≥kX/C).

Then by the isomorphism above, we get a class

α′τ ∈ H2k(Xτ ,Ω
•≥k
Xτ/C) ∼= F kH2k

B (Xτ ,C).

Definition 5.2. The Hodge class α is said to be absolute Hodge if for any τ , the
class α′τ is of the form (2ιπ)kβ where β ∈ H2k

B (Xτ ,Q).

Theorem 5.1 immediately implies:

Corollary 5.3. Cycle classes [Z] are absolute Hodge. Hence, if the Hodge conjec-
ture is true, Hodge classes have to be absolute Hodge.

Proof. Let α = [Z] ∈ Hdg2k(X). From the explicit description of the
algebraic cycle class [Z]alg = (2ιπ)kα, we get that ατ = [Zτ ]alg, where Zτ ⊂ Xτ

is the cycle obtained by applying τ to the defining equations of the components
of Z. But we also have [Zτ ]alg = (2ιπ)k[Zτ ], and the class [Zτ ] is a Betti rational
cohomology class on the complex variety Xτ .

5.2. Hodge loci and absolute Hodge classes

We want to spell-out in this section a geometric interpretation of the notion
of absolute Hodge class, as being a property of the associated component of the
locus of Hodge classes. We follow here [36].

Let X ⊂ PN be a smooth complex projective manifold. Using the Hilbert
scheme of PN , we can construct a (non-necessarily geometrically irreducible) smooth
quasi-projective variety B defined over Q, and a smooth projective morphism
π : X → B defined over Q, such that X identifies to a fiber Xt for some complex
point t ∈ B(C).

Over B, we have the algebraic vector bundle F kH2k, which is also defined
over Q (see section 2.3).

The locus of degree 2k Hodge classes for the family above is naturally a subset
of the set of complex points of the algebraic variety F kH2k. We remark that it
follows from the definition that for τ ∈ AutC and for α ∈ F kH2k

B (Xt,C) ∼= F kH2k
t ,

the class ατ ∈ F kH2kB(Xt,τ ,C) = F kH2k
τ(t) is simply obtained by letting τ act on

the complex points of the variety F kH2k defined over Q.
We introduce the following terminology to make more digest the rest of this

section : the twisted locus of Hodge classes is the image of the locus of Hodge
classes by the multiplication map α 7→ (2ιπ)kα. It thus consists of pairs (t, αt)
with αt ∈ (2ιπ)kH2k

B (Xt,Q) ∩ F kH2k
B (Xt,C). We have the following:
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Proposition 5.4. [36] To say that Hodge classes on fibers of the family π : X → B

are absolute Hodge is equivalent to saying that the twisted locus of Hodge classes
is a countable union of closed algebraic subsets of F kH2k which are defined over
Q.

Proof. Indeed, the definition of absolute Hodge and the remark above tell
that the Hodge classes for the family π : X → B are absolute Hodge if and only
if the twisted locus of Hodge classes is invariant under the action of AutC. The
result follows then from the local descriptions in section 3.1 and from the following:

Claim. Let Z be a subset of (the complex points of) a complex algebraic
variety defined over Q, which is locally in the classical topology a countable union
of closed analytic subsets. Then Z is invariant under the action of AutC if and
only if it is a countable union of closed algebraic subsets defined over Q.

In one direction, this is obvious. To prove that the condition is necessary,
observe that given a complex point x in an algebraic variety Y defined over Q, its
orbit underAutC is the dense subset of the Q-Zariski closure of {x} consisting of all
complex points in this closure not satisfying any further equation with coefficients
in a number field. In other words, this is the complementary set, in this Q-Zariski
closure, of a countable union of proper closed algebraic subsets. We now assume
our Z is invariant under AutC. Let z ∈ Z. We know that a subset of the Q-
Zariski closure of {z}, which is the complementary set of a countable union of
proper closed algebraic subsets, is contained in Z. On the other hand, Z is locally
a countable union of closed analytic subsets, and it immediately follows from a
Baire argument that the full Q-Zariski closure of {z} is contained in Z. For each
local analytic component Zi,loc of Z, it is obvious that we can choose a point zi,loc
in sufficiently general position so that the Q-Zariski closure of {z} contains Zi,loc.
As Z can be written as a countable union of Zi,loc, we conclude that it is also a
countable union of closed algebraic subsets defined over Q.

Thus the claim is proved and also the proposition.

The algebraicity theorem 3.8 can then be seen as proving the geometric part
of the prediction that Hodge classes are absolute Hodge, which is a strong evidence
for the Hodge conjecture (cf. Corollary 5.3).

If we use the algebraicity theorem, we can also make proposition 5.4 more
precise:

Proposition 5.5. (see [36]) A degree 2k Hodge class α on X is absolute Hodge
if and only if the connected component Zα of the twisted locus of Hodge classes
passing through (2ιπ)kα is a closed algebraic subset of F kH2k which is defined over
a number field, and its Gal (Q/Q) transforms are still contained in the twisted locus
of Hodge classes.
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Proof. We first establish the following lemma.

Lemma 5.6. (cf. “Principle B” in [10]) Let π : X → B be a smooth projective
morphism, with B quasiprojective and connected. Let α̃ be a global section of
R2kπ∗Q which is everywhere in F kH2k. If the Hodge class α̃0 ∈ Hdg2k(X0) is
absolute Hodge at some point 0 ∈ B, then the Hodge class α̃t ∈ Hdg2k(Xt) is
absolute Hodge at every point t ∈ B.

Proof. We will heavily use here the construction of the Hodge bundles
F kH2k as algebraic bundles and the algebraic construction of the Gauss-Manin
connection made in section 2.3. In fact, we also need the global invariant theorem
5.8 stated in next section to guarantee that our section α̃ is also a flat algebraic
section of the bundle F kH2k ⊂ H2k.

Let now τ ∈ AutC. We want to prove that for any t ∈ B, the class
1

(2ιπ)k
((2ιπ)kαt)τ belongs to H2k

B (Xt,τ ,Q).
Consider the family πτ : Xτ → Bτ . The flat algebraic section (2ιπ)kα̃ ∈

F kH2k provides a flat algebraic section β := ((2ιπ)kα̃)τ ∈ F kH2k
τ . Because α̃0 is

absolute Hodge, the class 1
(2ιπ)k

βτ(0) is a rational cohomology class on X0,τ . But
by flatness of β and connexity of B, it follows as well that the class 1

(2ιπ)k
βτ(t) =

1
(2ιπ)k

((2ιπ)kαt)τ is a rational Betti cohomology class on Xt,τ .

It then follows, by algebraicity and by considering the base change Zα → B,
that if α is absolute Hodge, so is any class α′ ∈ Zα. On the other hand, we have
seen that this implies that for every α′ ∈ Zα, the Q-Zariski closure of (2ιπ)kα′ is
contained in the twisted locus of Hodge classes. Taking a point α′ in sufficiently
general position in Zα allows to conclude as in the previous proof that the Q-
Zariski closure of (2ιπ)kZα is contained in the twisted locus of Hodge classes. As
Zα is the connected component of this locus passing through (2ιπ)kα, it follows
easily that Zα is in fact defined over Q and its Gal (Q/Q) transforms are still
contained in the twisted locus of Hodge classes.

5.3. The global invariant cycles theorem and its applications

In this section, we want to describe the consequences of a property which is
much weaker than the property of being absolute. Let X be a smooth complex
projective variety, and let α be a degree 2k Hodge class on X. As in the previous
section, introduce a smooth projective family π : X → B over a quasiprojective
family B, everything being defined over Q, and such that X is one fiber Xt for
some t ∈ B(C). We have the connected component Zα of the locus of Hodge
classes, which is algebraic in F kH2k by Theorem 3.8. Let Bα := p(Zα), where
p : F kH2k → B is the structural projection. Bα is the Hodge locus of α. It is



26 Hodge loci

closed algebraic by Theorem 3.8 completed with the fact that the map Zα → B

is finite (see section 7). The property to be considered is whether Bα is defined
over a number field. It is satisfied if α is absolute Hodge by Proposition 5.5. Its
interest lies in the following:

Proposition 5.7. [36] If Bα is defined over a number field, the Hodge conjecture
for (X,α) can be deduced from the Hodge conjecture for Hodge classes on varieties
defined over a number field.

For the proof, we will need the “global invariant cycle theorem” of Deligne
(or “Théorème de la partie fixe”, cf. [13]) and some precisions of it.

Let Y be a smooth complex projective variety, and X ⊂ Y a Zariski open
set. Let π : X → B be a smooth proper algebraic morphism, where B is quasi-
projective. Thus the fibers of π are smooth complex projective varieties and there
is a monodromy action

ρ : π1(B, 0)→ AutH l(X0,Q), 0 ∈ B.

Theorem 5.8. The space of invariant classes

H l(X0,Q)ρ := {α ∈ H l(X0,Q), ρ(γ)(α) = α, ∀γ ∈ π1(B, 0)}

is equal to the image of the restriction map (which is a morphism of Hodge struc-
tures) :

i∗0 : H l(Y,Q)→ H l(X0,Q),

where i0 is the inclusion of X0 in Y . In particular it is a Hodge substructure of
H l(X0,Q).

We can make this result more precise by combining it with the semi-simplicity
of the category of polarized rational Hodge structures. In fact, we have the fol-
lowing:

Theorem 5.9. Under the same assumptions as in Theorem 5.8, for any mon-
odromy invariant rational Hodge class α ∈ Hdg2k(X0)ρ, there exists a Hodge class
α̃ ∈ Hdg2k(Y ) such that i∗0α̃ = α.

Proof. Indeed, choose an ample line bundle H on Y . It allows to construct
a Lefschetz decomposition on H2k(Y,Q) which is a decomposition into Hodge
substructures. Furthermore the intersection pairing (a, b)H :=

∫
Y
hN−2k ∪ a ∪ b

on H2k(Y,Q) where N = dimY and h = c1(H), polarizes up to a sign each of
the Lefschetz summands, which are pairwise orthogonal for ( , )H . Changing the
sign of this pairing where needed endows the Hodge structure H2k(Y,Q) with a
polarization <,>H (cf. [38, I, 7.1.2]). But for such a polarization, the intersection
form < , >H remains non degenerate on any Hodge substructure. Apply this to
the Hodge substructure Ker i∗0. We conclude that

H2k(Y,Q) = Ker i∗0 ⊕ (Ker i∗0)⊥<,>H ,
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where the summand (Ker i∗0)⊥<,>H is also a Hodge substructure of H2k(Y,Q),
isomorphic (as a Hodge structure) via i∗0 to H2k(X0,Q)ρ by Theorem 5.8. But
then, any invariant Hodge class on X0 has a unique lift in (Ker i∗0)⊥<,>H which is
also a Hodge class.

Proof of Proposition 5.7. Bα is defined over Q, and one easily shows,
using the flatness of the section α̃ introduced below, that Zα is an étale cover
of Bα over the normal locus of Bα. It thus follows that a desingularization T of
Zα can be defined over Q, and the morphism T → Bα too. Consider the variety
obtained by base change : π : XT → T . This variety is smooth, defined over Q.
Choose a smooth projective compactification Y of XT defined over Q.

Observe now that the class α is monodromy invariant on the fibers of XT → T .
Indeed, by definition, there is a morphism T → Zα and Zα ⊂ F kH2k. This
provides on Zα, hence on T , a section α̃ of the bundle F kH2k. As the class α̃t is
a rational cohomology class everywhere along Zα, it follows that α̃ is in fact flat.
Hence α̃ is a flat section of R2kπT∗Q on T extending α.

We can thus apply Theorem 5.9 to α, which provides a Hodge class β on Y ,
restricting to α on X. If the Hodge conjecture is true for Hodge classes on varieties
defined over Q, it is true for β on Y , hence also for α on X.

6. Deligne’s theorem for abelian varieties

6.1. Deligne’s theorem

The main result discussed in this section is the following theorem due to
Deligne [10]:

Theorem 6.1. Hodge classes on abelian varieties are absolute Hodge.

Let us first outline the strategy of the proof. A crucial role is played by
Lemma 5.6. The first step (see subsection 6.2) below is the study of actions of CM
fields on abelian varieties by isogenies. Under a certain sign condition, such an
action forces them to carry Hodge classes of Weil type. The first step is to prove
that these Hodge classes are absolute Hodge.

The second step extends this result to prove that all Hodge classes on CM
abelian varieties are absolute Hodge. Technically, this is the most difficult part of
the proof, although not the most conceptual one. We will not explain it here.

The last step (see 6.3) is the following : One deduces that Hodge classes
on abelian varieties are absolute Hodge by proving that for any pair consisting
of an abelian variety and a Hodge class on it, the Hodge locus associated to this
Hodge class contains the isogeny class of a CM abelian variety. The previous step
combined with Lemma 5.6 concludes the proof.



28 Hodge loci

6.2. CM abelian varieties and Weil Hodge classes

Definition 6.2. A CM field is a number field E which is a quadratic extension
of a totally real field F satisfying the following property: the quadratic extension
is of the form y2 = f, f ∈ F , and under all (by definition real) embeddings of F
into R, f is sent to a negative number.

Definition 6.3. A CM abelian variety is an abelian variety A such that a CM
field E is contained in (EndA)⊗Q and the E-vector space H1(A,Q) has rank 1.
(In particular, 2dimA = deg (E : Q).)

We consider below more generally an abelian variety A such that a CM field
E is contained in (EndA) ⊗ Q and denote d := dimEH

1(A,Q). We will assume
for simplicity that we are in the simplest Weil case, where E = Q[I], I2 = −1, so
that in particular d = dimA. We want to show that under a certain sign condition
(implying in particular that d = 2n is even), there are interesting Hodge classes
(the Weil classes) in Hd(A,Q).

We start with a Z[I]-action on Γ := Z4n, where I2 = −1, which makes

ΓQ := Γ⊗Q

into a E-vector space, where E is the quadratic field Q[I].
Let

ΓC = Γ⊗ C = C2n
i ⊕ C2n

−i

be the associated decomposition into eigenspaces for I. A 2n-dimensional complex
torus X with underlying lattice Γ and inheriting the I-action is determined by a
2n dimensional complex subspace W of ΓC, which has to be stable under I, hence
has to be the direct sum

W = Wi ⊕W−i
of its intersections with C2n

i and C2n
−i. It has furthermore to satisfy the condition

that

W ∩ ΓR = {0}.(6.1)

Given W , X is given by the formula X = ΓC/(W ⊕ Γ).
We will choose W so that

dimWi = dimW−i = n.(6.2)

Then W , hence X, is determined by the choice of the n-dimensional subspaces

Wi ⊂ C2n
i , W−i ⊂ C2n

−i,

which have to be general enough so that condition (6.1) is satisfied.
We have isomorphisms

H2n(X,Q) ∼= H2n(X,Q) ∼=
2n∧

ΓQ.(6.3)
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Consider the subspace
2n∧
E

ΓQ ⊂
2n∧

ΓQ.

Since ΓQ is a 2n-dimensional E-vector space,
∧2n
E ΓQ is a one dimensional E-vector

space, and its image under this inclusion is thus a 2 dimensional Q-vector space.

Claim. Under the assumption (6.2),
∧2n
E ΓQ is made of Hodge classes, that

is, is contained in the subspace Hn,n(X) of the Hodge decomposition.

Notice that under the isomorphisms (6.3), tensored by C, Hn,n(X) identifies
with the image of

∧n
W ⊗

∧n
W in

∧2n ΓC. To prove the claim, note that we have
the decomposition

ΓE := ΓQ ⊗ E = ΓE,i ⊕ ΓE,−i
into eigenspaces for the I action (where we see E as contained in C via I 7→ i).
Then

∧2n
E ΓQ ⊂

∧2n ΓQ is defined as the image of
∧2n
E ΓE,i ⊂

∧2n
E ΓK via the trace

map
2n∧
E

ΓE =
2n∧
Q

ΓQ ⊗ E →
2n∧

ΓQ.

We have now the inclusion

ΓE ⊂ ΓC,

with ΓC = ΓE ⊗Q R, (because C ∼= E ⊗Q R,) and the equality

ΓE,i = ΓE ∩ C2n
i .

The space ΓE,i is a 2n dimensional E-vector space which generates over R the
space C2n

i . It follows that the image of
∧2n
E ΓE,i in

∧2n ΓC generates over R the
complex line

∧2n C2n
i .

But we know that C2n
i is the direct sum of the two spaces Wi and W−i which

are n-dimensional. Hence
2n∧

C2n
i =

n∧
Wi ⊗

n∧
W−i

is contained in
∧n

W ⊗
∧n

W , that is in Hn,n(X).

The main first step in the proof of Theorem 6.1 is the following (or rather its
generalization to any CM field E).

Theorem 6.4. Weil Hodge classes on Weil abelian varieties are absolute Hodge.

Proof. The first step is the following Lemma:

Lemma 6.5. If A = A0 ⊗ Z[I] with the natural action of E, Weil classes on A

are absolute Hodge.
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Proof. Indeed, with the notations above, we have

Γ = Γ0 ⊗ Z[I], rank Γ0 = 2n

and for some W0 ⊂ Γ0,C such that A0 = Γ0,C/(W0 ⊕ Γ0),

W = W0 ⊗Z Z[I].

If we follow the above description of
∧2n
E H1(A,Q), we find it to be equal to∧2n

H1(A0,Q)⊗Q E which is naturally contained in
2n∧

(H1(A0,Q)⊗Q E) =
2n∧
H1(A,Q).

The key point is that the inclusion
2n∧
H1(A0,Q)⊗Q E ↪→

2n∧
H1(A,Q)

is canonically determined by the E-structure of H1(A,Q). Hence, passing to coho-
mology with complex coefficients, this inclusion will be preserved by the transport
map α 7→ ατ , τ ∈ AutC. Furthermore, the space

∧2n
H1(A0,Q) consists of ab-

solute Hodge classes on A0, as it is generated by the class [p] of a point in A0.
This means by definition that passing to cohomology with complex coefficients,
the rational structure of

∧2n
H1(A0,C) given by the generator (2ιπ)n[p] is also

preserved by the transport map α 7→ ατ , τ ∈ AutC. This immediately implies
that

∧2n
E H1(A,Q) ⊂

∧2n
H1(A,Q) consists of absolute Hodge classes.

Remark 6.6. In the case we have been considering, where E is just a quadratic
field, there is in fact a much easier proof. Indeed, by results of Tankeev [32] or Ribet
[27], the Hodge classes on a self-product A0×A0, where A0 is a very general abelian
variety (hence with maximal Mumford-Tate group), are generated by products of
divisors. Thus they are algebraic, hence absolute Hodge by Corollary 5.3. This
argument does not adapt however to the general case where F is different from Q.

The second step is the following, which concludes the proof of Theorem 6.4
by Lemma 5.6:

Proposition 6.7. Under the sign conditions (6.2), there is a connected algebraic
family of deformations of A, where all members admit an action of Z[I], and the
special member is isogenous to A0 ⊗ Z[I].

Proof. We observe that because A is projective, there is a polarization θ

on A which is invariant under I. We use again the previous notations and note
that the Betti class θ ∈ H2(A,C) must be by I-invariance in (C2n

i )∗ ∧ (C2n
−i)
∗.

The subspaces W = Wi ⊕ W−i determines a Hodge structure polarized by θ if
W is Lagrangian for θ and furthermore ιθ(a, b) gives a positive definite Hermitian
pairing on W . The first condition says that Wi and W−i are orthogonal with
respect to θ ∈ (C2n

i )∗ ∧ (C2n
−i)
∗. So by the condition (6.2), W−i must be the
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orthogonal complement of Wi with respect to θ. The second condition defines
then a bounded symmetric Hermitian domain X with two connected components,
contained in Grass(n,C2n

i ), on which AutI (Γ, θ) acts naturally and permutes the
components. This X parameterizes a family of polarized complex tori with action
by Z[I]. Fixing a sufficiently high level structure, we will get the desired family of
abelian varieties by descending this family to the quotient X/AutI (Γ, θ,N). That
the resulting family is algebraic follows from Baily-Borel theory [2]. The quotient
is irreducible by the above description of X and it remains to prove that some
points correspond to abelian varieties isogenous to abelian varieties of the form
A0 ⊗ Z[I]. Such abelian varieties correspond to choices

Wi = W0 ⊗C EC,i, W−i = W0 ⊗C EC,−i

for some isomorphism

ΓQ ∼= Γ0 ⊗Q[I]

and some W0 ⊂ Γ0,C of dimension n. There is an interesting sign subtlety here. In-
deed, it appears that the sign condition (6.2) can be translated as follows: consider
the I-invariant polarization θ ∈

∧2
H1(A,Q). (6.2) implies that the corresponding

Hermitian form φ(a, b) := ιθ(a, b) on the i-eigenspace

H1(A,C)i

of I has signature (n,−n). Noticing that φ induces a E-Hermitian form φE on the
E-vector space H1(A,Q), it follows that there is a totally φE-isotropic E-vector
subspace of rank n of the E-vector space H1(A,Q).

Conversely, start from a Q-vector space V0 of rank 2n with a non degenerate
skew-symmetric bilinear form θ0 ∈

∧2
V ∗0 . Introduce V = V0 ⊗ E endowed with

the obvious I-action. θ0 extends to an I-invariant 2-form θ′ on V in an obvious
way and the E-Hermitian form

ψ(a, b) = Iθ(a, b)

on V0 ⊗ E (where complex conjugation acts on E by I 7→ −I) contains a totally
φ-isotropic E-vector subspace of rank n. One deduces from this that there is an
isomorphism of E-vector spaces

V0 ⊗ E ∼= H1(A,Q)(6.4)

identifying θ′ to θ. Any abelian variety A0×A0 = A0⊗Z[I] with H1(A0,Q) ∼= V0

which is polarized by θ0 is then in the isogeny class of a fiber of the above family.
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6.3. Hodge loci for abelian varieties

We come back to CM abelian varieties. They can be characterized as follows.

Proposition 6.8. A simple abelian variety is CM if and only if the Mumford-Tate
group of the Hodge structure on H1(A,Q) is abelian.

Proof. The simplicity of A implies that (EndA) ⊗ Q is a field. Note
that (EndA) ⊗ Q is also the endomorphism algebra of the Hodge structure on
H1(A,Q), determined by the representation h : C∗ → AutH1(A,R) of the real
algebraic group C∗ considered in (4.2). These endomorphisms clearly are the
endomorphisms of H1(A,Q) commuting with Imh. Recalling that the Mumford-
Tate group MT (A) is the smallest algebraic subgroup of AutH1(A,R) defined
over Q and containing Imh, we also identify (EndA)⊗Q ⊂ EndH1(A,Q) with
the commuting algebra of MT (A). If A is CM, (EndA) ⊗ Q contains a CM
field E such that dimEH

1(A,Q) = 1. As MT (A) commutes with E acting on
H1(A,Q), it is contained in AutEH

1(A,Q) which is commutative. Conversely, if
MT (A) is commutative, the algebra (EndA) ⊗ Q tensored by C is a sum over
characters χ of MT (A), decomposing the MT (A)-module H1(A,C), of the alge-
bras EndH1(A,C)χ. It follows that dimQ (EndA) ⊗ Q ≥ 2dimA, and that in
case of equality EndA is commutative. The strict inequality is not possible in
the simple case by elementary reasons. So we know that E := EndA ⊗ Q is a
commutative field of rank 2dimA and, again by elementary reasons, we must have
dimEH

1(A,Q) = 1. It remains to see that E is a CM field. This is very classical
(see [9]). Let us for completeness recall the argument: A admits a polarization
θ ∈ NS(A) that we will see as a 2-form on H1(A,Q). There is the Rosati invo-
lution iθ acting on EndA associated to θ, given by ψ 7→ θ−1 ◦ tψ ◦ θ, where we
see θ as giving an isogeny between A and its dual Â. We have to show that the
fixed field F ⊂ E of this involution is totally real, and that for any embedding
of F into R, the tensor product E ⊗F R is isomorphic to C. In other words, let
φ ∈ EndA be fixed by the Rosati involution and let λ be an eigenvalue of φ acting
on H1(A,Q). Then we have to show that λ is real. Recall that φ acts on H1(A,C)
preserving H1,0(A). Thus λ is an eigenvalue of φ on either H1,0(A) or H0,1(A).
We may thus assume φ(η) = λη for some η ∈ H1,0(A). Now we have

ιθ(η, φ(η)) = λιθ(η, η)

= ιθ(φ(η), η) = λιθ(η, η).

As we know that θ(η, η) 6= 0, this implies that λ is real.
As λ is real, it also appears as eigenvalue of φ on H0,1(A) and it follows that

elements of F have only multiplicity ≥ 2 eigenvalues, which is not the case for
E because dimEH1(A,Q) = 1. The Rosati involution is thus non trivial on E,
and the same computation as above shows that for the element σ of E such that
iθ(σ) = −σ, the eigenvalues of σ are pure imaginary numbers.



Claire Voisin 33

The final step in the proof of theorem 6.1 is the following proposition, which
reduces the statement to CM abelian varieties, by Lemma 5.6.

Proposition 6.9. Let A be an abelian variety, and α a Hodge class on A. Then
there exists a quasi-projective family B → W of abelian varieties, where W is
irreducible, such that for some point t0 ∈ W , Bt0 ∼= A, B is contained in the
Hodge locus of α and for some point t1 ∈ B, Bt1 is a CM abelian variety.

Sketch of proof. This is an application of proposition 6.8 and in the proof
given in [10], one can avoid the construction of Shimura varieties using the alge-
braicity theorem 7.1. Let G be the Mumford-Tate group of A. Then we know
by Theorem 4.6 that G is the subgroup of Aut (H1(A,Q)) fixing finitely many
Hodge classes pi in tensor products of copies of H1(A,Q) and its dual. The small
deformations At of A for which MT (At) ⊂ MT (A) are thus parameterized by
the intersection of Hodge loci for self-products of A. More precisely, introducing
a polarization θ on A, there is a moduli space Ag,θ,N of abelian varieties with
polarization of the same numerical type as θ, and with level N structure. For
N large enough, there is an universal abelian variety B → Ag,θ,N , and for some
point t0 ∈ Ag,θ,N , Bt0 ∼= A with a certain choice of level N structure. This family
induces as well the families given by relative self-products, and we can take for
variety W the intersection inside Ag,θ,N of the Hodge loci associated to the pi’s,
or rather its connected component passing through t0. This locus is algebraic
by Theorem 7.1 and parameterizes abelian varieties for which the Mumford-Tate
group is contained in G (or rather in some conjugate if one takes monodromy into
account). It remains to prove that there is a point t1 ∈ W for which Bt1 is a CM
abelian variety. For this we use the following alternative description of W as a set,
which does not give its algebraicity: G contains by definition the image ImhA,
where hA : C∗ → AutH1(A,R) is the representation determining the Hodge struc-
ture on H1(A). Then W can also be described as the set of 1-parameter subgroups
h : C∗ → G(R) which are conjugate under G(R) to hA. If for some parameter t1,
ht1 is contained in a subtorus of G, defined over Q, then the Mumford-Tate group
of the abelian variety At1 is contained in T , and thus At1 is CM by proposition
6.8. The conclusion then comes by saying that ImhA is contained in a maximal
subtorus T of G(R) and that there is a maximal subtorus T ′ of G(R), conjugate
to T under G(R) and defined over Q.

7. Deligne-Cattani-Kaplan theorem

Let f : X → B be a smooth projective morphism, where X and B are
quasiprojective. Fix an integer k. Recall from section 2.3 that the Hodge bundle
F kH2k is an algebraic bundle over B. We introduced in section 3.3 the locus of
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Hodge classes of degree 2k for this family. The next two subsections are devoted
to a sketch of the proof of the following major result, already stated in section 3.3.

Theorem 7.1. (see [7]) The connected components of the locus of Hodge classes
are closed algebraic subsets of F kH2k. In particular, the components of the Hodge
locus are algebraic.

Actually, the result of [7] is not stated this way but it implies the above
theorem whose formulation is more coherent with our presentation. The locus of
Hodge classes considered in [7] parameterizes pairs consisting of a variety, fiber of
a certain family, and a degree 2k integral cohomology class of type (k, k) on it.
This locus is not seen inside F kH2k but inside the local constant system of integral
cohomology. In order to better state their result, one needs first to recall that by
Lefschetz decomposition induced by a relative polarization of f : X → B, and by
looking individually at each component of this decomposition, which provides a
subvariation of Hodge structures, one immediately reduces the statement to the
case of a polarized variation of Hodge structures. Associated to such a polarized
variation of Hodge structures, there is the so-called Hodge metric h on the bundle
H2k. This metric is not flat and not defined over Z, but it has the advantage of
being a metric. It is obtained by multiplying the natural Hermitian intersection
pairing on H2k(Xt,Q)prim given by

(a, b)l = (−1)k
∫
Xt
ln−2ka ∪ b, n = dimXt ≥ k,

where l is the class of a relatively ample line bundle L on X , by (−1)p on Hp,q
prim,

p+ q = 2k.
The main theorem can be formulated as follows. Introduce for any positive

number A the following set :

BA = {(t, α), t ∈ B, α ∈ H2k(Xt,Z)prim ∩ F kH2k(Xt), h(α) ≤ A}.

Theorem 7.2. The image S of the natural map o : SA → B is a closed algebraic
subset and the map SA → S is finite.

Remark 7.3. This theorem in fact proves a result which is stronger than what
is predicted by the Hodge conjecture. Indeed, it implies that, when working with
primitive degree 2k cohomology of a family as above, and denoting by ql the
natural integral intersection pairing given by

ql(a, b) =
∫
Xt
ln−2ka ∪ b,

there are only finitely many components of the Hodge locus associated to integral
Hodge classes with |ql(a)| ≤ A. In the degree 2 case, this is well-known because
one can reduce to the surface case, apply Riemann-Roch formula and verify that
if a is a primitive divisor class on Xt and |ql(a)| ≤ A, then a+NL is effective on
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Xt, N being independent of t. One then applies finiteness results for the relative
Hilbert scheme. In the case of higher degree, this finiteness statement is troubling.
Indeed, it is not true that the locus in B where an integral Hodge class is algebraic
is a closed algebraic subset of B. One can find a counterexample to this in [31]. It
is proved there that the Kollár counterexamples to the integral Hodge conjecture
are examples where an integral Hodge class is non algebraic at the very general
point of a certain parameter space, but becomes algebraic on a countable union of
closed algebraic subsets, dense for the Euclidean topology.

7.1. Schmid’s theorem

The main tool for the proof of Theorem 7.2 is Schmid’s nilpotent orbit theo-
rem [28]. This theorem gives a very good asymptotic estimate of the variation
of Hodge structure near a degeneration point b ∈ B \ B. As usual, one as-
sumes that the base B has a (projective) compactification B such that B \ B
is a divisor with normal crossings. The local situation over B is thus essentially
(∆∗)p×∆N−p ⊂ ∆N , N = dimB. By the semi-stable reduction theorem, one can
even (maybe after a finite base change) assume that there is a compactification
f : X → B, where the divisor over B \ B is reduced with normal crossings. This
last condition implies the following result first proved by Borel (see [18]):

Theorem 7.4. (Monodromy theorem) The monodromy Ti on H2k(Xt,Z) around
each branch Bi of B \B is unipotent.

Without this condition, one would only obtain quasiunipotency. For each
i ≤ p, denote Ni := log Ti, which is an operator with rational coefficients, which
can be written as a polynomial expression in Id− Ti, acting on H2k(Xt,Q).

Consider the universal cover H → ∆∗, z 7→ e2ιπz. The inverse image of the
local system (R2kf∗Z)prim is trivial on Hp ×∆N−p. We will denote its trivialized
fiber by V . The variation of Hodge structure on H2k(Xt,Z)prim is described on
HN by a holomorphic map

Φ : Hp ×∆N−p → D,

where D is the corresponding period domain, contained in a flag manifold of V ,
and Φ has to satisfy the property that

Φ(z + ej) = TjΦ(z) = exp(Nj)Φ(z), j ≤ p,

and it follows that the map z 7→ exp(
∑
i≤p−Nizi)Φ(z) is invariant under transla-

tion by the various ej ’s (here we denoted by ei the 1 of H put in i-th position). It
thus descends to a map Ψ from (∆∗)p ×∆N−p to D.

The result of [28] is the following:

Theorem 7.5. i) The holomorphic map Ψ extends holomorphically over 0.
ii) Let Φ0(z) = exp(

∑
iNizi)Ψ(0). Then there exists a constant M such that

when Imzi ≥M , Φ0(z) defines a polarized Hodge structure on V .
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iii) Φ0 is an excellent asymptotic approximation of Φ: this makes sense using
an invariant metric on the period domain D. The distance between Φ0(z) and Φ(z)
is ≤ Ce−C′inf(yi)inf(yi)C

′′
for some positive constants C,C ′, C ′′.

7.2. Strategy of the proof of Theorem 7.2

The algebraicity result is essentially an extension result for the Hodge loci,
since the basis is quasi-projective, so that by Chow’s theorem, proving they are
algebraic amounts to proving they extend over the boundary.

The proof is extremely analytic, and involves the following steps. In the local
situation, with the same notations as above, one goal is to prove the following:

Theorem 7.6. For any A > 0, there exists a constant A1 > 0 such that there
are finitely many integral points α ∈ V with the property that for some point
z = (zi), zi = xi + ιyi ∈ H with yi > A1, α is in F kV at z and the Hodge norm of
α is ≤ A. Furthermore, these α lie in F k0 V for a limiting Hodge filtration at some
point of the boundary divisor.

This finiteness statement implies the main theorem 7.2 by a delicate argu-
ment involving among other things Lemma 3.1 which gives a smaller set of local
holomorphic equations for the Hodge loci. It of course also gives the finiteness
part of that theorem.

The proof of Theorem 7.6 involves the nilpotent orbit theorem. In fact, as
the nilpotent orbit theorem only gives an asymptotic approximation of the period
map near the boundary divisor, what is proved is a generalization of theorem 7.6,
involving integral Hodge classes approximately of type (k, k).

Theorem 7.7. For any A > 0, there exists a constant A1 > 0 such that there
are finitely many integral points α ∈ V with the property that for some point
z = (zi), zi = xi + ιyi ∈ H with yi > A1, α is close to F kV in the Hodge metric
at z and the Hodge norm of α is ≤ A. Furthermore, these α lie in F k0 V for a
limiting Hodge filtration at some point of the boundary divisor.

7.3. Some arithmetic improvements

As above, X being given, we introduce a “spread” π : X → B of X defined
over Q. As we explained in section 5, a Hodge class on X is absolute Hodge exactly
when the corresponding component (2ιπ)kZα of the twisted locus of Hodge classes
is defined over Q and its translates under Gal (Q/Q) are again components of the
twisted locus of Hodge classes. We explained in Proposition 5.7 the interest of
studying the analogous property for the corresponding component Bα = p(Zα) ⊂
B of the Hodge locus.

We have the following criterion for a component of the Hodge locus to be
defined over Q :
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Theorem 7.8. [36] Let α ∈ F kH2k(X,C) be a Hodge class. Suppose that any
locally constant Hodge substructure L ⊂ H2k(Xt,Q), t ∈ Bα, is purely of type
(k, k). Then Bα is defined over Q, and its translates under Gal(Q/Q) are again
components Bγ of the Hodge locus.

Proof. We shall show the following :

Claim. Under the assumptions of the Theorem, for any τ ∈ AutC, Bα,τ is
also a component Bγ of the Hodge locus.

This implies that Bα is defined over Q because this implies that there at most
countably many distinct translates Bα,τ , τ ∈ AutC, and this property character-
izes algebraic subsets defined over Q. This also obviously implies the statement
concerning the Gal(Q/Q) translates.

To prove the claim, observe the following: as already explained in section 5,
we can choose a desingularization T of Zα and introduce a projective compactifica-
tion Y of XT . Furthermore, over T , α extends as a flat section α̃ of the local system
R2kπT∗Q and thus, by Theorem 5.9, there exists a Hodge class β ∈ Hdg2k(Y,Q)

such that α = i∗0β on X0, where X = X0
i0
↪→ Y .

Now we apply our assumption: any locally constant Hodge substructure
of H2k(Xt,Q), t ∈ T must be of type (k, k). It thus follows that in the above
situation, the constant Hodge substructure i∗tH

2k(Y,Q) is purely of type (k, k).
Let now τ ∈ AutC. Consider the family XT,τ ⊂ Yτ , πτ : XT,τ → Tτ . Then it

is also true that the restriction map i∗0,τ : H2k
B (Yτ ,Q)→ H2k

B (Xτ ,Q) has an image
which is purely of type (k, k), hence made of Hodge classes, because this property
can be seen on the restriction map in algebraic de Rham cohomology. We now
conclude by proving that for a generic element γ ∈ i∗0,τH2k

B (Yτ ,Q), pτ (Tτ ) = Bα,τ
equals the component Bγ of the Hodge locus associated to γ. This is done as
follows: If we take γ′ = 1

(2ιπ)k
i∗0τ (2ιπ)kβτ , then we do not know that γ′ is a

rational cohomology class, because we do not know that α is absolute Hodge. But
we know, because this is a purely algebraic statement, that Bτ can be defined
locally schematically by the fact that γ′ remains in F kH2k. It follows that for a
generic element γ of i∗0,τH

2k
B (Yτ ,Q), Bτ can be defined locally set theoretically by

the fact that γ remains in F kH2k, that is Bτ = Bγ .
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Grenoble 6 (1955–1956), 1–42.

[30] T. Shioda. On the Picard number of a complex projective variety, Ann. Sci.
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