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I. Definitions and basic properties

Mumford-Tate groups are the basic symmetry groups of
Hodge theory. They lie at the interface of Hodge theory
with

• algebraic geometry (variations of Hodge structure)
• representation theory of real, non-compact semi-simple

Lie groups (discrete series)
• arithmetic algebraic geometry (theory of Shimura va-

rieties)

Much of the use of Mumford-Tate groups has been in the
classical case of weight one polarized Hodge structures (the-
ory of Shimura varieties). Since this topic will be covered
elsewhere in the summer school, this set of lectures will em-
phasize the non-classical, higher weight case which is much
less explored.

The first four of these lectures will be largely self-contained,
making use of the lectures of Lê Dung Tráng, Cattani, Tu,

Lectures based in large part on joint work with Mark Green and Matt Kerr.
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2 PHILLIP GRIFFITHS

El Zein, Voisin, and Carlson at this summer school. Lec-
tures V and VI will use some of the basic structure theory of
semi-simple complex and real Lie groups and Lie algebras,
and will be largely without proofs. At the end we indicate,
in very general terms, where some potentially interesting
directions for further work might lie.

A. Notations
B. Polarized Hodge structures
C. Mumford-Tate groups
D. Basic properties

A. Notations.

• V is a vector space over Q; VR = V ⊗Q R etc.;
• V̌ is the dual vector space;
• Q : V ⊗ V → Q is a non-degenerate bilinear form

with Q(v, w) = (−1)nQ(w, v) where n will be the
weight of the Hodge structure;
• GL(V ), GL(VR) etc. are the general linear groups;
• G = Aut(V,Q) is the subgroup of GL(V ) preserving
Q.

Definition. A Q-algebraic group will be a subgroup of a
GL(V ) defined by polynomial equations with Q-coefficients.1

Example. G is a Q-algebraic group.

A connected, commutative Q-algebraic group is called an
algebraic torus.

Examples. Q∗ is an algebraic torus.

T =







 a b

−b a


 : a2 + b2 = 1, a, b ∈ Q






is an algebraic torus.

We may also define R-algebraic groups.

1The basic reference is Borel, Linear algebraic groups.
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Example. ResC/R C∗, the restriction of scalars from C to R

of C∗, is an R-algebraic group. Throughout these lectures
it will be denoted simply by S. It is the semi-direct product
of its subgroups R∗ (scaling) and S1 = {z ∈ S : |z| = 1}.

For a Q-algebraic group M , M(Q), M(R), M(C) will
denote the set of its Q, R, C-valued points.

• For a subgroup Γ ⊂ M , Γ
Q

will denote its Q-Zariski
closure.

Definition. The Lie algebra g of G is the tangent space to
G at the identity.

Examples. gl(V ) = End(V ) ∼= V ⊗ V̌ with the bracket

[X, Y ](v) = X(Y (v))− Y (X(v)), X, Y ∈ gl(V ), v ∈ V.
For G as above

g = {X ∈ gl(V ) : Q(Xu, v) +Q(u,Xv) = 0, u, v ∈ V }.

B. Polarized Hodge structures.

Definition (i). A Hodge structure of weight n is given by
a Hodge decomposition

{
VC = ⊕

p+q=n
V p,q

V
p,q

= V q,p .

Definition (ii). A Hodge structure of weight n is given by
a Hodge filtration{

F n ⊂ F n−1 ⊂ · · · ⊂ F 0 = VC

F p ⊕ F n−p+1 ∼−→ VC, p = n, . . . , 1.

Definition (iii). A Hodge structure of weight n is given by
a non-constant homomorphism of R-algebraic groups

ϕ̃ : S→ GL(VR)
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such that over C the eigenspace decomposition of ϕ̃ : S →
GL(VC) is

{
VC = ⊕

p+q=n
V p,q

ϕ̃(z)v = zpz̄qv, v ∈ V p,q.

Equivalence of definitions.

(i)⇒ (ii) F p = ⊕
p′≧p

V p′,q′

(ii)⇒ (i) V p,q = F p ∩ F q

(i)⇔ (iii) V p,q = zpz̄q eigenspace for ϕ̃(S).

The Weil operator C ∈ GL(VR) is defined by

C = ϕ̃(i) (= ip−q on V p,q) .

We denote the Hodge structure by (V, ϕ̃), or sometimes by
just Vϕ̃.

Definition. A polarized Hodge structure (V,Q, ϕ) of weight
n is given by

ϕ : S1 → G(R)

such that (i) the characters of ϕ lie in [−n, n], and (ii) the
Hodge-Riemann bilinear relations{

Q(F p, F n−p+1) = 0

Q(v, Cv) > 0, 0 6= v ∈ VC

are satisfied.
These relations are equivalent to




Q(V p,q, V p′,q′) = 0, p′ 6= n− p
ip−qQ(v, v) > 0, 0 6= v ∈ V p,q.

Remark. The action of ϕ(S1) on VC decomposes into eigenspaces
V p,q = V

q,p
where ϕ(z) = zp−q (= zpz̄q) on V p,q. The char-

acter group
X(S1) ∼= Z

where m ∈ Z gives the character χm(z) = zm.
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Note. The difference between ϕ̃ and ϕ is that the scaling
action of ϕ̃ gives the weight

ϕ̃(r) = rn idV .

We may define a Hodge structure, without specifying the
weight, to be given by

ϕ̃ : S→ GL(VR)

with the following condition: On Q∗ ⊂ S the action of
ϕ̃(Q∗) decomposes over Q into weight spaces

V = ⊕
n
V (n)

and (V (n), ϕ̃ |V (n)) is a Hodge structure of weight n. Hodge
structures of weight n are sometimes referred to as pure
Hodge structures. Polarized Hodge structures are always
assumed to be pure.

Basic example. V = Q2 = column vectors v =
(
v1

v2

)
,





Q(u, v) = tvQu, Q =
(

0 1
−1 0

)

VC = V 1,0 ⊕ V 0,1

V 1,0 = Cv1,0, v1,0 =
(
v1

v2

)
.

The condition
iQ(v1,0, v1,0) > 0

is
(−i)(v1v2 − v1v2) > 0 .

This implies v2 6= 0 and when we scale to have

v1,0 =

(
τ

1

)

the above condition becomes Im τ > 0. We set

vτ =
1√

2 Im τ

(
τ

1

)

⇒ iQ(vτ , vτ ) = 1 .

Then vτ , vτ give a Hodge basis.
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Denoting by ϕτ the circle giving the Hodge structure, in
terms of the Hodge basis ϕτ has the matrix

ϕτ(z) =



z 0

0 z−1



 , z−1 = z̄ .

Example. The Tate structure Q(n) := 2πiQ ⊂ C with
Hodge structure of pure type (−n,−n).

Hodge structures and polarized Hodge structures admit
the usual operations of linear algebra: ⊕,Hom,⊗,∧ and
Sym. A subspace W ⊂ V is a sub-Hodge structure of (V, ϕ̃),
not assumed to be pure, if

ϕ(S)WR ⊆ WR .

In the polarized case (V,Q, ϕ) we have that Q |W is non-
singular and

V = W ⊕W⊥

is a direct sum of polarized Hodge structures. Polarized
Hodge structures form a semi-smiple abelian category.

Because of

Hodge’s Theorem. The cohomology group Hn(X,Q) of a
smooth, projective algebraic variety has a polarized Hodge
structure of weight n.

polarized Hodge structures are the basic objects of Hodge
theory. The basic example is the polarized Hodge structure
on H1(Eτ ,Q) where

Eτ = C/Z + Zτ .

Note. In practice we will usually be given a lattice VZ with
V=VZ⊗Z Q. For the theory of Mumford-Tate groups it is
better to work over Q than over Z.

For a Hodge structure (V, ϕ̃) of even weight n = 2p, we
define the space of Hodge vectors by

Hgϕ̃ = V ∩ V p,q .
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These are the rational vectors of Hodge type (p, p). The fa-
mous Hodge conjecture is that the Hodge vectors inH2p(X,Q)
are represented by the fundamental classes of algebraic cy-
cles.

C. Mumford-Tate groups.

Definition. The Mumford-Tate group Mϕ̃ associated to a
Hodge structure (V, ϕ̃) is the smallest Q-algebraic subgroup
of GL(V ) such that

ϕ̃(S) ⊂Mϕ̃(R).

It is not required that Vϕ̃ be of pure weight. If (Vϕ̃) =
(V1,ϕ̃1

)⊕ (V2,ϕ̃2
) is a direct sum, then Mϕ̃ ⊆Mϕ̃1

×Mϕ̃2
and

the projection onto each factor is surjective but equality
may not hold (e.g., if Vϕ̃1

= Vϕ̃2
then Mϕ̃ is the diagonal

subgroup of the product).

Definition. The Mumford-Tate group Mϕ associated to
a polarized Hodge structure (V,Q, ϕ) is the smallest Q-
algebraic subgroup of G such that

ϕ(S1) ⊂Mϕ(R) .

Note. In the literature Mϕ̃ is usually called the Mumford-
Tate group and Mϕ the special Mumford-Tate group or
Hodge group. Because of the centrality in these lectures
of polarized Hodge structures, we shall refer to both as
Mumford-Tate groups and let the subscripts ϕ and ϕ̃ spec-
ify to which we are referring. For pure Hodge structures we
shall see that Mϕ̃ and Mϕ differ only by the scaling action;
Mϕ̃ will be the semi-direct product of Mϕ and Gm,Q.

Basic example (continued). For the above example, we
first have G = SL2(Q). The change of basis from the Hodge
basis to the Q-basis is

Aτ =
1√

2 Im τ


τ τ

1 −1


 ,
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and so the matrix of ϕτ (z) in the Q-basis is

ψτ (z) := Aτϕτ (z)A
−1
τ .

The entries of ψτ are not particularly illuminating quadratic
expressions in τ and τ with Q-coefficients. To satisfy an
additional equation over Q beyond detψτ = 1 suggests that
τ must be an algebraic number. We shall see later that
there are two cases:

(i) Q(τ) is a purely imaginary quadratic extension of Q,
and Mϕτ

are the elements of norm one in Q(τ)∗;
(ii) Mϕτ

= SL2(Q).

Example. For Q(n), the Mumford-Tate group is Gm,Q for
n 6= 0 and is trivial for n = 0.

We shall now formulate and prove the basic property for
Mϕ; subsequently, we shall do the same for Mϕ̃. In each
case the basic property is an answer to the question:

What are the defining equations for the Q-algebraic
group Mϕ, respectively Mϕ̃?

For this we consider a polarized Hodge structure (V,Q, ϕ)
and let 




T k,l = V ⊗
k ⊗ V̌ ⊗l

,

T •,• = ⊕
k,l≧0

T k,l

be the tensor spaces and tensor algebra of V . We then have



Hgk,l
ϕ ⊂ T k,l

Hg•,•ϕ = ⊕Hgk,l
ϕ

consisting of the Hodge tensors in T k,l and the algebra of
Hodge tensors.

Basic Property (I). Mϕ is the subgroup of G fixing Hg•,•ϕ .

Step one: If t ∈ Hgk,l
ϕ , then Mϕ fixes t.
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Proof. Since t is rational, fixing it defines a Q-algebraic
subgroup G(t) of GL(V ). If t is of Hodge type (p, p) where
n(k − l) = 2p, then ϕ(z)t = zp−pt = t. If follows that

ϕ(S1) ⊆ G(t)(R) ,

and by the minimality of Mϕ we conclude that Mϕ ⊂ G(t).
This gives

Mϕ ⊆ Fix Hg•,•ϕ .

Step two: If Mϕ stabilizes the line Qt spanned by t ∈ T k,l,

then t ∈ Hgk,l
ϕ is a Hodge tensor.

Proof. Since ϕ(S1) ⊂ Mϕ(C), if Mϕ stabilizes Qt then t
will be an eigenvector for ϕ(z) for a general z ∈ S1. Hence
t is of pure Hodge type, and since it is rational it must be
a Hodge tensor.

Chevalley’s theorem (in our context). Let M be a closed
Q-algebraic subgroup of GL(V ). Then M is the stabilizer

of a line in
m
⊕
i=1

T ki,ki.

Completion of the proof of the basic property (I). There
exists

τ = (t1, . . . , tm) ∈
m
⊕
i=1

T ki,ki

such that setting L = Q · τ ,
Mϕ = {g ∈ GL(V ) : g(L) ⊆ L} .

Then g ∈ Mϕ fixes each line Qti ⊂ T ki,ki, and by step two
ti is a Hodge tensor. Thus

Fix Hg•,•ϕ ⊆
⋂

i

Fix(ti) = Mϕ . �

Proof of Chevalley’s theorem. From the open embedding GL(V ) →֒
End(V ) of algebraic varieties comes the injection of coor-
dinate rings

Q[GL(V )] ←֓ Q[End(V )] ∼= ⊕
k≥0

Symk(End(V )∨) ⊆ ⊕
k≥0

T k,kV.
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The action of GL(V ) on itself by conjugation extends to
the adjoint action on End(V ), and these induce compat-
ible actions on the coordinate rings which, moreover, are
compatible with the action of GL(V ) on ⊕T k,kV . Write
S := Q[End(V )]. If we choose a basis for V , we may
think of S as polynomials P (X i

j) in the matrix entries of
X ∈ End(V ).

The stabilizer of the ideal

I(M) ⊆ Q[GL(V )]

of M , viewed as a subvariety of GL(V ), is the largest alge-
braic subgroup contained in the Zariski closure of M . But
since M is Zariski closed, and a subgroup, the stabilizer is
just M . Note that S and

I := I(M) ∩ S
inherit nonnegative GL(V )-invariant gradings from the above
injection of coordinate rings, and M is also the subgroup of
GL(V ) stabilizing I in S. This follows from the above be-
cause Q[GL(V )] = Q[End(V )][ 1

det] and det is nonvanishing
on M .

Since M is an algebraic variety in GL(V ), I(M) is finitely
generated; the same goes for I, the ideal of the Zariski
closure of M in End(V ). Let Pi ∈ I≤k be a generating set
for I. Since I≤k generates I and the action is compatible
with products, M is the stabilizer of I≤k in S≤k, and this
is, by linear algebra, the same as the stabilizer of

L := ∧dI≤k ⊆ ∧dS≤k

where dim I≤k = d and ∧dS≤k ⊂ ⊕
ℓ≥0

T ℓ,ℓV . �

For a general Hodge structure (V, ϕ̃), not necessarily of
pure weight, using GrW

0 Hg•,•ϕ̃ to denote the weight zero part

⊕
i

Hgki,ki

ϕ̃ of Hg•,•ϕ̃ , essentially the same argument gives the
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Basic Property (II). Mϕ̃ is the subgroup of GL(V ) fixing
GrW

0 Hg•,•ϕ̃ .

We next have
If (V,Q, ϕ) is a polarized Hodge structure, then the follow-
ing properties of a subspace W ⊂ V are equivalent:

(i) W is invariant under Mϕ;
(ii) W is a sub-Hodge structure.

Proof of (i) ⇒ (ii). WR is invariant underMϕ(R) which con-
tatins ϕ(S1); thus the circle acts onWR to give a sub-Hodge
structure, necessarily polarized, of (V,Q, ϕ).

Proof of (ii) ⇒ (i). As previously noted, since W is a sub-
Hodge structure, we have the Q-orthogonal direct sum de-
composition

V = W ⊕W⊥ .

If G(W ) ⊂ G is the Q-algebraic group of those g ∈ G
with g(W ) ⊆ W , then we have ϕ(S1) ⊂ G(W )(R). By the
minimality of Mϕ, we then have Mϕ ⊆ G(W ). �

Corollary. Mϕ is a reductive algebraic group.

The above properties of Mϕ are also valid for Mϕ̃. An
additional property is: Let ρ : GL(V ) → GL(Vρ) be a
representation. Then setting ϕ̃ρ = ρ◦ϕ̃, (Vρ, ϕ̃ρ) is a Hodge
structure and

Mϕ̃(ρ) = ρ(Mϕ̃) .

The proof is an exercise.
For properties of algebraic groups see Borel, loc. cit. A

consequence of the corollary is that Mϕ is an almost direct
product M1 × · · · ×Mk × A of simple Q-algebraic groups
Mi and an algebraic torus A.

Below we will see that A is anisotropic; i.e., A(R) is com-
pact.
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Exercise. Any non-trivial reductive subgroup of SL2 is a
torus A. If A is anisotropic, it is conjugate to the standard
torus given earlier.
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II. CM Hodge structures

For reasons of exposition, in this lecture we shall assume
that our Hodge structures (V, ϕ) are of pure weight n, sim-
ple, and polarizable. Simple means that there are no non-
trivial, proper sub-Hodge structures (and thus simple ⇒
pure weight). Polarizable means that there exists a po-
larization — we do not specify what it is.2 We also set
G̃ = GL(V ).

The internal symmetries of (V, ϕ) are encoded in its en-
domorphism algebra

Eϕ = {X ∈ Endϕ(V, V )} .
The notation Endϕ(V, V ) means that as maps of VR to itself,
for all z ∈ S1 we have

[X,ϕ(z)] = 0 .

Identifying End(V, V ) with V ⊗ V̌ , using the basic property
we have

Eϕ = Hg1,1 ,

or equivalently
Eϕ = [End(V, V )]Mϕ

are the Mϕ-invariants in End(V, V ).
Using the assumption that (V, ϕ) is simple, it follows that

Eϕ is a division algebra and E
∗
ϕ = Eϕ\{0} is a subgroup of

G̃(Q). In fact,
E
∗
ϕ = ZG̃(Mϕ)

is the centralizer of Mϕ in G̃.
The existence of a polarization Q implies that Eϕ is a

special type of division algebra; namely, it has a positive
(anti-) involution ι: For X ∈ Eϕ and u, v ∈ V , ι(X) = X†

is defined by
Q(Xu, v) = Q(u,X†v) .

2By the basic property I, ϕ will preserve any polarization.
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The involution property (X†)† = (−1)nX is immediate;
the positivity is a consequence of the 2nd Hodge-Riemann
bilinear relation (we do not need its explicit form). Division
algebras with this property have been classified into four
types. For our purposes the ones of type IV are of interest.
Denoting by L the center of Eϕ, division algebras of this
type are described as follows:

(i) L is a CM-field. That is, it is a totally imaginary
extension of Q having a totally real subfield L0 with
[L : L0] = 2;

(ii) Eϕ is a division algebra of rank d2 over L, where
d2 = [Eϕ : L], and

(iii) Eϕ ⊗Q R ∼= Md(C)× · · · ×Md(C)︸ ︷︷ ︸
e

where e = [L0 : Q]

and where

ι(A1, . . . , Ae) = (tĀ1, . . . ,
tĀe) .

Definition. (V, ϕ) is a CM-Hodge structure ifMϕ is a torus.

Proposition. If (V, ϕ) is a CM-Hodge structure, then Eϕ

is a CM-field.

Step one: E∗ϕ is a Q-algebraic group and contains a maxi-
mal torus T defined over Q (cf. Borel). Since it is maximal
and centralizes Mϕ, we have T ⊃ Mϕ.

Any sum of non-zero elements of T (Q) ⊂ E∗ϕ belongs

to E
∗
ϕ ⊂ G̃ and commutes with T , hence by maximality

belongs to T (Q). Thus there is a field L with η : L →֒ Eϕ

and η(L∗) = T (Q). For any w ∈ V , the subspace W =
η(L)w of V is stabilized by Mϕ; hence is a sub-Hodge struc-
ture. Thus W = V and V is a 1-dimensional vector space
over L. Also [L : Q] = dimV := r, and we have

E
∗
ϕ = T (Q) = ZG̃(Mϕ) .
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Step two: A Hodge frame is given by a basis ω = {ωj ∈
V pj ,qj , ωr−j = ωj} for VC such that

ipj−qjQ(ωj, ωr−k) = δjk

(think of vτ and v̄τ in the standard example). We may
choose ω to diagonalize the action of Mϕ and hence of ϕ(S).

This basis defines and diagonalizes a maximal torus of G̃
centralizing Mϕ and a priori defined over R. But since
ZG̃(Mϕ) = T (Q), this torus is necessarily T and conse-
quently ω diagonalizes η(L).

Step three: Let γ ∈ L be a primitive element for the
extension L/Q and

P (λ) =

r∏

j=1

(λ− ηj(γ))

its minimal polynomial over Q, where ηi : L →֒ C are
embeddings. This is also a minimal polynomial for η(γ),
and so up to reordering in the Hodge basis we have

η(l) = diag{η1(l), . . . , ηr(l)}
for all l ∈ L. Since η(L) ⊂ G̃(R) the eigenvalues of η(γ) on
ωj and ωr−j = ωj must be conjugate, which implies that
ηr−j = ηj. Except when n is even and r is odd, a case
that can be ruled out although we shall not do so here, this
shows that L is totally imaginary.

Step four: The Rosati involution gives

σ := η−1 ◦ † ◦ η ∈ Gal(L/Q),

and the defining properties of † and of the Hodge frame
give

ηj ◦ σ = ηj

for all j. (This computation is a nice exercise.) The exis-
tence of such an involution is the defining property for a
CM field. �
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Standard example (continued): The above argument
simplifies in this case. If Mτ is a torus, then it follows from
Eϕ = [Endϕ(V, V )] that Vτ has an extra endomorphism
other than ± idV . If Λτ = Z + Zτ is the lattice with Eτ =
C/Λτ , then there is a complex number ξ such that

ξ(Λτ ) ⊆ mΛτ

for some m ∈ Z. Then we have



ξ = a+ bτ

ξτ = c+ dτ

where a, b, c, d ∈ Z. This gives an equation

τ 2 + ατ + β = 0

where α, β ∈ Q.
Conversely, suppose that τ satisfies such an equation.

Then multiplication by τ gives an isogeny of Eτ to itself,
which we may think of as a Hodge class [τ ] in H2(Eτ ×
Eτ ,Q). The induced action of [τ ] as an element in
Endτ (H

1(Eτ ,Q)) = Endτ (V ) diagonalizes with distinct eigen-
values with respect to some Hodge frame vτ , v̄τ . Since the
eigenvalues are distinct, the only matrices that commute
with it are diagonal. It follows that Mτ is a torus with{

Mτ (C) = diag(z, 1/z)

Mτ (R) = diag(exp(ix), exp(−ix)) .
Writing out the elements of this form which are rational
with respect to a rational basis of V we have z = exp(ix)
in Q(τ). (This is another nice exercise.) From this it follows
thatMτ is isomorphic to the elements of norm one in Q(τ)∗.

There is a converse to the above:
Suppose that Eϕ has an embedded field η : L →֒ Eϕ of

degree r = dimV . Then Mϕ is abelian.

Proof. Since η(L) ⊂ Hg1,1
ϕ , by the basic property Mϕ must

centralize η(L). Furthermore, η(L∗) gives the Q-points of a
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torus of dimension [L : Q]. Since by assumption [L : Q] =

dimV , this torus is maximal in G̃, and hence it contains
Mϕ. �

Anticipating the discussion in the next lecture of the pe-
riod domain D = {set of polarized Hodge structures on
(V,Q) with given Hodge numbers} as a homogeneous com-
plex manifold

D = G(R)/Hϕ

whereHϕ = {g ∈ G(R) : [g, ϕ] = 0} is the compact isotropy
group preserving a reference polarized Hodge structure (V,Q, ϕ),
we have:

If Mϕ(R) is contained in Hϕ, then Mϕ is a torus and ϕ
is a CM Hodge structure.

Proof. First, the Mumford-Tate group Mϕ commutes with
Eϕ. Since the action of Mϕ(R) preserves the Hodge struc-
ture it follows that Mϕ(Q) ⊆ Eϕ. Thus Mϕ(Q) is com-
mutative, and by the Zariski density of the Q-points in a
connected, linear Q-algebraic group, Mϕ is commutative.
Hence it is a torus and the previous result applies. �

It may be shown that the CM polarized Hodge structures
are dense in the period domain. They play a central role
in the theory of Shimura varieties. Their role in the study
of higher weight Hodge structures is in its early stages.
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III. Mumford-Tate domains

Given (V,Q) and a set of Hodge numbers hp,q = hq,p,
p + q = n and

∑
p+q=n h

p,q = dimV , the period domain
D is the set of polarized Hodge structures (V,Q, ϕ) with
dimV p,q = hp,q. Given ϕ ∈ D, we recall that a Hodge frame
ω is {ωj ∈ V pj ,qj , ωr−j = ωj and ipj−qjQ(ωj, ωk) = δjk}.
Picking a reference point ϕ, the set of Hodge frames is
identified with G(R), and the subgroup Hϕ of G(R) fixing
ϕ is compact. Hence,

D = G(R)/Hϕ

is a homogeneous manifold.
In fact, D is a homogeneous complex manifold. One way

to see this is to consider the compact dual Ď, consisting
of all filtrations F • = {F n ⊂ F n−1 ⊂ · · · ⊂ F 0 = VC}
satisfying the first Hodge-Riemann bilinear relations

Q(F p, F n−p+1) = 0 .

It may be shown that Ď is acted on transitively by G(C)
with stability group of F • ∈ Ď a parabolic subgroup P .
Thus

Ď = G(C)/P

is a compact, complex manifold. It is in fact a rational,
projective variety defined over Q, as may be seen from the
G(C)-equivariant embeddings

Ď ⊂
[η/2]∏

p=n

Grass(f p, VC) ⊂
[η/2]∏

p=n

P(∧fpVC)

where f p = hn,0 + · · ·+ hp,n−p, and where the second inclu-
sion is the Plücker embedding. Then

D ⊂ Ď

is an open G(R)-orbit of a fixed point ϕ ∈ D, and as such
has an induced complex structure.
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Basic example (continued). In the case n = 1, h1,0 = 1
we have

H ⊂ Ȟ = P1 .

Another way to see the complex structure on D is to
observe that End(V, V ) ∼= V⊗V̌ has a weight-zero polarized
Hodge structure and g ⊂ End(V, V ) is a sub-Hodge struc-
ture. In fact

gC = ⊕
i

g−i,i

where

g−i,i =
{
X ∈ gC : X(V p,q) ⊂ V p−i,q+i

}

shifts the Hodge decomposition i-places to the right.3 We
have




gi,−i = g−i,i

g0,0 = hϕ,C= the complexified Lie algebra of Hϕ

[g−i,i, g−j,j]⊆ g−(i+j),i+j.

Setting
g− = ⊕

i>0
g−i,i, g+ = g−

the complexified tangent space

TϕD ∼= gC/hϕ,C

∼= g− ⊕ g− .

Thus, D has a G(R)-invariant almost complex structure
whose (1, 0) part at the identity coset is g−. By the bracket
relation above this almost complex structure is integrable.
Note that if ϕ ∈ D ⊂ Ď is chosen as a reference point, then

p = ⊕
i≦0

g−i,i = hϕ,C ⊕ g+ .

Note also that
w := g−1,1 ⊂ g−

3We shall drop the subscript “ϕ” on the g
−i,i and on the m

−i,i below.
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gives a G(C)-invariant distribution

W ⊂ TĎ .

A holomorphic map

Φ : S → Ď ,

where S is a complex manifold and Φ(s) = F •s is a holomor-
phically varying filtration, is said to satisfy the infinitesimal
period relation (IPR) if

Φ∗ : TS → W .

We may think of this as

dF p
s ⊂ F p−q

s ⊗ Ω1
S,s .

A local variation of Hodge structure is given by Φ : S → D
as above that satisfies the IPR. If we set W⊥ = I ⊂ T ∗D,
then for local holomorphic sections θ of I we have




Φ∗(θ) = 0 ,

Φ∗(dθ) = dΦ∗(θ) = 0 .

The second relation gives the integrability conditions as-
sociated to the differential constraint dF p

s ⊂ F p−1
s ⊗ Ω1

S,s.
They are equivalent to saying that

Φ∗(TsS) := E ⊂ m−1,1

is an abelian subalgebra.

Definition. Let ϕ ∈ D have a Mumford-Tate group Mϕ.
Then the associated Mumford-Tate domain is the Mϕ(R)-
orbit

DMϕ
= Mϕ(R) · ϕ ⊂ D

of ϕ.

Proposition. DMϕ
is a homogeneous complex submanifold

of the period domain D.

Proof. The basic observation is that the Lie algebra of Mϕ

mϕ ⊂ g
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is a sub-Hodge structure of g. Then, as above

mϕ,C = ⊕
i

m−i,i

where m−i,i = mϕ,C ∩ g−i,i, and where m0,0 = mϕ,C ∩ hϕ,C is
the complexified Lie algebra of the isotropy group HMϕ

=
Hϕ ∩Mϕ(R): thus

DMϕ
= Mϕ(R)/HMϕ

.

We have that m−ϕ = mC ∩ g− gives the (1, 0) part of an
Mϕ(R)-invariant almost complex structure, which is inte-
grable for the same reason as in the period domain case. �

A basic fact is given by the

Proposition. Mϕ(R) contains a compact maximal torus.

Proof. We have observed above that Mϕ(R) is reductive,
and thus it is an almost direct product M1 × · · · ×Ml ×
A of simple, real Lie groups Mi and an abelian part A.4

We shall assume that Mϕ(R) is simple, and comment that
the argument may be extended to the general case. For
notational simplicity, we shall drop the subscript ϕ — thus
Mϕ = M , etc.

We first note that

HM = ZM(ϕ(S1))

is the centralizer in M(R) of the circle ϕ(S1). In fact,
writing z ∈ S1 as z = e2πiξ, we have that ϕ(z) = ei(2p−n)ξ

on V p,n−p. It follows that for g ∈M(R)

gϕ(z) = ϕ(z)g ⇔ g(V p,q
ϕ ) ⊆ V p,q

ϕ .

Let B be a maximal connected abelian subgroup of M(R)
containing ϕ(S1). Then

B ⊆ ZM(ϕ(S1)) = HM ,

and since HM is compact, so is B. Because B is maximal
abelian, rank M(R) = dimB. �

4Mϕ may be simple as a Q-algebraic group but Mϕ(R) may only be semi-simple as a real Lie

group.
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Corollary. SLn is not a Mumford-Tate group for n ≧ 3.

The other extreme to M(R) being simple is when M = T
is an algebraic torus. The non-trivial characters of T acting
on VC occur in conjugate pairs, so that T is anisotropic.
In this case the component of the Mumford-Tate domain
containing ϕ is just the point ϕ, which is a CM-polarized
Hodge structure.

Basic example (continued): ϕ =
√
−d ∈ H. Then

Mϕ =






 α

√
dβ

−
√
dβ α


 : α, β ∈ Q and α2 + dβ2 = 1



 ,

and
DMϕ

=
√
−d

is a point in H.
Now we come to Noether-Lefschetz loci.

Definition. Let ϕ ∈ D. Then the Noether-Lefschetz locus

NLϕ =
{
ϕ′ ∈ D : Hg•,•ϕ′ ⊇ Hg•,•ϕ

}
.

In other words, the Noether-Lefschetz locus is the set of
polarized Hodge structures whose algebra of Hodge tensors
contains the given algebra Hg•,•ϕ . Classically, the Noether-
Lefschetz loci were defined in the parameter space of a fam-
ily of smooth projective varieties to be the subvariety where
a Hodge class remains a Hodge class. For geometric rea-
sons, the above would seem to be a more natural concept.
Denoting by Z◦ the component containing ϕ of a subvariety
Z of D with ϕ ∈ Z, we have the

Proposition. DMϕ

◦ = NLϕ
◦.

Proof. We clearly haveDMϕ

◦ ⊆ NLϕ
◦. SinceDMϕ

◦ is smooth,
it will suffice to show equality of the Zariski tangent spaces
at ϕ. Identifying TϕD with g− and TϕDMϕ

with m−, we
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have

TϕNLϕ =
{
X ∈ g− : X(ζ) = 0 for all ζ ∈ Hg•,•ϕ

}
.

Here, for ζ ∈ Hgk,l
ϕ of Hodge type (p, p) where n(k− l) = 2p

and for X ∈ g−i,i, X(ζ) is of Hodge type (p− i, p+ i). Thus
the above statement in brackets expresses the condition
that, to first order in the direction X, ζ remains a Hodge
class.

On the other hand, by the basic property of Mumford-
Tate groups, the m−-part of the complexification of the
tangent space TeMϕ ⊂ TeG is

{X ∈ g− : X(ζ) = 0 for all ζ ∈ Hg•,•ϕ } ,
which by the above gives

TϕNLϕ = TϕDMϕ
. �

For applications to algebraic geometry we consider a local
variation of Hodge structure

Φ : S → D ,

and for a point s0 ∈ S we set

NLs0(S) = Φ−1(NLΦ(s0)) .

A classical question is to estimate the codimension of NLs0(S)
in S. More precisely, if n = 2p and ζ ∈ V p,p

ϕ(s0)
∩ V is a

Hodge class, classically one has been interested in the locus
NLs0

(ζ) ⊂ S where ζ remains a Hodge class. An obvious
estimate is

codimS NLs0
(ζ) ≦ h2p,0 + · · ·+ hp+1,p−1

since the RHS is the number of conditions to be a Hodge
class. This estimate can be significantly sharpened and
applied to the algebra of Hodge tensors as follows: Set

E = Φ∗(Ts0S) ⊆ g−1,1 .

There are maps

Symp−2E ⊗ (E ∩m−1,1) : V 2p,0
Φ(s0)
→ V p+1,p−1

Φ(s0)
. 5
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Denote by σm the rank of this map.

“Proposition”: We have

codimS NLs0
(S) ≦ dim

(
g−1,1/m−1,1

)
−

∑

m

σm .

The quotation marks mean that there are some mild tech-
nical assumptions needed that do not effect the essential
geometric content of the result. The term g−1,1/m−1,1 repre-
sents the part of the normal space toDMϕ

inD that satisfies
the IPR. The terms σm reflect the integrability conditions
in the IPR. It may be shown by examples that the above
estimate is sharp. In practice it says that for a given Hodge
class ζ and when p ≧ 2, the codimension of NLs0

(ζ) is usu-
ally much less than the naive estimate h2p,0 + · · ·+hp+1,p−1.
If the Hodge conjecture is true it means that there are more
algebraic cycles than predicted by naive dimension counts.

5Here p ≧ 2; the classical case p = 1 is less interesting.
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IV. Variation of Hodge structure and

Mumford-Tate domains

A global variation of Hodge structure

Φ : S → Γ\D
is given by the following data:

• S is a smooth, quasi-projective variety;
• Γ ⊂ G(R) is a discrete group;6

• Φ is a locally liftable holomorphic mapping whose
local lifts satisfy the IPR.

Since Γ is discrete, the intersection of Γ with the compact
isotropy group Hϕ is a finite group. Being locally liftable
means that around each point s0 ∈ S there is a neighbor-
hood U and a diagram

D

��

U

Φ̃
<<

y
y

y
y

y Φ // Γ\D.
Because of this there is an induced mapping

Φ∗ : π1(S, s0)→ Γ

and the image is called the monodromy group. It is the
fundamental invariant of a global variation of Hodge struc-
ture.

Using the local liftings we may obtain a diagram

S̃
π

��

Φ̃ // D

��

S
Φ // Γ\D

where S̃ → S is the universal covering. It is sometimes
convenient to think of the properties of Φ as given by the

6In practice, Γ will usually be a subgroup of an arithmetic group, an arithmetic group being one
that is commensurable with GZ.
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Γ-invariant properties of Φ̃. For example, the Mumford-
Tate group MΦ of Φ may be defined as follows: Outside
of a countable union Z of proper subvarieties of S̃, the
Mumford-Tate groups MΦ̃(s̃) ⊂ G are constant and serve to

define MΦ. More precisely, choosing s0 ∈ S to be the image
of s̃0 ∈ S̃\Z, we may think of VC as the fibre over s0 ∈ S of

the flat vector bundle VC = S̃ ×Γ VC → S, and then Hg•,•s0

gives a subspace of the tensor algebra of V ⊂ VC = VC,s0

that, as a subspace, is invariant under parallel translation
around all paths γ ∈ π1(S, s0). Then MΦ = Fix Hg•,•s0

.
A basic property of the monodromy group is the following

Theorem (Schmid). If v ∈ V Γ
C is a monodromy invariant

vector, then the Hodge (p, q) components vp,q
s are constant

and Γ-invariant.

For applications of this theorem, we assume that there is
a lattice VZ ⊂ V with Γ ⊂ GZ. Then the intersection of
Γ with any compact subgroup of GL(VR) is a finite group.
We shall also work up to isogeny, i.e. up to finite coverings
S ′ → S with the induced variation of Hodge structure Φ′ :
S ′ → Γ′\D where Γ′ is a subgroup of finite index in Γ. In
particular, referring to the above, we observe that Γ acts
on the space Hg•,•s0

by a finite group. This is because the

polarizing form is definite on the spaces Hgk,l
s0

. Passing to a
a finite covering and relabeling we may assume that Hg•,•s0

is pointwise fixed by Γ. This implies that

(∗) Γ ⊂MΦ .

A consequence of Schmid’s theorem is the

Theorem of the fixed part: If U = V Γ is the subspace
of Γ-invariant vectors in V , then Q

∣∣
U

is non-singular, V =

U ⊕ U⊥ and the variation of Hodge structure splits into a
direct sum whose U-part is trivial.
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Proof. If u ∈ UC, then by Schmid’s theorem the Hodge
(p, q) components u(Φ̃(s̃))(p,q) are constant and Γ-invariant.

Thus the U -part of Φ̃(s̃) is a constant sub-Hodge structure

of Φ̃(s̃). �

Another consequence is the

Rigidity theorem: If we have two global variations of
Hodge structure 




Φ : S → Γ\D
Φ′ : S → Γ\D

where Φ(s0) = Φ′(s0) and the induced monodromy repre-
sentations coincide, then Φ = Φ′.

This is because the identity map idV ∈ Hom(V, V ) =
V ⊗ V̌ is Γ-invariant and of Hodge type (0, 0) at s̃0, hence
it is everywhere of type (0, 0).

For a third application, we recall that Γ
Q

denotes the
Q-Zariski closure of Γ ⊂ G. It is the smallest Q-algebraic
subgroup of G containing Γ. By (∗) above we have

Γ
Q ⊆MΦ .

Semi-simplicity of monodromy theorem: Γ
Q

is a semi-
simple Q-algebraic subgroup of Aut(V ).

In fact, the argument given in the proof of the structure

theorem below will show that Γ
Q

is a normal subgroup of
the derived group DMΦ.

When the global variation of Hodge structure arises from
geometry, meaning that we have a family

π : X→ S

of smooth projective varieties Xs = π−1(s) and

Φ(s) = Hn(Xs,Q)prim ,

the above results are due to Deligne as a consequence of his
mixed Hodge theory.
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Let now
MΦ = M1 × · · · ×Ml × A

be the almost product decomposition of the reductive Q-
algebraic group MΦ into simple factors Mi and an abelian
part A. Denote by Di ⊂ D the Mi(R)-orbit of Φ̃(s̃0). Then
we have the

Structure theorem: (i) The Di are homogeneous complex
submanifolds of D. (ii) After passing to a finite covering of
S, the monodromy group splits as a direct product

Γ = Γ1 × · · · × Γk, k ≦ l

where Γ
Q

i = Mi.
The proof will give the following:

(i) Setting P = M1 × · · · ×Mk and R = Mk+1 × · · · ×
Ml ×A, the Mumford-Tate group

MΦ = P ×R ,
and we denote by DP and DR the corresponding sub-
domains of D;

(ii) the global variation of Hodge structure is given by

Φ : S → Γ\DP ×DR

and is constant in the DR-factor;
(iii) the monodromy group Γ and the Q-algebraic group

P have the same tensor invariants.

In particular, although it seems not to be known whether or
not Γ is a subgroup of finite index in the arithmetic group
PZ, they at least have the same tensor invariants.

The main step in the proof of the structure theorem is
this:

Γ
Q

is a normal subgroup of the derived group DMΦ .

Proof. For any tensor representation ρ : V → Vρ we have a
corresponding variation of Hodge structure Φρ and a mon-
odromy group Γρ ⊂ Aut(Vρ). By the theorem of the fixed
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part,

Uρ := ker(Γ
Q

ρ − I) ⊂ Vρ

gives a constant sub-variation of Hodge structure. Recall-
ing that the Mumford-Tate group

MΦρ
= ρ(MΦ) ,

we infer that ρ(MΦ) stabilizes Uρ ⊂ Vρ. Given g ∈ MΦ(Q)

and γ ∈ Γ
Q

ρ ,

(∗∗) ρ(g)γρ(g)−1 fixes Uρ pointwise.

We now let Γ′ ⊂ Aut(V ) be the largest subgroup such
that Γ′ fixes all tensors of weight zero that are fixed by

Γ. Then Γ
Q ⊆ Γ′, and by the argument used in the proof

of the basic property (Chevalley’s theorem where ρ are the

respresentations on T k,k), it follows that Γ
Q

= Γ′ and hence

by (∗∗), Γ
Q

is a normal subgroup of MΦ. Since the orbit of
the abelian part A(R) of M(R) is a point, A(R) is compact
and Γ ∩ A is a finite group. After passing to a finite index
subgroup, we may then assume that Γ ∩ A = {e}. It then

follows that Γ
Q

is a semi-simple subgroup of DMΦ. �

We may now infer that Γ splits as in the statement of the
structure theorem. Moreover, by the argument just given
we have that

Γ
Q

i = Mi . �

Because of the structure theorem we see that Mumford-
Tate domains are the natural target spaces for period maps.
In the next lectures we shall see that different Mumford-
Tate domains may be manifestations of a more basic object,
namely a Hodge domain.
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V. Hodge representations

In this lecture we will discuss the questions: Given a semi
simple Q-algebraic group M

(a) When is M the Mumford-Tate group of a polarized
Hodge structure?

(b) In how many ways can such an M be realized as a
Mumford-Tate group?

Essentially complete answers are known to these question
and we shall describe and illustrate them, largely without
proofs. This will require some facts from the structure the-
ory of Lie groups and representation theory, which we will
briefly review as needed.

The basic concept is the following:

Definition. A Hodge representation (M, ρ, ϕ) is given by
a representation defined over Q

ρ : M → Aut(V,Q)

together with a circle

ϕ : S1 →M(R)

such that, setting ϕρ = ρ◦ϕ, (V,Q, ϕρ) is a polarized Hodge
structure.

Without essential loss of generality we can and do assume
that M(R) is simple and that ρ : M(R) → Aut(VR, Q) is
irreducible. These ρ are then classified using the root and
weight structures on the Lie algebra mR. There are two
issues:

(i) For which ρ : M(R) → GL(VR) is there an invariant
bilinear form Q?

(ii) Given ρ : M(R) → Aut(VR, Q), for which circles
ϕρ = ρ ◦ ϕ : S1 → M(R) is (V,Q, ϕρ) a polarized
Hodge structure?

We have seen in lecture two that if a Hodge representation
exists, M(R) contains a compact maximal torus T with
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ϕ(S1) ⊂ T . The action of T on VC decomposes

VC = ⊕Vω

where the weight spaces Vω on which T = t/Λ acts by a
character exp i 〈ω, •〉 where ω ∈ Hom(Λ,Z) occur in conju-
gate pairs: V−ω = V ω. Restricting the action to ϕ(S1) ⊂ T
gives a Hodge structure

VC = ⊕
p+q=n

V p,q
ϕρ

where V p,q
ϕρ

is a sum of weight spaces.7 Because the form Q
is preserved, the first Hodge-Riemann bilinear relation

Q(V p,q
ϕρ
, V p′,q′

ϕρ
) = 0, p′ 6= n− p

will be satisfied. The difficult one is the second bilinear
relation

ip−qQ(V p,q
ϕρ
, V

p,q
ϕρ

) > 0 .

The answer will be expressed in terms of congruences “mod 2”
reflecting on the parity of Qmod2, and “mod4” reflecting
the fact that the second Hodge-Riemann bilinear relation
depends on p− qmod4.

The easiest case to analyze is the adjoint representation.
Here we recall that if (M, ρ, ϕ) is a Hodge representation,
then so is (M,Ad, ϕ). Specifically, we have

m ⊂ End(V ) ∼= V ⊗ V̌
and the bilinear form Q on V induces the Cartan-Killing
form B : m⊗m→ Q. Then (m, B,Adϕ) gives a polarized
Hodge structure of even weight.

The conditions on ϕ that (m, B,Adϕ) give a polarized
Hodge structure will now be explained. Under the action
of the Cartan sub-algebra tC on mC, one has the root space

7There is a subtlety here in that since ϕ(S1) does not have a scaling action, the weight n of the

Hodge structure is not uniquely defined. We shall let n be the integer such that V
n,0
ϕρ

6= 0.
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decomposition

mC = tC ⊕
(
⊕
α∈r

mα

)
.

Here, the set of roots
r ⊂ ǐt

are purely imaginary linear functions on the Lie algebra t

of T . The root spaces mα are 1-dimensional and occur in
conjugate pairs. For a maximal compact subgroup K ⊂
M(R) we have T ⊂ K and a Cartan decomposition

mR = k⊕ p

where {
[k, p] ⊆ p

[p, p] ⊆ k .

We denote by α1, . . . , αd the compact roots which belong to
k, meaning that the root space

mαj
⊂ kC ,

and by β1, . . . , βe the non-compact roots belonging to p.
Writing T = t/Λ, the circle ϕ : S1 → T is given by the

exponential of the line through a lattice point lϕ ∈ Λ. We
then have:

(m, B,Adϕ) is a polarized Hodge structure if,
and only if,{

〈αj, lϕ〉 ≡ 0 (mod 4)

〈βk, lϕ〉 ≡ 2 (mod 4) .

Notational caveat. The roots are purely imaginary linear
functions on Λ ⊂ t; we have omitted the “i” in the above
congruences.

The proof of the above is based on the relation

m−k,k =
⊕

{ α∈r
〈α,lϕ〉=−2ki

mα ,
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and the fact that{
B < 0 on (mαj

⊕m−αj
)R

B > 0 on (mβk
⊕m−βk

)R .

In practice the possible polarized Hodge structures can
be read off from the above and standard root tables. If
there is one such, then it turns out there are many.

Example. For G2 with the standard root diagram

2α2 + 3α1

α2 α1 + α2 2α1 + α2 3α1 + α2

−α1
oo

33ggggggggggggggggggggggggg

77nnnnnnnnnnnn

OO

hhPPPPPPPPPPPPP

kkXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX //

ssffffffffffffffffffffffffff

vvnnnnnnnnnnnn

��

''PPPPPPPPPPPP

++WWWWWWWWWWWWWWWWWWWWWWWWWWWW α1

−3α1 − α2 −2α1 − α2 −α1 − α2 −α2

−2α2 − 3α1

where the non-compact roots are framed, the minimal weight
of a polarized Hodge structure is six with

g
0,0
2 = span{eα2

}
g

1,5
2 = span{e−3α1−α2

, e−α1
}

g
2,4
2 = span{eα1+α2

, e−2α1−α2
}

g
3,3
2 = span{tC, e2α2+3α1

, e−2α2−3α1
} .

Note. In the classical case of weight one polarized Hodge
structures, no exceptional group may occur as a Mumford-
Tate group.

Among the main results that come out of the analysis are

(A) The adjoint group of a simple Q-algebraic group M
is a Mumford-Tate group if, and only if, M contains
an anisotropic maximal torus.
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To explain the next result, we define a map

ψ : r→ Z/2Z

by

ψ(α) =

{
0 if α is a compact root

1 if α is a non-compact root.

Since the Cartan involution θ : mR → mR given by θ = 1
on k and θ = −1 on p is a Lie algebra homomorphism, this
map extends linearly to a homomorphism

ψ : R→ Z/2Z

where R ⊂ ǐt is the Z-span of the roots, and we define
Ψ : R→ Z/4Z by

Ψ(α) =

{
0 if ψ(α) = 0

2 if ψ(α) = 1 .

Thinking of lϕ ∈ Λ as defining an element of Hom(R,Z), the
above condition that (m, B,Adϕ) give a polarized Hodge
structure may be expressed as

lα ≡ Ψ (mod4) ;

i.e., lα should give a lifting of Ψ in the diagram

Z

��

R

lϕ
;;

w
w

w
w

w
w

w
w

w
w Ψ // Z/4Z .

The list of the non-compact real forms of the simple Lie
algebras for which this condition can be satisfied is the
following:
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Ar su(p, q), p+ q = r + 1, 0 ≤ p, q ≤ r + 1; sl2

Br so(2p, 2q + 1), p+ q = r, 0 ≤ p, q ≤ r

Cr sp(p, q), p+ q = r, 0 ≤ p, q ≤ r; sp(r)

Dr so(2p, 2q), p+ q = r, 0 ≤ p, q ≤ r; so∗(2r)

E6 EII, EIII

E7 EV, EVI, EVII

E8 EVIII, EIX

F4 FI, FII

G2 G

Those that do not have solutions to the above conditions
are

sl(n,R) for n ≥ 3

sl(n,H) for n ≥ 2

EI

EIV

As noted, it is more difficult to have a Hodge representa-
tion of odd weight. The following is the list of those that
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do.

su(4k), so(4k + 2) (compact case)

su(2p, 4k − 2p), su(2p+ 1, 2q + 1)

so(4p+ 2, 2q + 1), so(2p, 2q) for p+ q odd

so∗(4k)

sp(r)

EV,EVII

Finally, without getting into the details we will let P ⊂ ǐt
denote the weight lattice and let λ ∈ P be a highest weight.
Define

P ′ = Zλ+ R ,

so that we have
P ⊇ P ′ ⊇ R .

We let δ ∈ Z+ be the minimal positive integer such that
δλ ∈ R. Then for M with M(R) having the maximal torus

T = t/Λ

where Λ = Hom(P ′,Z), we have

(B) There exists lϕ ∈ Λ and an invariant form Q such
that the representation ρλ with highest weight λ gives
a Hodge representation (M, ρλ, ϕρλ

) if, and only if,

Ψ(δλ) ≡ δm (mod 4)

for some integer m.

This result provides a practical test for determining the
Hodge representations.
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Example (G2-continued). We consider the standard rep-
resentation of G2 in SO(3, 4). We use block matrices

3︷︸︸︷ 4︷︸︸︷

3
{

4
{



A B

tB C





where A = −tA, C = −tC is an element of so(3, 4). Then
g2,R ⊂ so(3, 4) is defined by seven independent linear equa-
tions (whose exact form is not necessary for our purposes).
Setting E =

(
0 −1
1 0

)
and

H1 =




E 0 0 0

0 0 0 0

0 0 E 0

0 0 0 0




H2 =




0 0 0 0

0 0 0 0

0 0 E 0

0 0 0 E



,

H1 and H2 give a basis for tC; the exponentials of 2πi times
RH1+RH2 give a maximal torus T ⊂M(R), and T ∼= R2/Λ
where Λ = ZH1 + ZH2. We have

The co-character ϕ whose differential is lϕ =
l1H1 + l2H2 gives a Hodge representation for
every representation of G2 if, and only if, the
conditions

l1 ≡ 0 (mod 4)

l2 ≡ 2 (mod 4)

are satisfied.

For the standard representation on Q7 we obtain the fol-
lowing illustrative cases:

(a) l1 = 0, l2 = 2. Then the weight n = 2 and the Hodge
numbers h2,0 = 2, h1,1 = 3.
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(b) l1 = 4, l2 = −2. Then the weight n = 4 and h4,0 = 1,
h3,1 = 2, h2,2 = 1.

(c) l1 = 4, l2 = 6. Then n = 6 and all hp,q = 1.

The Mumford-Tate groups in cases (a) and (c) appeared
(not as Mumford-Tate groups, of course) in the classic 1905
paper of Elie Cartan in which G2 was first realized geomet-
rically as a transformation group.
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VI. Hodge domains

Given the pair (M,ϕ) consisting of a semi-simple Q-
algebraic groupM containing an anisotropic maximal torus
and a non-trivial circle ρ : S1 → M(R), there may be
many different ρ’s giving Hodge representations (M, ρ, ϕ).
For each of these there is a Mumford-Tate domain D(M,ρ,ϕ)

contained in the corresponding period domain. A natural
question is:

What is the relation among the D(M,ρ,ϕ)’s for
a given (M,ϕ)?

With the notation Dm,ϕ for the Mumford-Tate domain for
(m, B,Adϕ) we have the result:

Theorem. As homogeneous complex manifolds together with
the invariant distribution in the tangent bundle given by the
IPR,

D(M,ρ,ϕ)
∼= Dm,ϕ .

Proof. Denoting by Hϕ = ZM(R)(ϕ(S1)) the compact cen-
tralizer in M(R) of the circle ϕ(S1), we have

D(M,ρ,ϕ)
∼= M(R)/Hϕ

independently of ρ. Remark that the finite center ZM of
M(R) is contained in the compact maximal torus T ⊂ Hϕ,
so that the RHS above may be replaced by the images of
M(R) and Hϕ in the adjoint group M(R)a = M(R)/ZM .

If we identify the tangent space to Dm,ϕ at the identity
coset with m−, then the subbundle W of the tangent bundle
has fibre w = m−1,1; thus

w =





(−2i)-eigenspace of ϕ(S1)

acting on m− .



 �

Definition. A Hodge domain is given byDm,ϕ = M(R)/Hϕ

where Hϕ = ZM(R)(ϕ(S1)) and (M,ϕ) is as above.



40 PHILLIP GRIFFITHS

Thus, Hodge domains are the universal parameter spaces
for families of polarized Hodge structures whose generic
Mumford-Tate group is M and whose stability group of a
fixed polarized Hodge structure is Hϕ.

Example. This first non-classical case is when

Dm,ϕ = SU(2, 1)/T .

The root diagram is (the non-compact roots are framed)

-� 







�

J
J

J
Ĵ









�

J
J

J
J]

−α2
−α1−α2

−α1

α2

α1

α1+α2

The co-characters that give Hodge domains are those lϕ ∈
Λ ⊂ t such that{

〈α1, lϕ〉 = 4k1 k1 6= 0

〈α2, lϕ〉 = 4k2 + 2

where k1, k2 are integers. The root plane is divided into six
Weyl chambers corresponding to the inequalities

Inequalities Basis for m−

(i) k1 > 0, k2 ≥ 0 eα1
, e−α2

, e−α1−α2

(ii) k1 + k2 ≥ 0, k2 < 0 e−α1
, eα2

, e−α1−α2

(iii) k1 + k2 ≥ 0, k1 < 0 eα1
, e−α2

, eα1−α2

(i)∗ k1 < 0, k2 < 0 eα1
, eα2

, eα1+α2

(ii)∗ k1 + k2 < 0, k2 ≥ 0 eα1, e−α2, eα1+α2

(iii)∗ k1 + k2 < 0, k1 > 0 e−α1
, eα2

, eα1+α2
.
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Here (i)∗ is the conjugate complex structure to (i), etc..
Note that ϕ induces a complex structure on SU(2, 1)/T ,
which is different in each of the six cases.

The complex structures (i)–(iii) may be visualized as fol-
lows (cf. [1] in the references): Taking V = Q3 and for Q
the form diag(−1, 1, 1), we have the unit ballB = {[z0, z1, z2] :
|z1|2 + |z2|2 < |z0|2} ⊂ P2. In P2 × P̌2 there is the standard
incidence correspondence

I = {(P, L) : P ∈ L} ,
which is the flag variety for the complex group SL(3,C) ∼=
SU(2, 1)(C) acting on P2. The pictures of the three complex
structures are

(i)

(iii)

(ii)

B

P

L

The complex structure (ii) is the non-classical one; i.e., it
does not fibre holomorphically or anti-holomorphically over
an Hermitian symmetric space. There is a unique choice of
ϕ for which the IPR is non-trivial and non-integrable; it is
when k2 = −1, k1 = 1. Then

m−1,1 = span{eα2
, e−α1−α2

}
and

[eα2
, e−α1−α2

] = ce−α2
, c 6= 0 ,

shows that the bracket of the 2-plane field given by the IPR
is non-trivial. It is a contact structure; geometrically the
2-plane field is spanned by the two tangent vectors given
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by the conditions that to 1st order either P or L does not
move. The polarized Hodge structures on su(2, 1) have
Hodge numbers

h4,0 = 1, h3,1 = 2, h2,2 = 2 .

It is not known if there is a family of smooth, projective
fourfolds having a non-trivial period map to a quotient of
this Dm,ϕ.8

We mention this example because it is indicative of the
rich geometry of Mumford-Tate domains, and because it
has been the subject of some very interesting work in rep-
resentation theory and automorphic cohomology that goes
beyond the classical case of Shimura varieties (cf. loc. cit.).
In this regard we have:

• The real forms M(R) of non-compact Hodge groups
are exactly those that have non-trivial discrete series
representations in L2(M(R));
• The Q-algebraic Hodge groups whose real forms are

non-compact are those for which one may hope to
have cuspidal automorphic representations in
L2(M(Q)\M(A)).

Aside from the work cited above, the rich confluence of

• algebraic geometry/Hodge theory
• representation theory (discrete series)
• arithmetic (automorphic forms)

present in the case when the Mumford-Tate domains pa-
rametrize the complex points of Shimura varieties seems to
be largely unexplored in the higher weight case. In particu-
lar, one may ask what if any role the enhanced data (M,ϕ),
beyond just the Q-algebraic group M , might play? For ex-
ample, when there is a “ϕ” there is a well-defined notion of
CM points in quotients Γ\Dm,ϕ of Hodge domains by arith-
metic groups. In the classical case these CM points are a

8Since the IPR is non-integrable, they could not be Calabi-Yau’s.
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central part of the story. In general, even though in the
non-classical case Γ\Dm,ϕ is not an algebraic variety, the
CM points — and more generally the Noether-Lefschetz
loci — have an arithmetic structure arising from the “ϕ”
and that may play an important role.
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