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Lecture 1: Introduction to Spreads

There are two ways of looking at a smooth projective variety in characteristic 0:
(Geometric) X is a compact Kähler manifold plus a Hodge class, embedded in CPN so
that the hyperplane bundle H pulls back to a multiple of the Hodge class; or
(Algebraic) X is defined by homogeneous polynomials in k[x0, . . . , xN ] for a field k of
characteristic zero. We may take k to be the field generated by ratios of coefficients of
the defining equations of X, and hence we may take k to be finitely generated over Q.
There are algebraic equations with coefficients in Q that, applied to the coefficients of
the defining equations, tell us when X is (not) smooth, irreducible, of dimension n. The
crucial additional ingredient to do Hodge theory is an embedding k |→ C.

To get a Hodge structure associated to X, we need k |→ C. The cohomology groups
of X can be computed purely in terms of k, but the integral lattice requires us to have an
embedding of k in C.

A field k that is finitely generated/Q is of the form

k = Q(α1, . . . ,αT ,β1, . . . ,βA),

where α1, . . . ,αT are algebraically independent over Q and [k : Q(α1, . . . ,αT )] <∞. Note
T = tr deg(k), the transcendence degree of k. Alternatively,

k ∼= Q(x1, . . . , xT )[y1, . . . , yA]/(p1, . . . , pB),

where

p1, . . . , pB ∈ Q(x1, . . . , xT )[y1, . . . , yA].
Important Idea. We can make k geometric.

The idea here is to find a variety S, defined /Q, such that

k ∼= Q(S) = field of rational functions of S.

Further, by definition,

Q(S1) ∼= Q(S2)⇐⇒ S1 birationally equivalent to S2.
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If
k ∼= Q(x1, . . . , xT )[y1, . . . , yA]/(p1, . . . , pB),

then we may take

S = projectivization of affine variety in QT+A def by p1, . . . , pB.

Example 1. Elliptic curve X = {y2 = x(x− 1)(x− α)}
If α /∈ Q̄, i.e. α is transcendental, then k = Q(α) and S ∼= P1. Note S is defined /Q.

We can think of X as giving a family

π:X → S(C)

where
Xs = π−1(s).

Note that
Xs is singular⇐⇒ s ∈ {0, 1,∞}.

Note that the latter is a subvariety of S defined /Q. We have

field of definition of Xs ∼= k for s /∈ Q̄.

The varieties Xs1 and Xs2 are indistinguishable algebraically if s1, s2 /∈ Q̄, but we can tell
them apart analytically and in general they will have different Hodge structures.

Definition. For S defined /Q, we will say that s ∈ S(C) is a very general point if
the Zariski closure over Q of s is S, i.e. s does not belong to any proper subvariety of S
defined /Q.

We have:

{very general points of S}⇐⇒ {embeddings k is|→C}.
We get from a very general point of S and a variety X defined /k a variety Xs defined

/C. We piece these together to get a family of complex varieties

π:X → S,

which we call the spread of X over k. If X is defined over k by homogeneous polyno-
mials f1, . . . , fr in k[z0, . . . , zN ], then expanding out the coefficients of the fi’s in terms
of x’s and y’s, we may take X to be the projectivization of the variety /Q defined by
f1, . . . fr, p1, . . . , pB in the variables x1, . . . , xT , y1, . . . , yB, z0, . . . , zN . We thus have

π:X → S,

where X , S are defined /Q and the map π is a map defined /Q. π will be smooth and of
maximal rank outside a proper subvariety Σ ⊂ S defined /Q.

The spread of X over k is not unique, but the non-uniqueness can be understood and
kept under control.

2



Example 2. k a number field

Here, S consists of a finite set of [k : Q] points. As a variety, S is defined /Q,
although the individual points are defined over a splitting field of k. We get a finite

number of complex varieties Xs, corresponding to the [k : Q] embeddings k
is
|→C.

Example 3. Very general points

Y a projective algebraic variety, irreducible, defined (say) over Q. Let y ∈ Y be a
very general point. Take

k = Q(ratios of coordinates of y).

Then k ∼= Q(Y ), so we may take S = Y .
Example 4. Ordered pairs of very general points

Let X be a variety defined /Q, X ⊆ PN , dim(X) = n. Let (p, q) be a very general
point of X ×X. Let

k = Q(ratios of coordinates of p, ratios of coordinates of q).

Now
tr deg(k) = 2n

and we can take S = X ×X. The moral of this story is that complicated 0-cycles on X
potentially require ever more complicated fields of definition.

Example 5. Hypersurfaces in Pn+1

Take F ∈ C[z0, . . . , zn+1], homogeneous of degree d, X = {F = 0}. Let
F =

|I|=d
aIz

I

using multi-index notation. Assume that a = (aI)|I|=d is chosen to be a very general point

of P(
n+1+d

d )−1. Then the field of definition ofX isQ(ratios of the aI), and S = P
(n+1+dd )−1.

Now
π:X → S

is the universal family of hypersurfaces of degree d.

Essential Observation. It is usually productive to make use of this geometry.

To do this, we need constructions that are robust to birational changes.
One natural idea is to look at the associated variation of Hodge structure

S − Σ P−→Γ/D
s )→ Hr(Xs,C)

where D is the Hodge domain (or the appropriate Mumford-Tate domain) and Γ is the
group of automorphisms of the integral lattice preserving the intersection pairing. If we
have an algebraic cycle Z on X, taking spreads yields a cycle Z on X . Applying Hodge
theory to Z on X gives invariants of the cycle. Another related situation is algebraic
K-theory. For example, to study KMilnor

p (k), the geometry of S can used to construct
invariants.

This is, overall, the spread philosophy.
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Lecture 2: Cycle Class and Spreads

X a smooth projective variety /k. By Ω•X(k)/k we denote the differentials on X(k) over
k. The sheaf Ω1X(k)/k is defined to be objects of the form i fidgi, where fi, gi ∈ OX(k)
and subject to the rules:
(i) d(f + g) = df + dg;
(ii) d(fg) = fdg + gdf ;
(iii) d2 = 0;
(iv) dc = 0 for c ∈ k.
We note that a consequence of (iv) is that dc = 0 if c ∈ k̄. We set ΩpX(k)/k = ∧pΩ1X(k)/k
and these are made into a complex using d,

OX(k) d→Ω1X(k)/k d→Ω2X(k)/k d→ · · ·

which we denote Ω•X(k)/k. By Ω
≥p
X(k)/k we denote the complex

ΩpX(k)/k
d→Ωp+1X(k)/k

d→ · · · ,

but indexed to be a subcomplex of Ω•X(k)/k.

Comparison Theorems of Grothendieck. [Gro] If k
is
|→C is a complex embedding of

k,
(1) Hr(Ω•X(k)/k)⊗is C ∼= Hr(Xs,C);

(2) Hr(Ω≥pX(k)/k)⊗is C ∼= F pHr(Xs,C), where F
•Hr(Xs,C) denotes the Hodge filtration;

(3) Hq(ΩpX(k)/k)⊗is C ∼= Hp,q(Xs).

If in the definition of differentials we instead only require:
(iv’) dc = 0 for c ∈ Q
then we get Ω•X(k)/Q, etc. By Ω

1
k/Q we denote expressions i aidbi, where ai, bi ∈ k,

subject to the rules (i)-(iii) and (iv’). Note that Ω1k/Q is a k vector space of dimension

tr deg(k). If

k ∼= Q(x1, . . . , xT )[y1, . . . , yA]/(p1, . . . , pB),
then dx1, . . . , dxT give a k basis for Ω

1
k/Q.

There is a natural filtration

FmΩ•X(k)/Q = Im(Ω
m
k/Q ⊗ Ω•−mX(k)/Q → Ω•X(k)/Q).

The associated graded is

GrmΩ•X(k)/Q =
FmΩ•X(k)/Q
Fm+1Ω•X(k)/Q

∼= Ωmk/Q ⊗ Ω•−mX(k)/k.
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We thus have an exact sequence

0→ Gr1Ω•X(k)/Q →
Ω•X(k)/Q
F 2Ω•X(k)/Q

→ Gr0Ω•X(k)/Q → 0.

This can be rewritten

0→ Ω1k/Q ⊗ Ω•−1X(k)/k →
Ω•X(k)/Q
F 2Ω•X(k)/Q

→ Ω•X(k)/k → 0.

From the long exact sequence for (hyper)cohomology, we obtain a map

Hr(Ω•X(k)/k)
∇−→Ω1k/Q ⊗Hr(Ω•X(k)/k);

this is the Gauss-Manin connection. Similarly, using FmΩ•X(k)/Q/F
m+2Ω•X(k)/Q, we

get

Ωmk/Q ⊗Hr(Ω•X(k)/k)
∇−→Ωm+1k/Q ⊗Hr(Ω•X(k)/k).

We have
∇2 = 0 (Integrability of the Gauss−Manin connection).

Finally, we note that

0→ Ω1k/Q ⊗ Ω≥p−1X(k)/k →
Ω≥pX(k)/Q
F 2Ω≥pX(k)/Q

→ Ω≥pX(k)/k → 0

gives

F pHr(Ω•X(k)/k)
∇−→Ω1k/Q ⊗ F p−1Hr(Ω•X(k)/k);

i.e.
∇(F p) ⊆ Ω1k/Q ⊗ F p−1

which is known as the infinitesimal period relation or Griffiths transversality (See
[Gre]).

Note that all of this takes place in the abstract world of k, without the need to choose

an embedding k
is
|→C. The essential new feature, once we pick is, is the integral lattice

Hr(Xs,Z)→ Hr(Ω•X(k)/k)⊗is C.

Essential Observation.

Expressing this map involves transcendentals not already in k. The fields Q(π) ∼= Q(e),
where π, e are transcendentals, and thus there is no algebraic construction over the field
k = Q(x) that distinguishes the cohomology of varieties defined over k when we take
different embeddings k → C taking x to π or e. This is why the integral lattice involves
maps transcendental in the elements of k.
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Example 1. Elliptic curves

We take X to be the projectivization of y2 = f(x), where f(x) = x(x−1)(x−α), and
α is transcendental. k = Q(α). Differentiating,

2ydy = f I(x)dx

in Ω1X(k)/k. If U1 = {y W= 0} and U2 = {f I(x) W= 0}, then

2dy

f I(x)
=
dx

y

and thus we get an element ω of H0(Ω≥1X(k)/k) that is dx/y in U1 and 2dy/f
I(x) in U2.

However, in Ω1X(k)/Q, we have

2ydy = f I(x)dx− x(x− 1)dα

on U1 ∩ U2, and thus ω does not lift to H0(Ω≥1X(k)/Q). Thus

∇(ω) = x(x− 1)
f I(x)y

dα ∈ Ω1k/Q ⊗H1(OX(k)),

where x(x− 1)/f I(x)y on U1 ∩ U2 represents a class in H1(OX(k)).
There is another construction in terms of k that is significant.

Bloch-Quillen Theorem.

Hp(Kp(OX(k))) ∼= CHp(X(k)),

where Kp denotes the sheaf of Kp’s from algebraic K-theory and CHp(X(k)) is cycles on
X defined over k modulo rational equivalences defined over k (See [M]).

If we are willing to neglect torsion, we can replace Kp with the more intuitive KMilnorp .

Soulé’s Bloch-Quillen Theorem. [S]

Hp(KMilnorp (OX(k)))⊗Z Q ∼= CHp(X(k))⊗Z Q.

The description of KMilnorp (OX(k)) proceeds as follows: Regard O∗X(k) as a Z-module
under exponentiation. One takes (locally)a quotient of ⊗pZO∗X(k), representing f1⊗ · · ·⊗fp
by the symbol{f1, . . . , fp}. The quotient is defined by the relations generated by:
(Steinberg relations): {f1, . . . , fp} = 1 if fi = 1− fj for some i W= j .

There is now a map

KMilnorp (OX(k)) −→ ΩpX(k)/Q

{f1, . . . , fp} )→ df1 ∧ df2 ∧ · · · ∧ dfp
f1f2 · · · fp .
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We may also regard this as a map

KMilnorp (OX(k)) −→ Ω≥pX(k)/Q.

We thus get maps

Hp(KMilnorp (OX(k)))→ Hp(ΩpX(k)/Q)

and
Hp(KMilnorp (OX(k)))→H2p(Ω≥pX(k)/Q).

The shift in index in the last cohomology group is to align it with the indexing for Ω•X(k)/Q.
These are called the arithmetic cycle class and were studied by Grothendieck, Srinivas
[Sr] and Esnault-Paranjape [E-P].

If we move from differentials over Q to differentials over k, we obtain the cycle class
map

Hp(KMilnorp (OX(k)))
ψX(k)−→ F pH2p(Ω•X(k)/k).

Note that this is constant under the Gauss-Manin connection, i.e.

∇ ◦ ψX(k) = 0.

If we choose a complex embedding of k, we then have a map ψX(k) ⊗is C, which we
will denote as ψXs which maps

Hp(KMilnorp (OX(k)))ψXs−→F pH2p(Xs,C) ∩ Im(H2p(Xs,Q)).

Since integral classes are flat under ∇, this is consistent with ∇ ◦ ψX(k) = 0. We denote

Hgp(Xs) = F
pH2p(Xs,C) ∩ Im(H2p(Xs,Z)).

Hodge Conjecture.

CHp(Xs(C))⊗Z QψXs−→Hgp(Xs)⊗z Q

is surjective.

Absolute Hodge Conjecture.[Gro2] Given a class ξ ∈ F pH2p(Ω•X(k)/k), the set of
s ∈ S such that is∗(ξ) ∈ Hgp(Xs) is a subvariety of S defined /Q.

Note that the Absolute Hodge Conjecture is weaker than the Hodge Conjecture.
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Lecture 3: The Conjectural Filtration on Chow Groups from a Spread Per-
spective

X a smooth projective variety defined /k
Zp(X(k)) = codimension pcycles defined over k
CHp(X(k)) = Zp(X(k))/rational equivalences defined over k
CHp(X(k))Q = CH

p(X(k))⊗Z Q
CHp(X(k))Q,Hom = {Z ∈ CHp(X(k))Q | NZ ∼=Hom 0 for some N W= 0}
We tensor the Chow group with Q in order to eliminate torsion phenomena, which tend
to be especially difficult—for example, the fact that the Hodge Conjecture is not true over
Z.

Conjectural Filtration. (See [M]) There is a decreasing filtration

CHp(X(k))Q = F
0CHp(X(k))Q ⊇ F 1CHp(X(k))Q ⊇ F 2CHp(X(k))Q ⊇ · · ·

with the following properties:
(i) Fm1CHp1(X(k))Q ⊗ Fm2CHp2(X × Y (k))Q → Fm1+m2CHp1+p2−dim(X)(Y (k))Q.
(ii) F 1CHp(X(k)) = CHp(X(k))Q,Hom
(iii) F p+1CHp(X(k))Q = 0.

An essential feature of this conjectural filtration is that it should be defined in terms
of k and not depend on a choice of complex embedding k → C.

Example 1. F 1CHp(X(k))

Because Grothendieck identifies

Hr(Ω•X(k)/k)⊗is C ∼= Hr(Xs,C),

the condition that [Z] ∈ H2p(Ω•X(k)/k) is zero is equivalent to is∗[Z] = 0 in H
2p(Xs,C) for

any complex embedding k
is
|→C.

Example 2. F 2CHp(X(k))

The expectation is that if

AJpXs,Q
:CHp(X(k))Q,Hom → Jp(Xs)⊗Z Q

is the Abel-Jacobi map for Xs tensored with Q, then

F 2CHp(X(k)) ∼= ker(AJpXs,Q
).

The Abel-Jacobi map is highly transcendental, and it is not known that the kernel of the
Abel-Jacobi map tensored with Q is independent of the complex embedding of k.

Let GrmCHp(X(k))Q = F
mCHp(X(k))Q/F

m+1CHp(X(k))Q.
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Example 3. Cycle classes

We have the cycle class map

ψXs :Gr
0CHp(X(k)) |→ H2p(Xs,C).

The Hodge Conjecture says that

Im(ψXs) = Hg
p(Xs),

the Hodge classes of Xs. Note that the set of Hodge classes is thus conjecturally isomor-
phically the same for any very general s ∈ S.
Example 4. Image of the Abel-Jacobi map

We have
AJpXs,Q

:Gr1CHp(X(k)) |→ Jp(Xs)⊗Z Q.
Thus conjecturally, Im(AJpXs,Q

) is isomorphically the same for any very general s ∈ S.
It is thus expected that there should be something nice happening on the Hodge theory

side.

Beilinson’s Conjectural Formula.

GrmCHp(X(k))Q ∼= ExtmMMk
(Q,H2p−m(X)(p)),

whereMMk means that the extensions are in the category of mixed motives over k (See
[R]).

Unfortunately, we do not have an explicit description of what these Ext groups should
look like. One explicit consequence of this conjecture is that a cycle Γ ∈ CHr(X × Y (k))
induces the zero map

CHp(X(k))Q
Γ∗−→GrmCHp+r−dim(X)(Y (k))Q

if the H2dim(X)−2p+m(X)⊗H2r+2p−2dim(X)−m(Y ) component of [Γ] is zero.
A very different aspect of the conjectures is that the arithmetic properties of k limit

the possible graded pieces of the filtration on Chow groups.

Conjecture (Deligne-Bloch-Beilinson).
(i) GrmCHp(X(k))Q = 0 for m > tr deg(k) + 1.
(ii) In particular, for X defined /Q, AJpX,Q:CH

p(X(Q))Q,Hom → Jp(X)⊗ZQ is injective.
(See [R]).

It is thus very natural to try to express the conjectural filtration of Chow groups in
terms of spreads.

A first step is to have as good an understanding of the Abel-Jacobi map as possible.
There is a nice interpretation of the Abel-Jacobi map as the extension class of an extension
of mixed Hodge structures. To phrase this in our context, if Z ∈ Zp(X(k)), we may
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represent Z by taking smooth varieties Zi defined over k, maps fi:Zi → X defined over k,
with

Z =
i

nifi∗Zi.

We may construct a complex of differentials Ω•(X,|Z|)(k)/k where

Ωm(X,|Z|)(k)/k = Ω
m
X(k)/k ⊕

i

Ωm−1Zi(k)/k

with the differential
d(ω,⊕iφi) = (dω,⊕idφi − f∗i ω).

If dim(X) = n, and thus dim(Zi) = n− p, we have an exact sequence

0→ coker(H2n−2p(Ω•X(k)/k)→ ⊕iH2n−2p(Zi))→ H2n−2p+1(Ω•(X,|Z|)(k)/k)

→H2n−2p+1(Ω•X(k)/k)→ 0.

If Z ≡Hom 0 on X, we can derive from this an exact sequence

0→ k(−(n− p))→ V → H2n−2p+1(Ω•X(k)/k)→ 0,

where V is a k vector space with a Hodge filtration and a Gauss-Manin connection ∇V . If
we choose a complex embedding of k, and tensor the sequence above ⊗isC, we obtain an
extension of mixed Hodge structures

0→ Z(−(n− p)) fs−→Vs gs−→H2n−2p+1(Xs,C)→ 0,

where the new element added by the complex embedding is the integral lattice. If we pick
an integral lifting φZ:H

2n−2p+1(Xs,Z)→ Vs,Z and a complex lifting preserving the Hodge
filtration, φHodge:H

2n−2p+1(Xs,C)→ Vs, then the extension class

es = f
−1
s (φZ − φHodge)

with

es ∈ HomC(H
2n−2p+1(Xs,C),C(−(n− p)))

F 0HomC(H2n−2p+1(Xs,C),C(−(n− p))) + HomZ(H2n−2p+1(Xs,Z),Z(−(n− p))) .

We may rewrite this using Poincaré duality as

es ∈ H2p−1(Xs,C)
F pH2p−1(Xs,C) +H2p−1(Xs,Z)

= Jp(Xs),

the p’th intermediate Jacobian of Xs. The intermediate Jacobians fit together to give
a family J → S and s )→ es gives a section νZ :S → J of this family, which is called
the normal function associated to the cycle Z. By an argument analagous to the
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one used to define the Gauss-Manin connection by looking at the obstruction to lifting to
differentials /Q, we get for a local lifting ν̃Z of νZ to the variation of Hodge structures
H2p−1(Xs,C) that

∇ν̃Z ∈ Ω1S/C ⊗ F p−1H2p−1(Xs,C)

for all s; the fact that we land in F p−1H2p−1(Xs,C) is known as the infinitesimal re-
lation on normal functions. The actual value we get depends on how we lift νZ , but
∇νZ gives a well-defined element

δνZ ∈ H1(Ω•S ⊗ F p−•H2p−1(Xs,C))

which is Griffiths’ infinitesimal invariant of the normal function νZ . (See [Gre],
Gre2]).

We may also encapsulate the information in the construction above as an extension
involving the variation of Hodge structure H2p−1

X → S of the form

0→ H2p−1
X (p)→ V∗ → Z→ 0.

We may regard such extensions as elements of the group Ext1S(Z,H2p−1
X (p)), where we

must make some technical assumptions about how the families behave over the subvariety
Σ where the map π:X → S is not of maximal rank, and thus Xs is singular. Conjecturally,
one would expect that

Gr1CHp(X(k))⊗Z Q |→ Ext1S(Q,H2p−1
X (p))

is well-defined and injective.
There are a number of different ways that, conjecturally, produce the conjectural

filtration. Two of my favorites are those of Murre and of H. Saito. Let dim(X) = n. The
Hodge conjecture says that the Künneth decomposition of the diagonal ∆ ∈ X ×X
as ∆ = i πi where πi ∈ Zn(X ×X) and [πi] ∈ H2n−i(X,Q)⊗Hi(X,Q) represents the
identity map under Poincaré duality. These induce maps

CHp(X)Q
πp
i∗−→CHp(X)Q.

Now we want for m ≥ 1
FmCHp(X)Q = ∩2pi=2p−m+1ker(πpi∗).

This is Murre’s definition [M].
The definition of H.Saito (see [J]) generates FmCHp(X(k))Q by taking auxiliary

varieties T defined /k and cycles Z1 ∈ CHr1(X × T (k))hom and for i = 2, . . . ,m cycles
Zi ∈ CHri(T (k))hom and looking at

pX∗(Z1 · p∗TZ2 · p∗TZ3 · · · p∗TZm),
where i ri − dim(T ) = p. Clearly all elements of this form must lie in FmCHp(X(k))Q
for any definition satisfying the conditions of the conjectural filtration, but it is not clear
that F p+1CHp(X(k))Q = 0.
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Lecture 4: The Case of X defined over Q

This lecture is based on joint work with Phillip Griffiths [G-G].
We now look at the case X a smooth projective connected variety defined /Q, as

discussed in a joint paper with Phillip Griffiths. We consider cycles defined over a finitely
generated extension k of the rationals. Thus

X ∼= X × S.
If Z ∈ Zp(X(k)), then its spread

Z ∈ Zp(X × S(Q))
is well-defined up to an ambiguity in the form of a cycle

W ∈ Zp−codim(W )(X ×W (Q)),
where W is a lower-dimensional subvariety of S defined /Q. Cycles rationally equivalent

to 0 over k are generated by taking a codimension p− 1 subvariety Y i
|→X defined /k and

f ∈ k(Y ) and taking i∗div(f). Taking spreads over k, we have Y ⊂ X × S of codimension
p−1 defined /Q and F ∈ Q(Y ). Once again, the ambiguities in this process are supported
on a variety of the form X ×W , where W is a lower-dimensional subvariety of S defined
over Q.

At this point, we invoke the conjecture of Deligne-Bloch-Beilinson mentioned in Lec-
ture 3 that for cycles and varieties over Q, the cycle class and the Abel-Jacobi map are a
complete set of invariants for cycles modulo rational equivalence, tensored with Q. Thus,
if Z ∈ Zp(X × S(Q)), the invariants are:
(i) [Z] ∈ H2p(X × S,C) and
(ii) If [Z] = 0, then AJpX×S(Z)⊗Z Q.
It follows from this conjecture that Z = 0 in CHp(X(k))Q if and only if there exists a
cycle W ∈ Zp−codim(W )(X ×W ) for some lower-dimensional subvariety W ⊂ S such that:
(i) [Z +W] = 0 in H2p(X × S) and
(ii) AJX×S,Q(Z +W) = 0 in Jp(X × S)⊗Z Q.

The Künneth decomposition of X × S allows us to write over Q
H2p(X × S) ∼=

m

H2p−m(X)⊗Hm(S)

and
Jp(X × S)⊗Z Q ∼=

m

Jp(X × S)m

where

Jp(X × S)m = H2p−1−m(X,C)⊗Hm(S,C)

F p(H2p−1−m(X,C)⊗Hm(S,C)) +H2p−1−m(X,Q)⊗Hm(S,Q)
.

We will denote the Künneth components of [Z] as [Z]m and the Jp(X × S)m component
of AJX×S(Z) as AJX×S(Z)m.

It is important to note that while we need the vanishing of the cycle class in order to
define the Abel-Jacobi map, we only need the vanishing of [Z]i for i ≤ m+ 1 in order to
define AJX×S(Z)m.
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Definition of Filtration on Chow Groups. Z ∈ FmCHp(X(k)) if and only if for some
W as above, [Z +W]i = 0 for all i < m and (this is now defined) AJX×S(Z +W)i = 0 for
all i < m− 1.

In order to understand this definition, it is essential to understand what happens for
cycles W ∈ Zp−codim(W )(X ×W ). If r = codim(W ), then we have the Gysin map

GymW :H
m(W )→ Hm+2r(S).

This induces a map

H2p−m(X)⊗Hm−2r(W )→ H2p−m(X)⊗Hm(S).

We see that
[W]m ∈ H2p−m(X)⊗ Im(Gym−2rW ).

Now Im(Gym−2rW ) is contained in the largest weight m−2r sub-Hodge structure of Hm(S).
Let H denote the largest weight m − 2r sub-Hodge structure of Hm(S). The gener-

alized Hodge conjecture implies that there is a dimension m − 2r subvariety V of S(C)
such that Im(Gym−2rV ) = H. Now V might in principle require a finitely generated field of
definition L, with L = Q(T ) for some variety T defined /Q. Taking the spread of V over
T , with the complex embedding of V in S represented by t0 ∈ T , we know that there is
a lower-dimensional subvariety of T such that away from it, for t in the same connected
component of T , Hm−2r(Vt) and Hm−2r(Vt0) have the same image in H

m(S). We may
therefore find a point t1 ∈ T (Q̄) in the same connected component of T (C) as t0, such
that Vt1 is defined over Q̄ and Gym−2rVt1

has the same image as for Vt0 . We take W to be

the union of the Galois conjugates of Vt1 . Then H ∈ Im(Gym−2rW ). It follows that any
Hodge class in H2p−m(X) ⊗ H is, by the Hodge Conjecture, a Q-multiple of the Hodge
class of a cycle W ∈ Zp−codim(W )(X ×W ), i.e. an ambiguity. It follows that

CHp(X(k))Q → H2p−m(X,Q)⊗ Hm(S,Q)

Hm(S,Q)m−2
,

where Hm(S)m−2 is the largest weightm−2 sub-Hodge structure ofHm(S), is well-defined
and captures all of the information in the invariant [Z]m modulo ambiguities.

We note that if dim(S) < m, then by the Lefschetz theorem Hm(S) = Hm(S)m−2, so
this invariant vanishes.

We note that a Hodge class inH2p−m(X)⊗Hm(S) gives us a map of Hodge structures,
with a shift, H2n−2p+m(X)→ Hm(S). However, H2n−2p+m(X) ∼= H2p−m(X)(−(n− 2p+
m)). If m > 2p − m, this implies that the Hodge class actually lies in H2p−m(X) ⊗
Hm(S)m−2 and thus is an ambiguity. This happens precisely when m > p. We thus have
that the invariant [Z]m = 0 modulo ambiguities if m > p. An alternative proof is that if
XP is a general Q-linear section of X of dimension 2p−m, then let ZP = Z ∩ (XP × S).
By the Lefschetz theorem, we have

r2p−mP :H2p−m(X) |→ H2p−m(XP )

13



and
r2p−mP ⊗ idHm(S)([Z]m) = [ZP ]m.

However, if p > 2p−m, then of necessity ZP projects to a proper Q-subvariety of S, and
hence is an ambiguity.

The second argument also shows that taking P so that XP has dimension 2p−m− 1,
then

r2p−m−1P ⊗ idHm(S)(AJ
p
X×S(Z)m) = AJpXP×S(ZP )m

and thus for p > 2p −m − 1, ZP must project to a proper Q-subvariety of S and hence
involves only Hm(S)m−2. One can also use the linear section argument to use cycles
defined on X ×W for proper Q-subvarieties W of S to kill off portions of the Abel-Jacobi
map that involve Hm(S)m−2.

We define [Z]redm to be the image of [Z]m in H2p−m(X) ⊗ Hm(S)/Hm(S)m−2 and
we define AJpX×S(Z)redm to be the image of AJpX×S(Z)m in the intermediate Jacobian
constructed from H2p−m−1(X)⊗Hm(S)/Hm(S)m−2.

Invariants of cycles. For X defined over Q, a complete set of invariants of CHp(X(k))Q
are [Z]redm for 0 ≤ m ≤ p and AJpX×S(Z)redm for 0 ≤ m ≤ p − 1. Note that [Z]redm
and AJpX×S(Z)redm both vanish if m > dim(S), i.e. m > tr deg(k). We then get that

FmCHp(X(k))Q is defined by the vanishing (tensored with Q) of [Z]redi for i < m and
of AJpX×S(Z)redm for i < m − 1. This forces FmCHp(X(k))Q = 0 if m > p or if m >
tr deg(k) + 1.

Example 1: p = 1
Here [Z]red0 is just the cycle class of Z if S is connected, or the various cycle classes

coming from different complex embeddings if S is not connected. Next, [Z]red1 is in
H1(X,Q) ⊗H1(S,Q) and is equivalent to the induced map on cohomology coming from
Alb(S) → J1(X) ⊗Z Q coming from s )→ AJ1X(Zs). If this is zero, then this map is
constant on connected components of S, and this allows us to define AJ1X×S(Z)red0 ∈
J1(X)⊗ZH0(S,Q). Note that we do not need to reduce modulo lower weight sub-Hodge
structures on S for either of these.

Example 2. p = 2
The only really new invariants are [Z]red2 and AJpX×S(Z])red1 , which are the invariants

of Gr2CH2(X(k))Q. The former is an element of H
2(X)/Hg1(X)⊗H2(S)/Hg1(S). This

invariant was discussed by Voisin, and comes by integrating 2n − 2 forms on X over 2-
dimensional families of cycles Zs. The latter invariant is in

H2(X,C)⊗H1(S,C)

F 2(H2(X,C)⊗H1(S,C)) +H2(X,Q)⊗H1(S,Q)
.

We note that the portion of this coming from Hg1(X)⊗H1(S) can be realized by taking
a divisor Y on X representing the Hodge class in Hg1(X) cross a codimension 1 cycle on
S, and hence comes from an ambiguity. Thus H2(X)/Hg1(X) = 0 implies both invariants
of Gr2CH2(X(k))Q are zero. It is worth noting that the geometry of S comes in—if S has
no H1 and no transcendental part of H2, then Gr2CH2(X(k))Q = 0.
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Lecture 5: The Tangent Space to Algebraic Cycles
This lecture is based on joint work with Phillip Griffiths [G-G2].
It was noted by Van der Kallen that there is a natural tangent space to algebraic

K-theory, and that
TKMilnorp (OX(k)) ∼= Ωp−1X(k)/Q.

The map is

{f1, . . . , fp} )→ ḟ1df2 ∧ · · · ∧ dfp + · · ·+ (−1)p−1ḟpdf1 ∧ · · · ∧ dfp−1
f1f2 · · · fp .

This generalizes the statement for p = 1 that

TO∗X(k) ∼= OX(k),

but the more exotic differentials over Q only manifest themselves once we reach p ≥ 2.
Bloch then derived from this the natural formula that

THp(Kp(OX(k))) ∼= Hp(Ωp−1X(k)/Q),

which thus is a formula for TCHp(X(k)).

Example 1. p = 1

The formula above reduces to the classical formula

TCH1(X(k)) ∼= TH1(O∗X(k)) ∼= H1(OX(k))

where the second map is induced by

(fαβ) )→ (
ḟαβ
fαβ

).

We have a filtration on differentials

FmΩrX(k)/Q = Im(Ω
m
k/Q ⊗k Ωr−mX(k)/Q)→ ΩrX(k)/Q.

We thus have
GrmΩrX(k)/Q

∼= Ωmk/Q ⊗k Ωr−mX(k)/k.

When X is smooth, there is a spectral sequence that computes the H∗(ΩrX(k)/Q) which
degenerates at the E2 term and has

Ep,q2 = Hp(Ωpk/Q ⊗k Hq−p(Ωr−pX(k)/k),∇).

This gives a natural filtration FmHp(Ωp−1X(k)/Q) with

GrmHp(Ωp−1X(k)/Q)
∼= Hm(Ω•k/Q ⊗k Hp(Ωr−•X(k)/k),∇).
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Example 2. p = 2

There are two graded pieces to H2(Ω1X(k)/Q):

Gr0H2(Ω1X(k)/Q) = ker(H
2(Ω1X(k)/k)

∇−→Ω1k/Q ⊗k H3(OX(k)));
Gr1H2(Ω1X(k)/Q) = coker(H

1(Ω1X(k)/k)
∇−→Ω1k/Q ⊗H2(OX(k))).

We know that geometrically /C, the Generalized Hodge Conjecture predicts that the image
of AJ2X is precisely the part of J

2(X) constructed fromH3(X,C)1, i.e. the maximal weight
1 sub-Hodge structure of H3(X,C). The Absolute Hodge Conjecture implies that this is

contained in the image of ker(H2(Ω1X(k)/k)
∇−→Ω1k/Q ⊗k H3(OX(k))) ⊗is C. However, one

does not expect that the two coincide, and indeed the tangent space to Chow groups is
correct only formally and not geometrically. Note that Gr1H2(Ω1X(k)/Q) has dimension

over k that grows linearly with the transcendence degree of k once H2,0(X) W= 0, which
is in line with our expectations from Roitman’s Theorem. This example was discussed by
Esnault-Paranjape [E-P].

Geometrically, there are two problems with the tangent space formula for Chow
groups. First order tangent vectors may fail to be part of an actual geometric family,
and first order tangents to rational equivalences may fail to be part of an actual geometric
family of rational equivalences. In order to understand this phenomenon better, we need
to lift from tangent spaces to Chow groups to obtaining a formula for tangent spaces to
algebraic cycles. The strategy adopted for doing this is to look at a kind of Zariski tangent
space.

Example 3. 0-cycles on an algebraic curve

Let X be an irreducible algebraic curve defined /k. If {Uα} is a k-Zariski cover of X,
then a 0-cycle is defined by giving non-zero k-rational functions rα on Uα whose ratios on
overlaps Uα ∩Uβ belong to O∗X(k). Now ṙα/rα describes a tangent vector. We may define
the sheaf of principal parts PPX(k) to be given as the additive sheaf MX(k)/OX(k),
whereMX(k) is the sheaf of germs of k-rational functions. Then

TZ1(X(k)) ∼= H0(X,PPX(k)).
From the exact sequence

0→ OX(k) →MX(k) → PPX(k) → 0

we get a natural map
H0(X,PPX(k))→ H1(OX(k))

which we may think of as a map

TZ1(X(k))→ TCH1(X(k)).

Because MX(k) is flasque, this map is surjective. We may think of the exact sequence
above as the tangent exact sequence to

0→ O∗X(k) →M∗
X(k) → DX(k) → 0,
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where DX(k) is the sheaf of k-divisors on X.
What is of course missing in this discussion is the exponential sheaf sequence

0→ Z→ OX(C) → O∗X(C) → 0.

This leaves the algebraic category in two ways—we need to use the classical topology rather
than the Zariski topology, and we need to use the transcendental function f )→ exp(2πif).
Once we have this, we get the exact sequence

0→ J1(X(C))→ CH1(X(C))→ Hg1(X(C))→ 0

which completely solves the problem of describing CH1(X(C)) in the analytic category.
One of the enduringly nice features of taking derivatives is that transcendental maps in
algebraic geometry frequently have algebraic derivatives.

Once we pass to higher codimension, we no longer have the exponential sheaf sequence,
and we do not really know what the right transcendental functions to invoke are—in some
cases, these turn out to involve polylogarithms.

Example 4. KMilnor
2 (k)

Here we have
TKMilnor

2 (k) ∼= Ω1k/Q.
Unfortunately, this is deceptively simple. Consider, for example, the family of elements

t )→ {a, t},
where a ∈ k. The derivative is da/a ∈ Ω1k/Q. If a ∈ Q̄, then da = 0 and thus the derivative
of this map vanishes identically. However, it is known that this map is actually constant
if tr deg(k) > 0 only when a is a root of unity. This is an example of what we call a
null curve, one whose formal derivative is identically zero but which is not constant. The
problem is that TKMilnor

2 (k) is really a quotient of two tangent spaces—to the space of
possible products of Steinberg symbols, and to the space of Steinberg relations. If we are
unable to integrate a tangent vector in the space of Steinberg relations up to a geometric
family of Steinberg relations, we might expect this to produce a null curve.

Example 5. 0-cycles on a surface

This turns out to already embody many of the complexities of tangent spaces to cycles.
The answer is

TZ2(X(k)) ∼= ⊕|Z|H2
|Z|(Ω

1
X(k)/Q),

where the sum is over supports of irreducible codimension 2 k-subvarieties of X. This
involves local cohomology. There is a natural map

H2
|Z|(Ω

1
X(k)/Q)→ H2(Ω1X(k)/Q)

which we may interpret as giving us a map

TZ2(X(k))→ TCH2(X(k)).
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These are quite complicated objects. For example, if we work over C, then the tangent
space to 0-cycles supported at a point x ∈ X is

TZ2(X(C))x ∼= lim|Z|=xExt2OX(C)(OZ ,Ω1X(C)/Q).

An example of the simplest family where the distinction between differentials over k and
differentials over Q comes in is the family

Z(t) = Var(x2 − αy2, xy − t),

where α ∈ C∗ is transcendental.
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