Conference on Hodge Theory and Related Topics

ICTP, Trieste

June 28 - July 2, 2010

Semistable reduction and vanishing theorems revisited, after K.-W. Lan and J. Suh

Luc Illusie

Université Paris-Sud, Orsay,

The University of Tokyo

In memory of Eckart Viehweg

(12.30.1948-1.30.2010)
"We want to draw attention to improvements of vanishing theorems and to properties of direct images of certain sheaves which should be of some interest outside of birational geometry as well."
(E. Viehweg, ICM Berkeley, 1986)

PLAN

1. Review of some classical vanishing theorems
2. Suh's theorem
3. Esnault-Viehweg's cyclic covers revisited
4. Residues
5. Proof of Suh's theorem
6. Applications to Shimura varieties
7. REVIEW OF SOME CLASSICAL VANISHING

THEOREMS
(a) Absolute vanishing

THEOREM 1 (Kodaira-Akizuki-Nakano, 1954)
X / k projective, smooth, $\operatorname{dim}(X)=d, \operatorname{char}(k)=0$
L ample line bundle on X. Then :
(1) $\quad H^{j}\left(X, L \otimes \Omega_{X / k}^{i}\right)=0 i+j>d$
(2) $\quad H^{j}\left(X, L^{-1} \otimes \Omega_{X / k}^{i}\right)=0 i+j<d$

NB. (1) \Leftrightarrow (2) (Serre duality)

THEOREM 2 (Deligne-I, 1987)
k perfect, $\operatorname{char}(k)=p>0$
X / k projective, smooth, $D \subset X$ sncd
$\operatorname{dim}(X)=d \leq p$
$(X, D) / k$ liftable to $W_{2}(k)$. Then :

$$
\oplus \Omega_{X^{\prime} / k}^{i}\left(\log D^{\prime}\right)[-i] \xrightarrow{\sim} F_{*} \Omega_{X / k}(\log D)
$$

in $D\left(X^{\prime}\right)$, inducing C^{-1} on \mathcal{H}^{i}
($F: X \rightarrow X^{\prime}$ relative Frobenius)
projection formula \Rightarrow
COROLLARY 1 (Raynaud)
If $L=$ line bundle on X, then :
$\sum_{i+j=n} h^{j}\left(X, L \otimes \Omega_{X / k}^{i}(\log D)\right) \leq \sum_{i+j=n} h^{j}\left(X, L^{p} \otimes \Omega_{X / k}^{i}(\log D)\right)$
COROLLARY 2
If L ample, then :
(1) $\quad H^{j}\left(X, L \otimes \Omega_{X / k}^{i}(\log D)\right)=0 i+j>d$
(2) $\quad H^{j}\left(X, L^{-1} \otimes \Omega_{X / k}^{i}(\log D)\right)=0 i+j<d$

Remarks.

- $\Omega_{X / k}^{d}=\Omega_{X / k}^{d}(\log D)(-D) \Rightarrow(1)$, (2) not dual :
(1) dual to
(1') $\quad H^{j}\left(X, L^{-1} \otimes \Omega_{X / k}^{i}(\log D)(-D)\right)=0 i+j<d$
(2) dual to
(2') $\quad H^{j}\left(X, L \otimes \Omega_{X / k}^{i}(\log D)(-D)\right)=0 i+j>d$
- Cor $2 \Rightarrow(1),(2)$ hold for L ample, with no restriction on (X, D) if $\operatorname{char}(k)=0$

Variants:
Kawamata-Viehweg, Esnault-Viehweg, et al.
Recall :
L nef : $\operatorname{deg}(L \mid C) \geq 0 \forall$ curve $C \subset X$
L big: $\kappa(L)=\operatorname{dim}(X)$
$\kappa(L)=-\infty$ or $\operatorname{tr} . \operatorname{deg}\left(\oplus_{m \geq 0} H^{0}\left(X, L^{m}\right)\right)-1$
(Iitaka dimension of L)

THEOREM 3 (Kawamata-Viehweg, 1982)
X / k projective, smooth, $\operatorname{dim}(X)=d, \operatorname{char}(k)=0$, L nef and big. Then :

$$
H^{j}\left(X, L^{-1}\right)=0, \quad 0 \leq j<d
$$

Remarks.

- nef and $\operatorname{big} \Leftrightarrow$ nef and $c_{1}(L)^{d}>0$
- For $D=\emptyset$, KAN vanishing (1), (2) OK if $d \leq 2$ (even in char. $p>0, X$ liftable $\bmod p^{2}$ (Deligne-I)) not OK for $d>2$
- nef and big $\Rightarrow \exists \nu_{0} \geq 0$, effective D, s. t.

$$
L^{\nu}(-D) \text { ample } \forall \nu \geq \nu_{0}
$$

THEOREM 4 (Viehweg, Esnault-Viehweg, 1986, 1992) X / k projective, smooth, $\operatorname{dim}(X)=d ;$
$D \subset X$ sncd ; L line bundle on X
Assume :
(*) \exists effective $D^{\prime}, \operatorname{supp}\left(D^{\prime}\right) \subset D$, and $\nu_{0} \geq 0$
s. t. $L^{\nu}\left(-D^{\prime}\right)$ ample $\forall \nu \geq \nu_{0}$

Then: If $\operatorname{char}(k)=0$ or k perfect, $\operatorname{char}(k)=p>0$, $d \leq p$, and (X, D), and L lift to $W_{2}(k)$, then :
(2) $H^{j}\left(X, L^{-1} \otimes \Omega_{X}^{i}(\log D)\right)=0 i+j<d$.

Remarks

- Note liftability assumption on L
- ample $\Rightarrow\left({ }^{*}\right) \Rightarrow$ nef and big
- example of (*) : $L=\pi^{*}$ (ample),
$\pi: X=\mathrm{Bl}_{I}(Y) \rightarrow Y, I . \mathcal{O}_{X}=\mathcal{O}\left(-D^{\prime}\right)$
- (1) may fail (Suh)

(b) Relative vanishing

Grauert-Riemenschneider, Kollár, Esnault-Viehweg, ...
THEOREM 5 (Kollár, 1986)
$\operatorname{char}(k)=0, X / k, Y / k$ projective,
X smooth, $\operatorname{dim}(X)=d, \omega_{X}:=\Omega_{X / k}^{d}$
L ample line bundle on Y
$f: X \rightarrow Y$ surjective. Then :
(i) $R^{i} f_{*} \omega_{X}$ torsionfree $\forall i \geq 0$
(ii) $H^{j}\left(Y, L \otimes R^{i} f_{*} \omega_{X}\right)=0 \forall j>0, \forall i \geq 0$.

Remark
f alteration ($=$ generically finite) \Rightarrow

$$
R^{i} f_{* \omega_{X}}=0 \forall i>0
$$

and, if f birational, for L nef and big,

$$
H^{j}\left(Y, L \otimes f_{*} \omega_{X}\right)=0 \forall j>0
$$

(Grauert-Riemenschneider)

The semistable reduction case
\Rightarrow KAN type results
char (k) arbitrary ; $X / k, Y / k$ proper, smooth
$E=\sum E_{i} \subset Y: \operatorname{sncd}$
$f: X \rightarrow Y ; D:=f^{-1}(E)$
Assume : $f:(X, D) \rightarrow(Y, E)$ semistable along E
(étale locally on $X: f=$ external product of
copies of $x_{1} \cdots x_{r}=t$)
$(\Rightarrow D \subset X=$ ncd, f flat, smooth $/ Y-E)$
$\Omega_{X / Y}(\log (D / E))$: relative log de Rham complex $H:=\oplus_{i} R^{i} f_{*}\left(\Omega_{X / Y}(\log (D / E))\right.$
$\nabla: H \rightarrow \Omega_{Y / k}^{1}(\log E) \otimes H:$ Gauss-Manin connection
$\Omega_{Y / k}(\log E)(H):=\left(H \rightarrow \Omega_{Y / k}^{1}(\log E) \otimes H \rightarrow \cdots\right):$
log DR complex of H, with Hodge filtration $F^{i} \Omega_{Y / k}(\log E)(H)=$
$\left(F^{i} H \rightarrow F^{i-1} H \otimes \Omega_{Y / k}^{1}(\log E) \rightarrow \cdots\right)$
(Griffiths transversality)

$$
K=\oplus_{i} \operatorname{gr}^{i} \Omega_{Y / k}(\log E)(H)
$$

(total) log Kodaira-Spencer complex of H :

$$
K=\left(\mathrm{gr} \cdot H \rightarrow \mathrm{gr}^{-1} H \otimes \Omega_{Y / k}^{1}(\log E) \rightarrow \cdots\right)
$$

Note : K is \mathcal{O}_{Y}-linear

THEOREM 6 (I., 1990)
$\operatorname{dim}(Y)=e, \operatorname{dim}(X)=d, k$ perfect, $\operatorname{char}(k)=p>0$, $d<p,(X, D) \rightarrow(Y, E)$ lifts to $W_{2}(k)$.

Then :
(i) $H=\oplus R^{q} f_{*}\left(\Omega_{X / Y}(\log (D / E)), R^{j} f_{*} \Omega_{X / Y}^{i}(\log (D / E))\right.$ locally free of finite type,
$E_{1}^{i j}=R^{j} f_{*} \Omega_{X / Y}^{i}(\log (D / E)) \Rightarrow R^{i+j} f_{*} \Omega_{X / Y}(\log (D / E))$
degenerates at E_{1}
(ii)

$$
K_{Y_{1}} \xrightarrow{\sim} F_{*} \Omega_{Y / k}(\log E)(H)
$$

in $D\left(Y_{1}\right)$
($F: Y \rightarrow Y_{1}=$ relative Frobenius,
$K=\oplus_{i} \operatorname{gr}^{i} \Omega_{Y / k}(\log E)(H)=$ Kodaira-Spencer complex)

COROLLARY 1
If $L=$ line bundle on Y, then :

$$
h^{m}(Y, L \otimes K) \leq h^{m}\left(Y, L^{p} \otimes K\right) \forall m
$$

COROLLARY 2
L ample. Then :
(1) $H^{m}(Y, L \otimes K)=0$ for $m>e$
(2) $H^{m}\left(Y, L^{-1} \otimes K\right)=0$ for $m<e$

Remarks.

- For char(k) $=0$, Th. 6 (i) and Cor. 2 hold without restriction of dimension.
- K self-dual up to shift and twist : $R \mathcal{H o m}\left(K, \Omega_{Y / k}^{e}[e]\right)=K[2 e](-E)$
\Rightarrow (1) dual to
(1') $H^{m}\left(Y, L^{-1}(-E) \otimes K\right)=0$ for $m<e$
(2) dual to
(2') $H^{m}(Y, L(-E) \otimes K)=0$ for $m>e$
- (2') $\left(\right.$ for $\left.\mathrm{gr}^{d} \subset K\right) \Rightarrow H^{j}\left(Y, L \otimes R^{k} f_{*} \omega_{X}\right)=0$ $\forall j>0, \forall k \geq 0$ (cf. th. 4 (Kollár))
- In char. O, local freeness, E_{1} degeneration hold for more general "log smooth" maps (Steenbrink (1976),
..., I-Kato-Nakayama (2005))
- Variants for "F-T-crystals" (Ogus, 1994)

2. SUH'S THEOREM

Common generalization of th. 4 (Esnault-Viehweg) and (2) of th. 6

THEOREM 7. (Suh, 2010)
$f:(X, D) \rightarrow(Y, E)$ as in th. 6 (proper, semistable), $\operatorname{dim}(X)=d ; \operatorname{dim}(Y)=e ;$
k perfect, $\operatorname{char}(k)=p>0, d<p$,
$L=$ line bundle on Y.

Assume :

(*) \exists effective $E^{\prime}, \operatorname{Supp}\left(E^{\prime}\right) \subset E$, and $\nu_{0} \geq 0$
s. t. $L^{\nu}\left(-E^{\prime}\right)$ ample $\forall \nu \geq \nu_{0}$, $(X, D) \rightarrow(Y, E)$, and L lift to $W_{2}(k)$.

Then :
(2) $H^{m}\left(Y, L^{-1} \otimes K\right)=0$ for $m<e$

Remarks.

- For $\operatorname{char}(k)=0$, (2) holds without restriction of dimension
- For $\mathrm{gr}^{d} \subset K$, th. $7 \Rightarrow$:

$$
H^{j}\left(Y, L \otimes R^{i} f_{*} \omega_{X}\right)=0 \forall j>0, \forall i \geq 0
$$

Ingredients of proof

- induction on $e=\operatorname{dim}(Y)$ reduces to vanishing for integral parts of Q -divisors $L^{(i)}$ sitting between L and ample $L^{\nu}\left(-E^{\prime}+E_{\text {red }}^{\prime}\right), \nu \gg 0$
- desired vanishing proved by

Esnault-Viehweg's method :
Frobenius interpolation, using properties of residues, for H (Gauss-Manin) and the $L^{(i)}$'s (cyclic covers)

3. ESNAULT-VIEHWEG'S CYCLIC COVERS

REVISITED
Y / k smooth, $E^{\prime}=\sum_{1 \leq i \leq r} a_{i} E_{i}, a_{i} \geq 0$,
$E=\sum_{1 \leq i \leq r} E_{i}$ sncd ;
$N \geq 1$ invertible in k; assume $\mu_{N} \subset k$
L line bundle on Y s. t. $L^{N}=\mathcal{O}_{Y}\left(E^{\prime}\right)$.
Esnault-Viehweg: $\left(Y, E^{\prime}, L, N\right) \mapsto \mu_{N^{\prime}}$-cover

$$
g: C=C\left(L, N, E^{\prime}\right) \rightarrow Y
$$

ramified along $E: C=$ normalization of $\operatorname{spec} A$, $A=\mathcal{O}_{Y} \oplus L^{-1} \oplus \cdots \oplus L^{-(N-1)}, L^{-N}=\mathcal{O}_{Y}\left(-E^{\prime}\right) \hookrightarrow \mathcal{O}_{Y}$.
μ_{N} acts on C via action of $\mu_{N} \subset \mathcal{O}^{*}$ on L
Properties

- g finite, flat, Galois étale $/ Y-E$ of group μ_{N};
$C=$ normalization of Y in $C \mid Y-E$
- Put log structure on Y defined by E. Then :
\exists unique \log structure M on $C \mathrm{~s} . \mathrm{t}$.
$(C, M) \rightarrow(Y, E)=\mu_{N^{-}}$Kummer étale cover of Y extending $C \mid Y-E$ locally on Y :
$C \rightarrow Y=$ pull-back of $\operatorname{Spec} \mathbf{Z}[P] \rightarrow \operatorname{Spec} \mathbf{Z}\left[\mathbf{N}^{r}\right]$
where $P=$ saturated amalgamated sum :

$\mathbf{N} \rightarrow \mathbf{N}$ by $x \mapsto N x, \mathbf{N} \rightarrow \mathbf{N}^{r}$ by $x \mapsto\left(a_{1} x, \cdots, a_{r} x\right)$.
- μ_{N}-equivariant decomposition into eigen bundles :
$g_{*} \mathcal{O}_{C}=\oplus_{0 \leq i \leq N-1}\left(L^{(i)}\right)^{-1}$
$L^{(i)}:=L^{i} \otimes \mathcal{O}_{Y}\left(-\left[i E^{\prime} / N\right]\right), L^{(1)}=L$
action of μ_{N} on $L^{(i)}$ via χ^{i},
$\chi: \mu_{N} \hookrightarrow \mathcal{O}^{*}$ canonical character :
$\left(L^{(i)}\right)^{-1}=g_{*} \mathcal{O}_{C}\left(\chi^{-i}\right)$.
g log étale \Rightarrow
$g^{*} \Omega_{Y / k}^{1}(\log E)=\Omega_{C / k}^{1}(\log M)$
$g_{*} \Omega_{C / k}(\log M)=\Omega_{Y / k}(\log E)\left(g_{*} \mathcal{O}_{Y}\right)$
$=\left(g_{*} \mathcal{O}_{C} \rightarrow \Omega_{Y / k}^{1}(\log E) \otimes g_{*} \mathcal{O}_{C} \rightarrow \cdots\right)$
$g_{*} \mathcal{O}_{C}$ has μ_{N}-equivariant integrable log connection :

$$
\nabla=\oplus \nabla_{i}: \oplus\left(L^{(i)}\right)^{-1} \rightarrow \oplus \Omega_{Y / k}^{1}(\log E) \otimes\left(L^{(i)}\right)^{-1}
$$

4. RESIDUES
Y / k smooth, $E=\sum_{1 \leq i \leq r} E_{i}$ sncd
L vector bundle on Y, with log connection

$$
\nabla: L \rightarrow \Omega_{Y / k}^{1}(\log E) \otimes L
$$

Recall :

$$
0 \rightarrow \Omega_{Y / k}^{1} \rightarrow \Omega_{Y / k}^{1}(\log E) \rightarrow \oplus_{i} \mathcal{O}_{E_{i}} \rightarrow 0
$$

Residue of (L, ∇) along E_{i} :

$$
\operatorname{Res}_{E_{i}}(\nabla) \in \operatorname{End}_{\mathcal{O}_{E_{i}}}\left(\mathcal{O}_{E_{i}} \otimes L\right)
$$

defined as composition

$$
\operatorname{Res}_{E_{i}}(\nabla): L \rightarrow \Omega_{Y / k}^{1}(\log E) \otimes L \rightarrow \mathcal{O}_{E_{i}} \otimes L
$$

Example 1 : cyclic covers
Y / k smooth, $E^{\prime}=\sum a_{i} E_{i}, E=\sum E_{i}$ sncd,
$L / Y, L^{N}=\mathcal{O}_{Y}\left(E^{\prime}\right)(N \geq 1)$,
$g: C=C\left(L, E^{\prime}, N\right) \rightarrow Y$
Esnault-Viehweg cyclic cover
$\nabla_{i}:\left(L^{(i)}\right)^{-1} \rightarrow \Omega_{Y / k}^{1}(\log E) \otimes\left(L^{(i)}\right)^{-1}$
local calculation \Rightarrow
Proposition 1.(Esnault-Viehweg)

$$
\operatorname{Res}_{E_{j}}\left(\nabla_{i}\right)=\left(i a_{j} / N-\left[i a_{j} / N\right]\right) \cdot I d
$$

Example 2 : semistable reduction
$f:(X, D) \rightarrow(Y, E)$ as in th. $5:$
$X / k, Y / k$ proper smooth,
$D, E \operatorname{sncd}, D=f^{-1}(E)$, semistable reduction either $\operatorname{char}(k)=0$, or k perfect, $\operatorname{char}(k)=p>0$, $f:(X, D) \rightarrow(Y, E)$ liftable to $W_{2}(k)$, and $\operatorname{dim}(X)<p$ $H=\oplus_{i} R^{i} f_{*} \Omega_{X / Y}(\log (D / E))$, a vector bundle on Y,
Gauss-Manin connection $\nabla: H \rightarrow \Omega_{Y / k}^{1}(\log E) \otimes H$.

Proposition 2. (Katz, 1970)
$\forall i, \operatorname{Res}_{E_{i}}(\nabla)$ is nilpotent.
Remarks

- Katz works in char. 0, but char. 0 not used if semistable reduction :
(1) reduce to local statement on Y, with E smooth, $E=V(t)$
(2) calculate $R f_{*} \Omega_{X / Y}$ as $C:=f_{*} \breve{\mathcal{C}}\left(\mathcal{U}, \Omega_{X / Y}\right)$
for suitable Cech cover \mathcal{U}
use Katz-Oda's lifts $\operatorname{Ani}(d)_{i}(1 \leq i \leq r)$ of $\nabla(d)$ to C adapted to the D_{i} 's
($d=t d / d t$, "Ani" $=$ elder brother),
$\Pi_{i} \operatorname{Res}_{E}\left(\operatorname{Ani}(d)_{i}\right)=0$ on E_{1} term of spectral sequence
- alternate proof using Cartier isomorphism (works for
"log smooth, saturated" morphisms)

5. PROOF OF SUH'S THEOREM

Recall : $f:(X, D) \rightarrow(Y, E), \operatorname{dim}(X)<p$,
$L^{\nu}\left(-E^{\prime}\right)$ ample $\forall \nu \geq \nu_{0}, E_{\text {red }}^{\prime} \subset E$
$f:(X, D) \rightarrow(Y, E), L$ lift to
$\tilde{f}:(\tilde{X}, \tilde{D}) \rightarrow(\tilde{Y}, \tilde{E}), \tilde{L} / W_{2}(k)$
$H=\oplus R^{i} f_{*} \Omega_{X / Y}(\log (D / E))$
$K=\mathrm{KS}$-complex of H
Have to show (2) :

$$
H^{m}\left(Y, L^{-1} \otimes K\right)=0 \text { for } m<e=\operatorname{dim}(Y)
$$

Recall: (2) known if L ample (th. 6 (I.))
Induction on $e=\operatorname{dim}(Y) ;$ WMA $k=\bar{k}$
Step 1 : Use of a hyperplane section
WMA $L^{\nu}\left(-E^{\prime}\right), L^{\nu}\left(-E^{\prime}+E_{\text {red }}^{\prime}\right)$ very ample $\forall \nu \geq \nu_{0}$ (Esnault-Viehweg, uses th. 2, Cor. 2 (D-I-R vanishing))

Choose $s \geq 1 \mathrm{~s} . \mathrm{t}$.

$$
N=p^{s}+1>\nu_{0}
$$

and $N>c_{i} \forall i$ if $E^{\prime}=\sum c_{i} E_{i}\left(\Rightarrow\left[E^{\prime} / N\right]=0\right)$

Take

$$
t \in H^{0}\left(\tilde{Y}, \tilde{L}^{N}\left(-\widetilde{E}^{\prime}\right)\right)
$$

s. t. $\tilde{Z}:=V(t)$ smooth $/ W_{2}(k)$,
$\tilde{E}+\tilde{Z}, \tilde{D}+\tilde{f}^{-1}(\tilde{Z}) \operatorname{sncd} / W_{2}(k)$
Thus:

$$
L^{N}=\mathcal{O}_{Y}\left(E^{\prime}+Z\right)
$$

$\Omega_{X / Y}(\log (D / E))=\Omega_{X / Y}\left(\log \left(\left(D+f^{-1} Z\right) /(E+Z)\right)\right)$.

Local freeness, base change compatibility of
$R^{q} f_{*}\left(\Omega_{X / Y}(\log (-/-))\right.$ and $R^{j} f_{*}\left(\Omega_{X / Y}^{i}(\log (-/-))\right.$ (th.
5) \Rightarrow
$0 \rightarrow \operatorname{gr} \cdot\left(\Omega_{Y / k}(\log E) \otimes H\right) \rightarrow \operatorname{gr} \cdot\left(\Omega_{Y / k}(\log E+Z) \otimes H\right)$
$\rightarrow \operatorname{gr}^{-1}\left(\Omega_{Z / k}(\log (E \cap Z)) \otimes H\right)[-1] \rightarrow 0$.

Inductive hypothesis \Rightarrow enough to show :
$(*)_{1} \quad H^{m}\left(Y, L^{-1} \otimes \operatorname{gr}\left(\Omega_{Y / k}(\log (E+Z)) \otimes H\right)=0\right.$
for $m<e$.

Step 2 : Enters cyclic cover

$$
g: C:=C\left(L, E^{\prime}+Z, N\right) \rightarrow Y
$$

cyclic cover associated with $L^{N}=\mathcal{O}_{Y}\left(E^{\prime}+Z\right)$, $g_{*} \mathcal{O}_{C}=\oplus\left(L^{(i)}\right)^{-1}, L^{(i)}=L^{i}\left(-\left[i\left(E^{\prime}+Z\right) / N\right]\right)$. $L^{(1)}=L$
$L^{(N-1)}=L^{N-1}\left(-E^{\prime}+E_{\text {red }}^{\prime}\right)$

Recall : $N-1=p^{s} \geq \nu_{0}$,
$L^{\left(p^{s}\right)}=L^{p^{s}}\left(-E^{\prime}+E_{\text {red }}^{\prime}\right)$ ample
\Rightarrow we know (th. 5) that, for $m<e$,

$$
H^{m}\left(Y,\left(L^{\left(p^{s}\right)}\right)^{-1} \otimes \operatorname{gr}\left(\Omega_{Y / k}(\log (E+Z)) \otimes H\right)\right)=0
$$

Want to show :
$(*)_{1} \quad H^{m}\left(Y, L^{-1} \otimes \operatorname{gr}\left(\Omega_{Y / k}(\log (E+Z)) \otimes H\right)\right)=0$
Will show by descending induction $(i=s, \cdots, 0)$
$(*)_{i} H^{m}\left(Y,\left(L^{\left(p^{i}\right)}\right)^{-1} \otimes \operatorname{gr}\left(\Omega_{Y / k}(\log (E+Z)) \otimes H\right)\right)=0$

Step 3 : Frobenius interpolation
$(*)_{i+1} \Rightarrow(*)_{i}$ follows from
Key lemma.
For $0<a<p a<N, m \geq 0$, $\operatorname{dim} H^{m}\left(Y,\left(L^{(a)}\right)^{-1} \otimes \operatorname{gr}\left(\Omega_{Y / k}(\log (E+Z)) \otimes H\right)\right)$
$\leq \operatorname{dim} H^{m}\left(Y,\left(L^{(p a)}\right)^{-1} \otimes \operatorname{gr}\left(\Omega_{Y / k}(\log (E+Z)) \otimes H\right)\right)$.

Proof.

$F: Y \rightarrow Y_{1}:$ relative Frobenius (/k)
th. $5 \Rightarrow$
$F_{*}\left(\Omega_{Y / k}(\log (E+Z)) \otimes H\right)$
$=\operatorname{gr}\left(\Omega_{Y_{1} / k}\left(\log \left(E_{1}+Z_{1}\right)\right) \otimes H_{1}\right)$
\Rightarrow (projection formula)
$H^{m}\left(Y_{1},\left(L_{1}^{(a)}\right)^{-1} \otimes K_{1}\right)=H^{m}\left(Y, F^{*}\left(\left(L_{1}^{(a)}\right)^{-1}\right) \otimes \Omega \otimes H\right)$
$\left(K_{1}:=\operatorname{gr}\left(\Omega_{Y_{1} / k}\left(\log \left(E_{1}+Z_{1}\right)\right) \otimes H_{1}\right)\right.$,
$\Omega:=\Omega_{Y / k}(\log (E+Z))$ for short $)$

Key point
The inclusion :
$F^{*}\left(\left(L_{1}^{(a)}\right)^{-1}\right)=L^{-p a}\left(p\left[a\left(E^{\prime}+Z\right) / N\right]\right) \hookrightarrow\left(L^{(p a)}\right)^{-1}$
(i) is compatible with connections $1 \otimes d_{Y / k}$ and $\nabla_{p a}$
(ii) induces quasi-isomorphism
$F^{*}\left(\left(L_{1}^{(a)}\right)^{-1}\right) \otimes \Omega \otimes H \rightarrow\left(L^{(p a)}\right)^{-1} \otimes \Omega \otimes H$

Key point \Rightarrow
$H^{m}\left(Y, F^{*}\left(\left(L_{1}^{(a)}\right)^{-1}\right) \otimes \Omega \otimes H\right)$
$\xrightarrow{\sim} H^{m}\left(Y,\left(L^{(p a)}\right)^{-1} \otimes \Omega \otimes H\right)$
\Rightarrow key Iemma
(as
$\operatorname{dim} H^{m}\left(Y,\left(L^{(p a)}\right)^{-1} \otimes \Omega \otimes H\right) \leq \operatorname{dim} H^{m}\left(Y,\left(L^{(p a)}\right)^{-1} \otimes\right.$ $\left.\operatorname{gr}\left(\Omega_{Y / k}(\log (E+Z)) \otimes H\right)\right)$

Proof of key point
(i) (Esnault-Viehweg) : seen on Frobenius diagram :
with log étale vertical maps :
inclusion $=\left(g_{*}^{\prime} \mathcal{O}_{C^{\prime}}\left(\chi^{-p a}\right) \hookrightarrow g_{*} \mathcal{O}_{C}\left(\chi^{-p a}\right)\right)$
(ii) (core of the proof) :
$F^{*}\left(\left(L_{1}^{(a)}\right)^{-1}\right) \otimes H=\left(L^{(p a)}\right)^{-1}(-B) \otimes H$
$\hookrightarrow\left(L^{(p a)}\right)^{-1} \otimes H$,
$\left(B=\left[p a\left(E^{\prime}+Z\right) / N\right]-p\left[a\left(E^{\prime}+Z\right) / N\right]=\sum b_{i} E_{i}\right.$,
$\left.b_{i}=\left[p a c_{i} / N\right]-p\left[a c_{i} / N\right], E^{\prime}=\sum c_{i} E_{i}\right)$
Look at residues :
$R_{i}=\operatorname{Res}_{E_{i}}(H)$ nilpotent (Prop. 2) (Katz)
$S_{i}:=\operatorname{Res}_{E_{i}}\left(\left(L^{(p a)}\right)^{-1} \otimes H\right)=-b_{i} \otimes I d+I d \otimes R_{i}$
(Prop. 1)(Esnault-Viehweg)
$b_{i} \neq 0 \Rightarrow 0<b_{i}<p \Rightarrow S_{i}$ invertible
\Rightarrow (by Esnault-Viehweg's lemma below)
$\Omega\left(-B_{i}\right) \otimes\left(L^{(p a)}\right)^{-1} \otimes H \rightarrow \Omega \otimes\left(L^{(p a)}\right)^{-1} \otimes H$
$=$ quasi-isomorphism
$\Rightarrow F^{*}\left(\left(L_{1}^{(a)}\right)^{-1}\right) \otimes \Omega \otimes H \rightarrow\left(L^{(p a)}\right)^{-1} \otimes \Omega \otimes H$
$=$ quasi-isomorphism

Lemma (Esnault-Viehweg)
X / k smooth, $D=D_{1}+\cdots+D_{r}$ ncd on X,
$\nabla: V \rightarrow \Omega_{X / k}^{1}(\log D) \otimes V$
vector bundle with integrable log connection.
Assume :
$\operatorname{Res}_{D_{1}}(\nabla): V \otimes \mathcal{O}_{D_{1}} \rightarrow V \otimes \mathcal{O}_{D_{1}}=$ isomorphism.
Then, for $a \geq 0$:
$\Omega_{X / k}(\log D)\left(-a D_{1}\right) \otimes V \rightarrow \Omega_{X / k}(\log D) \otimes V$
$=$ quasi-isomorphism.

Variants and generalizations
(needed for applications to Shimura varieties)
$f:(X, M) \rightarrow(Y, E)$ proper, log smooth, integral,
Assume f, L liftable to $W(k), L$ satisfying (*), and :
(a) $\operatorname{Hdg} \Rightarrow \operatorname{DR}(f)$ degenerates at E_{1},
$E_{1}^{i j}$ loc. free of f. t., base change compatible
(b) $\operatorname{Res}_{E_{i}}(\nabla)(H)$ nilpotent $\left(H: R f_{*}\left(\Omega_{X / Y}(\log (M / E))\right.\right.$
(c) $\left.\operatorname{gr}\left(\Omega_{Y / k}(\log E)\left(\mathcal{H}^{q}\right)\right)_{1} \xrightarrow{\sim} F_{*} \Omega_{Y / k}(\log E)\left(\mathcal{H}^{q}\right)\right)$,
$F: Y \rightarrow Y_{1}, \mathcal{H}^{q}=R^{q} f_{*} \Omega_{X / Y}(\log M / E), q+e<p$
Then: Suh's vanishing (2) holds for $H=\mathcal{H}^{q}$.
6. APPLICATIONS TO SHIMURA VARIETIES, AFTER K.-W. LAN AND J. SUH
6.1. (Rough) goal :

Given Shimura variety, PEL type, dimension d $\left(\mathrm{Sh}_{H} \otimes_{F_{0}} \mathbf{C}\right)^{\text {an }}=G(\mathbf{Q}) \backslash \mathcal{X} \times G\left(\mathbf{A}^{f}\right) / H$ with corresponding moduli space $M=M_{H}$,
$V=V_{\mu}$ a Betti Z-local system on $M_{\mathbf{C}}$
(or ℓ-adic or de Rham variants on integral models) associated with irreducible representation of G of highest weight μ
(e. g. $V=S_{y m}{ }^{k} R^{1} f_{*} \mathbf{Z}, f$ univ. ell. curve)
and good prime p (unramifiedness),
with suitable restrictions on :
level H (neat, prime to p)
weight μ (regularity, smallness)
(e. g. $S_{y m}^{k}, \mu=k, k+1<p$)
get vanishing and p-torsionfreeness

- $H^{i}\left(M_{\mathbf{C}}, V\right)=0$ for $i \neq e\left(e=\operatorname{dimM}_{\mathbf{C}}\right)$
- $H^{e}\left(M_{\mathrm{C}}, V\right) p$-torsionfree
(and DR, ℓ-adic variants)

6.2. The geometric set-up

Given integral PEL datum $D=\left(\mathcal{B}, *, L,\langle\rangle,, h_{0}\right)$,
$h_{0}: \mathbf{C} \rightarrow \operatorname{End}_{\mathcal{B} \otimes_{\mathbf{Z}} \mathbf{R}}\left(L \otimes_{\mathbf{Z}} \mathbf{R}\right)$
with associated reductive group G, reflex field F_{0}, good prime p, (unramified in $\mathcal{B},\langle,\rangle \otimes \mathbf{Z}_{p}$ self-dual)
neat, prime to p level H
get smooth, quasi-projective moduli scheme

$$
M_{H} / S_{0}
$$

($S_{0}=$ localization at p of ring of integers of F_{0})
($M_{H}=\{A / S+$ PEL structure of type $(D, H)\}$)
and compactifications: minimal (Satake-Baily-Borel), toroidal (Chai-Faltings et al.)

$Y=M_{H, \Sigma}^{\mathrm{tor}}$ proper, smooth $/ S_{0}$,
$E=M_{H, \Sigma}^{\mathrm{tor}}-M_{H} \mathrm{sncd} / S_{0}$
A universal abelian scheme, $A^{\text {tor }}$ toroidal compactification of A
basic automorphic line bundle on Y

$$
\omega:=\operatorname{det}\left(e^{*} \Omega_{\tilde{A} / Y}^{1}\right)
$$

(\widetilde{A} semi-abelian extension of A, acts on $A^{\text {tor }}$)
ω not ample in general
($=\pi^{*}$ (ample line bundle on M^{min}),
$\pi: M^{\text {tor }} \rightarrow M^{\text {min }}=$ normalized blow-up of I,
$\left.I . \mathcal{O}_{Y}=\mathcal{O}_{Y}\left(-E^{\prime}\right), E_{\text {red }}^{\prime} \subset E\right)$
but satisfies Esnault-Viehweg condition (*) :
$\exists \nu_{0} \geq 0$ s. t. $\omega^{\nu}\left(-E^{\prime}\right)$ ample $\forall \nu \geq \nu_{0}$
final adjustments :

- replace $M, M^{\text {tor }}$ by schematic closure of $\mathrm{Sh}_{H}\left(\hookrightarrow M \otimes F_{0}\right)$ in $M, M^{\text {tor }}$,
- pull-back to suitable $S=\operatorname{Spec} W(k) / S_{0}$,
k perfect, char(k) $=\mathrm{p}$
- keep same notations $: A^{\text {tor }} \rightarrow M^{\text {tor }}, E \subset M^{\text {tor }}$.

6.3. The compact case

Assume $\left(\mathrm{Sh}_{H} \otimes_{F_{0}} \mathrm{C}\right)^{\text {an }}$ compact.
Then:

- $Y=M=M^{\text {tor }}$ projective, smooth $/ S, E=\emptyset$
- $f: A=A^{\text {tor }} \rightarrow Y=$ abelian scheme
- ω ample
vanishing th. 6 (I.) applied to $f_{n} \otimes k$, for $f_{n}: A^{n} \rightarrow Y(n \geq 1)$ and $L=\omega \Rightarrow$

THEOREM 8 (K.-W. Lan, J. Suh, 2010)
$\mathcal{V}=$ flat bundle $/ Y=M_{H}$ associated with irreducible representation $G \rightarrow G L(V)$, highest weight μ assumed to be p-small, sufficiently regular.

Then :

- $H_{d R}^{i}(Y, \breve{\mathcal{V}})=0$ for $i \neq e,\left(e=\operatorname{dim}(Y / S)=\operatorname{dim}\left(\mathrm{Sh}_{H}\right)\right)$
- $H_{d R}^{e}(Y, \check{\mathcal{V}})$ free, f. t. $/ \mathcal{O}_{S}$.

Remark. Conditions on μ independent of H; "small" includes $|\mu|+e<p$
Using $C_{\text {cris }}$, gives :
COROLLARY (Lan-Suh)
$\mathcal{V}_{\mathrm{C}}=$ lisse Z-sheaf on Y_{C} associated with μ
Then:
(i) $H^{i}\left(Y_{\mathbf{C}}, \check{\mathcal{V}}_{\mathrm{C}}\right)=0$ for $i \neq e$,
(ii) $H^{e}\left(Y_{\mathbf{C}}, \check{\mathcal{V}}_{\mathbf{C}}\right) p$-torsion free

NB. (i) \Rightarrow Faltings's theorem (1982)

6.4. The non-compact case

Apply variants of vanishing th. 7 (Suh)
to $f_{n}: X \rightarrow Y$,
(suitable log smooth compactification of $A^{n} \rightarrow Y$)
and suitable root of ω.
Get analogues of Th. 8 and corollary for interior cohomology $\operatorname{Im} H_{c}^{i} \rightarrow H^{i}$.

Note : In general, no semistable model f_{n} exists.)

But variants of vanishing (2) apply :

- log smooth, integral models f_{n} exist (Lan), local freeness of $\mathcal{H}_{D R}^{*}$, etc. OK (Lan) (Chai-Faltings in Siegel case)
\Rightarrow (a) OK
- Res $(\nabla)(H)$ nilpotent (Lan-Suh) \Rightarrow (b) OK
- Ogus's th. on F-T-crystals
\Rightarrow decomposition (c) OK

