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Abstract

These three lectures summarize classical results of Hodge theory
concerning algebraic maps, and presumably contain much more ma-
terial than I’ll be able to cover. Lectures 4 and 5, to be delivered by
M. A. de Cataldo, will discuss more recent results. I will not try to
trace the history of the subject nor attribute the results discussed.
Coherently with this policy, the bibliography only contains textbooks
and a survey, and no original paper. Furthermore, quite often the
results will not be presented in their maximal generality; in particular
I’ll alway stick to projective maps, even though some results discussed
hold more generally.
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1 Introduction.

Hodge theory gives non-trivial restrictions to the topology of a nonsingular
projective variety, or, more generally, of a compact Kähler manifold, such as
the parity of odd Betti numbers, the hard Lefschetz theorem, the formality
theorem, stating that the real homotopy type of such variety is, if simply
connected, determined by the cohomology ring. Similarly, Hodge theory
gives non-trivial topological costraints on algebraic maps. This is, broadly
speaking, what these lectures are about.

In dealing with maps one is forced to deal with singularities: even as-
suming that domain and target of an algebraic map are nonsingular, asking
that the map is smooth is much too restrictive: there are singular fibres, and
this brings into the picture the technical tools to deal with them: stratifica-
tion theory and topological invariants of singular spaces, such as intersection
cohomology. This latter, which turns out to be a good replacement for co-
homology when dealing with singular varieties, is better understood as the
hypercohomology of a complex of sheaves, and this naturally leads to consider
objects in the ”constructible” derived category.

The question which we plan to address can also be formulated as follows:
How is the existence of an algebraic map f : X → Y of complex algebraic
varieties reflected in the topological invariants of X? From this point of
view, one is looking for a relative version of Hodge theory, classical theory
corresponding to Y = point. Hodge theory encodes the algebraic structure
of X in linear algebra data on H∗(X). If X is nonsingular and projective
this amount to the (p, q) decomposition

Hr =
⊕
p+q=r

Hp,q with the simmetry Hp,q = Hq,p,

which is possible to enrich with polarization data if a preferred ample line
bundle is chosen.
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As we will see in lecture 2, for a general X, i.e. maybe singular and non-
compact, the (p, q) decomposition is replaced by a more complicated linear
algebra object, the mixed Hodge structure, consisting of two filtrations W•
on H∗(X,Q), and F • on H∗(X,C) with compatibility conditions.

Similarly, given a projective map f : X −→ Y , with X is nonsingular, we
look for a linear algebra datum encoding the datum of the map f , with the
obvious requirements :

• This datum should be compatible with the Hodge structure of X.

• It should impose strong costraints of linear algebra type.

• It should have a vivid geometric interpretation.

The theorems discussed by de Cataldo in the last lecture of the course,
with their Hodge theoretic counterpart give some answers to these questions.
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2 The smooth case: E2-degeneration

We suppose that f : X → Y is a projective smooth map f : X → Y of
nonsingular (connected) quasi-projective varieties, that is, f factors through
some product Y ×PN by a closed immersion X −→ Y ×PN , and the fibers are
nonsingular projective manifolds. The nonsingular hypersurfaces of a fixed
degree in some projective space give an interesting example. More generally
we have the following:

Example 2.0.1. (The universal hyperplane section) Let X ⊆ Pn(C) be
a nonsingular projective variety, denote by Pn(C)∨ the dual projective space,
whose points are hyperplanes in Pn(C), and define

X := {(x,H) ∈ X × Pn(C)∨ such that x ∈ H ∩X}.

with the second projection p2 : X −→ Pn(C)∨. The fibre over the hyperplane
H is the hyperplane section H ∩ X ⊆ X. Since the projection X −→ X
makes X into a projective bundle over X, it follows that X is nonsingular.
Let X∨ = {H ∈ Pn(C)∨ such that H ∩ X is singular}. It is an algebraic
subvariety of Pn(C)∨, called the dual variety of X.

Set
Ureg := Pn(C)∨ \X∨, Xreg := p−12 (Ureg).

Then the restriction
p2| : Xreg −→ Ureg

is a projective smooth map. Let Pn(C)
vd−→ PN(C) be the d−th Veronese

imbedding of Pn(C). Setting X := vd(Pn(C)), the construction gives the
family of degree d hypersurfaces in Pn(C).

By a classical result (Ehresmann fibration Lemma), a map as above is
a C∞-fiber bundle, namely, for some manifold F , each point y ∈ Y has a
neighborhood N in the analytic topology, such that there is a diffeomorphism

f−1(N)
' //

f

��

N × F

p1
yyrrrrrrrrrrr

N

,

where p1 denotes the projection on the first factor.
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In particular the higher direct image sheaves Rif∗Q, whose stalk at a
point y ∈ Y is

(Rif∗Q)y ' H i(f−1(y))

are local systems, i.e. locally constant sheaves of finite dimensional Q-vector
spaces. For instance, if Y is simply connected, they are in fact constant
sheaves. In general, choosing a base point y0 ∈ Y , we have associated mon-
odromy representations

ρi : π1(Y, y0)→ Aut(H i(f−1(y0),Q)). (2.0.1)

For general reasons there is the Leray spectral sequence

Epq
2 = Hp(Y,Rqf∗Q)→ Hp+q(X,Q).

Even if Y is simply connected, the Leray spectral sequence can be non-
trivial; for example, in the Hopf fibration f : S3 → S2, the differential
d2 : E01

2 → E21
2 is non-zero.

Theorem 2.0.2. The Leray spectral sequence associated to a smooth projec-
tive map degenerates at E2.

In fact a stronger statement can be proved, namely

Theorem 2.0.3. There exists an isomorphism in the bounded derived cate-
gory of sheaves with constructible cohomology (see lecture 3)

Rf∗Q ' ⊕qRqf∗Q[−q].

In particular, if Y is simply connected, Theorem 2.0.2 gives an isomor-
phism of vector spaces

Hr(X) ' ⊕a+b=rHa(Y )⊗Hb(f−1(y0));

the fibration behaves, form the point of view of additive cohomology, as if it
were a product. Simple examples (P1-fibrations, for instance) show that in
general the isomorphism cannot be made compatible with the ring structure
on cohomology.

Sketch of proof of 2.0.2. Suppose that L is a relatively ample line bundle on
X, and denote by L ∈ H2(X,Q) its first Chern class. Let n be the relative
dimension of the map: n := dimX − dimY . The Hard Lefschetz theorem
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applied to the fibres of f gives isomorphisms Lk : Hn−k(f−1(y),Q) −→
Hn+k(f−1(y),Q), hence isomorphisms of local systems Lk : Rn−qf∗Q −→
Rn+qf∗Q. On the cohomology of each fibre we have a Lefschetz decomposition

H i(f−1(y),Q) = ⊕LaP i−2a(f−1(y),Q),

with P i(f−1(y),Q) := KerLn−i+1 : H i(f−1(y),Q) −→ H2n−i+2(f−1(y),Q)
We have a corresponding decomposition of local systems

Rif∗Q = ⊕LaP i−2a,

where Pr denotes the local system with stalk Pry = P r(f−1(y),Q). The
differentials of the Leray spectral sequence are compatible with this decom-
position. Let us show for example that d2 = 0. It is enough to show this on
the summand Hp(Y,Pq) ⊆ Epq

2 . We have the following:

Hp(Y,Pq) d2 //

Ln−q+1

��

Hp+2(Y,Rq−1f∗Q)

Ln−q+1

��
Hp(Y,R2n−q+2f∗Q)

d2 // Hp+2(Y,R2n−q+1f∗Q).

The left vertical arrow is the zero map by the definition of the primitive local
system, while the right vertical arrow is an isomorphism by Hard Lefschetz
applied to the fibres of f , hence d2 = 0.

The stronger statement about the splitting in the derived category is
obtained in a similar way, considering the spectral sequence associated with
the functors, one for each q,

HomD(Y )(R
qf∗Q[−q], Rf∗Q).

The spectral sequence degenerates for the same reason, and in particular the
maps

HomD(Y )(R
qf∗Q[−q], Rf∗Q) −→ HomD(Y )(R

qf∗Q, Rqf∗Q).

are surjective. This gives a way of lifting the identity map Rqf∗Q −→ Rqf∗Q
to a map Rqf∗Q[−q] −→ Rf∗Q for every q, so as to obtain a map

⊕qRqf∗Q[−q] −→ Rf∗Q,

which induces the identity on all cohomology sheaves, so it is in particular a
quasi-isomorphism.
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Remark 2.0.4. For singular maps, the Leray spectral sequence is very seldom
degenerate. If f : X → Y is a resolution of the singularities of a projective
variety Y whose cohomology has a mixed Hodge structure (see lecture 2)
which is not pure, then f ∗ cannot be injective, and this prohibits degeneration
in view of the edge-sequence.
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3 Mixed Hodge structures.

3.1 Mixed Hodge structures on the cohomology of al-
gebraic varieties

As the following two elementary examples show, one cannot expect that
Hodge theory extends to singular or noncompact varieties.

Example 3.1.1. Consider the projective plane curve C of equation Y 2Z −
X2(X − 1) = 0. It is immediately seen that dimH1(C) = 1, hence there
cannot be a (p, q)-decomposition H1(C,C) = H1,0⊕H1,0 on this vector space

Example 3.1.2. Consider C∗ ⊆ P1(C). Clearly dimH1(C∗) = 1, and again
there cannot be a (p, q)-decomposition H1(C∗,C) = H1,0⊕H1,0 on this vector
space

Basically, there are two possibilities:

1. allow linear algebra structures which are more complicated than the
”simple” (p, q) decomposition.

2. consider different topological invariants.

Both possibilities turn out to have remarkable consequences. In this lec-
ture we will consider the first option. The second possibility, leading to the
definition of intersection cohomology, will be considered in lecture 4.

Definition 3.1.3. (Mixed Hodge structure) A (rational)mixed Hodge
structure consists of the following datum:

1. A vector space VQ over Q with a finite increasing filtration (the weight
filtration)

{0} = Wa ⊆ Wa+1 ⊆ . . . ⊆ Wb = VQ.

2. a finite decreasing filtration (the Hodge filtration) on VC := VQ ⊗ C

VC = F q ⊇ F q+1 ⊇ . . . ⊇ Fm ⊇ Fm+1 = {0}

with the condition that, for every k, the filtration F • induces on GrWk VC =
(Wk/Wk−1)⊗ C, a pure Hodge structure of weight k, namely:

GrWk VC =
⊕
p+q=k

(
GrWk VC

)p q
,
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where (
GrWk VC

)p q
:= F pGrWk VC ∩ F qGrWk VC.

Let us recall the following definition

Definition 3.1.4. Strict filtered maps Let (V,G•), (V ′, G′•) two vector
spaces endowed with increasing filtrations, and f : V −→ V ′ a filtered map,
namely a linear map such that f(GaV ) ⊆ G′aV ′. The map f is said to be
strict if, for every a,

f(GaV ) = Imf ∩G′aV.

An analogous definition holds for decreasing filtrations. Morphisms of mixed
Hodge structures are just what one expects them to be:

Definition 3.1.5. morphisms of mixed Hodge structures. A map f :
(VQ,W•, F

•) −→ (V ′Q,W
′
•, F

′•) of mixed Hodge structures is a linear map
f : VQ −→ V ′Q filtered with respect to W•, W

′
•, such that fC : VC −→ V ′C is

filtered with respect to F •, F ′•.

One can similarly define morphisms of mixed Hodge structures of type
(k, k); they become just morphisms of mixed Hodge structures after an ap-
propriate Tate twist.

The remarkable formal properties of mixed Hodge structures will be
treated in other courses: we just list here some of them which will be useful
to keep in mind:

Theorem 3.1.6. Mixed Hodge structures with morphisms of mixed Hodge
structures form an abelian category. A morphism f of mixed Hodge structures
is strict with respect to W•, and fC is strict with respect to F •.

We have the following remarkable theorem:

Theorem 3.1.7. The cohomology groups H i(Y,Q) of a complex algebraic
variety Y have a functorial mixed Hodge structure. Furthermore we have the
following restrictions on the weights:

1. WaH
i(Y,Q) = {0} for a < 0 and WaH

i(Y,Q) = H i(Y,Q) for a ≥ 2i.

2. If Y is nonsingular, then WaH
i(Y,Q) = {0} for a < i, and

WiH
i(Y,Q) = ImH i(Y ,Q) −→ H i(Y,Q),

where Y is any compactification of Y .
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3. If Y is complete, then WaH
i(Y,Q) = H i(Y,Q) for a ≥ i, and

Wi−1H
i(Y,Q) = KerH i(Y,Q) −→ H i(Ỹ ,Q)

where Ỹ is a resolution of singularities of Y .

Functoriality here means that the pullback map f ∗ : H i(Y,Q) −→ H i(X,Q)
associated with an algebraic map f : X −→ Y is a morphism of mixed Hodge
structures.

Remark 3.1.8. Of course, in the case in which Y is nonsingular and projective,
we recover its pure Hodge structure: the weight filtration is trivial, namely
Wi−1H

i(Y,Q) = {0} and WiH
i(Y,Q) = H i(Y,Q), and F • is the standard

filtration associated with the Hodge decomposition. In the example of the
nodal curve W−1H

1(Y,Q) = {0} and W0H
1(Y,Q) = H1(Y,Q), and every

class has ”type” (0, 0). In the example of the punctured line W1H
1(Y,Q) =

{0} and W2H
1(Y,Q) = H1(Y,Q), and every class has ”type” (1, 1).

3.2 The global invariant cycle theorem

A consequence of the restrictions on the weights of the cohomology groups
of an algebraic variety is the following

Theorem 3.2.1. (weight principle) Let Z ⊆ U ⊆ X be inclusions, where
X a nonsingular compact variety, U ⊆ X a Zariski dense open subvariety
and Z ⊆ U a closed subvariety of X. Then the images in Hj(Z,Q) of the
restriction maps from X and from U coincide.

Sketch of Proof. In

H l(X,Q)
a−→ H l(U,Q)

b−→ H l(Z,Q)

the maps a and b are strictly compatible with the weight filtration. Hence,
it follows from theorem 3.1.7 that Im b = ImWlH

l(U,Q) = Im a

Remark 3.2.2. Despite its innocent-looking appearance, this is an extremely
strong statement, imposing non-trivial costraints on the topology of alge-
braic maps. For contrast look at the real picture Z = S1 ⊆ U = C∗ ⊆
X = P1(C). The restriction map H1(P1(C),Q) −→ H1(S1,Q) is zero, while
H1(C∗,Q) −→ H1(S1,Q) is an isomorphism.
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The following is the global invariant cycle theorem, which follows quite
directly from the weight principle above:

Theorem 3.2.3. Suppose f : X → Y is a smooth projective map, with
Y connected, and let X be a nonsingular compactification of X. Then, for
y0 ∈ Y

H i(f−1(y0),Q)π1(Y,y0) = Im {H i(X,Q) −→ H i(f−1(y0),Q)},

Remark 3.2.4. The previous proposition is most often used when we have a
projective map, not necessarily smooth, f : X −→ Y , with X nonsingular.

There is a dense Zariski open subset Y ⊆ Y such that X := f
−1

(Y ) −→ Y
is a smooth map. Then theorem 3.2.3 states that the monodromy invariants
in the cohomology of a generic fibre are precisely the classes obtained by
restriction from the total space of the family.

Remark also that, while it is clear that a cohomology class in X restricts
to a monodromy invariant class in the cohomology of the fibre at y0, the
other assertion is not at all obvious and is in fact specific of algebraic maps.
Again, the Hopf fibration gives an example: identify a fibre with S1: the
generator of H1(S1) is clearly monodromy invariant, as the monodromy of
the Hopf fibration is trivial, but it is not the restriction of a class in S3, as
H1(S3) = 0.

Sketch of Proof of the global invariant cycle theorem. In force of the the-
orem 2.0.2 proved in lecture 1, the Leray spectral sequence for f degenerates
at E2, in particular, for all l, the map

H l(X,Q) −→ E0l
2 = H0(Y,Rlf∗Q)

is surjective. We have the natural identification

H0(Y,Rlf∗Q) ' H i(f−1(y0))
π1(Y,y0) ⊆ H i(f−1(y0)),

and the composition

H l(X,Q) −→ H0(Y,Rlf∗Q)
'−→ H l(f−1(y0),Q)π1(Y,y0) −→ H i(f−1(y0),Q)

is a map of (mixed) Hodge structures. By theorem 3.2.1 we have

ImH l(X,Q) −→ H i(f−1(y0)) = ImH l(X,Q) −→ H i(f−1(y0),Q) = H l(f−1(y0),Q)π1(Y,y0).
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3.3 Semisimplicity of monodromy

A consequence of the global invariant cycle theorem 3.2.3 is that the subspace
H i(f−1(y0))

π1(Y,y0) ⊆ H i(f−1(y0)) of monodromy invariants is a (pure) sub-
Hodge structure of H i(f−1(y0)). It is interesting to compare this fact with
the local situation:

Example 3.3.1. Consider the family of degenerating elliptic curves Ct of equa-
tions

{Y 2Z −X(X − t)(X − 1) = 0} ⊆ P2(C)×∆,

where t is a coordinate on the disc ∆. The monodromy operator is a length 2
Jordan block, and the subspace of monodromy invariants is one-dimensional,
spanned by the vanishing cycle of the degeneration. Hence the subspace
cannot be a sub-Hodge structure of the weight 1 Hodge structure H1(Ct0Q)
for t 6= 0. As we will se, in the local situation, the local invariant cycle
theorem with the associated Clemens-Schmid exact sequence deals with these
kind of set-up, defining a Mixed Hodge structure on H1(Ct0Q) whose weight
filtration is related to the monodromy.

The fact that the space of monodromy invariants is a sub-Hodge structure
can be refined as follows: Recall that a representation is said to be irreducible
if it has no non-trivial invariant subspace, i.e. if it is a simple object in the
category of representations.

Theorem 3.3.2. (Semisimplicity theorem) Suppose f : X → Y is a
smooth projective map of quasi-projective manifolds. Then the monodromy
representations ρi defined in (2.0.1) are semisimple, namely they split as a
direct sum of irreducible representations.

Again one can compare with the local set-up of a family over a disc which
is smooth outside 0. In this case, by the monodromy theorem the monodromy
operator T is quasi-unipotent, namely (T a − I)b = 0 (compare with example
3.3.1). Again, the semisimplicity of global monodromy is a specific property
of algebraic geometry. For examples there exist Lefschetz pencils on sym-
plectic varieties of dimension 4 with non semisimple monodromy. We will
not discuss the proof of 3.3.2, but let us summarize what we have so far.

Theorem 3.3.3. Suppose f : X → Y is a smooth projective map of quasi-
projective manifolds of relative dimension n, L a relatively ample line bundle,
and L its first Chern class.

12



• Decomposition There is an isomorphism in DY

Rf∗Q ' ⊕qRqf∗Q[−q]

• Hard Lefschetz along the fibres Cupping with L defines isomor-
phisms of local systems on Y

Lk : Rn−qf∗Q −→ Rn+qf∗Q.

• Semisimplicity The local systems Rqf∗Q are, for every q, semisimple
local systems.

As will be explained in the next lectures, the three statements above
will generalize to any projective map, once the local systems are replaced by
intersection cohomology complexes of semisimple local systems. More pre-
cisely, the category of local systems is replaced by a different category, that
of perverse sheaves, which has strikingly similar formal properties.
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4 Two classical theorems on surfaces. The

local invariant cycle theorem

4.1 Homological interpretation of the contraction cri-
terion and Zariski’s lemma

Let f : X −→ Y be a birational proper map with X a nonsingular surface,
and Y normal; let y ∈ Y be a singular points. Set C := f−1(y) and let Ci,
for i = 1, . . . k, be its irreducible components. Then the intersection numbers
(Ci, Cj) give a symmetric matrix, hence a symmetric bilinear form, called the
intersection form, on the vector space generated by the Ci’s.

Example 4.1.1. Let C ⊆ Pn be a nonsingular projective curve, and let C ⊆
Cn+1 be the affine cone over C, with vertex o. Blowing up the vertex we get
a nonsingular surface C̃, the total space of the line bundle O(−1)|C , with the

blow-down map β : C̃ −→ C. We have β−1(o) = C, where C is imbedded

in C̃ as the zero section. In this case the intersection form amount to the
self-intersection number C2 = − degC.

We have the classical theorem:

Theorem 4.1.2. The intersection form (Ci, Cj) associated to an exceptional
curve C =

⋃
Ci is negative definite.

There is a similar statement for surfaces mapping to a curve: the set-
up is as follows: f : X −→ Y is a projective map, with X a nonsingular
surface, and Y a nonsingular curve. Let y ∈ Y , and C := f−1(y) and let Ci,
for i = 1, . . . , k, be its irreducible components. As before, the intersection
numbers (Ci, Cj) define a symmetric bilinear form, the intersection form, on
the vector space V generated by the Ci’s. If f−1(y) =

∑
niCi, clearly its

intersection with every element in V vanishes, being algebraically equivalent
to every other fibre. The following is known as Zariski’s lemma

Theorem 4.1.3. The intersection form is negative-semidefinite. Its radical
is spanned by the class

∑
niCi of the fibre of y.

Clearly the statement aboove is empty whenever the fibre over y is irre-
ducible.

We are going to give an interpretation of these two classical results in
terms of splittings of the derived direct image sheaf Rf∗Q. To do this we
need to introduce the constructible derived category.
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Recall that a stratification Σ of an algebraic variety Y is a decomposition
Y =

∐
l≥0 Sl where the Sl ⊆ Y are locally closed and nonsingular subvarieties

of pure complex dimension l. A sheaf on Y is said to be constructible if there
exists a stratification of the variety such that the restriction of the sheaf to
each stratum is a locally constant sheaf of finite rank. The category DY that
we are interested in has

• Objects: bounded complexes of sheaves

K• : . . . −→ Ki di−→ Ki+1 −→ . . .

of Q-vector spaces, such that their cohomology sheaves

Hi(K•) := Kerdi/Imdi−1

are constructible.

• Morphisms: a map φ : K• −→ L• between two objects is defined by a
diagram

K•
φ′−→ L̃•

u←− L•,

where u is a quasi isomorphism, namely a map of complexes of sheaves
which induces isomorphisms

Hi(u) : Hi(L•) −→ Hi(L̃•)

for every i. There is a natural equivalence relation on such diagrams
which we will not discuss. A map in DY is an equivalence class of such
diagrams.

The category DY is remarkably stable with respect to many operations,
most notably Verdier’s duality, to be explained in a future lecture by M.A. de
Cataldo. Furthermore, algebraic maps f : X −→ Y define several functors
between DY and DY , such as the derived direct image Rf∗, the proper direct
image Rf!, the pull-back functors f ∗, and f !, related by a rich formalism.
For details see the texts in the bibliography. We will use freely this for-
malism. Recall also that the (standard) truncation functors τ≤ , τ≥ defined
on complexes send quasi-isomorphisms to quasi-isomorphisms and obviously
preserve constructibility of cohomology sheaves, hence they define functors
in DY
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Let f : X → Y be the resolution of singularities of the normal surface Y .
For simplicity, let us suppose that Y has a unique singular point y, and as
before, let us set C := f−1(y) and C =

⋃
Ci.

Let us study the complex Rf∗QX .
There is the commutative diagram with Cartesian squares

C
I //

��

X

f
��

U
Joo

=

��
y i // Y U

joo

where U := Y \ y = X \ Z.
The distinguished attaching triangle associated to the restriction from Y

to U gives
There is the distinguished attaching triangle for Rf∗QX :

i!i
!Rf∗QX −→ Rf∗QX −→ Rj∗j

∗Rf∗QX ' Rj∗QY \{y}
[1]−→ .

Let us consider the long exact sequence of the cohomology sheaves at y.
Note that Rif∗Q = 0 for i > 2, R1f∗Q, R2f∗Q are concentrated at y, while
R0f∗Q = Q in force of our hypotheses.

There is a fundamental system of Stein neighborhoods of y such that if
N is any neighborhood in the family and N ′ := N \ {y} we have

Ha(i!i
!Rf∗QX)y = Ha(f−1(N), f−1(N ′)) ' H4−a(C),

which vanishes for a 6= 2, 3, 4,

Ha(Rf∗QX)y = Ha(f−1(N)) ' Ha(C),

which vanishes for a 6= 0, 1, 2, and

Ha(Rj∗j
∗Rf∗QX)y = Ha(Rj∗QN ′)y ' Ha(N ′).

There is the adjunction map QY → Rf∗f
∗QY = Rf∗QX . This map does

not split. We study the obstruction to this failure. As already noted, since
dimC f

−1(y) = 1, we have τ≤2Rf∗QX ' Rf∗QX . The truncation functors
yield a map

ũ : Rf∗QX −→ τ≤2Rj∗QN ′ .
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Consider the truncation distinguished triangle

τ≤1Rj∗QN ′ −→ τ≤2Rj∗QN ′ −→ H2(Rj∗QN ′)[−2]
[1]−→ .

Note that the last complex is in fact reduced to the skyscraper complex
H2(N ′)y[−2]. Apply the cohomological functor HomDY

(Rf∗QX ,−) to the
triangle and take the associated long exact sequence

0→ Hom(Rf∗QX , τ≤1Rj∗QN ′)→ Hom(Rf∗QX , τ≤2Rj∗QN ′)→ Hom(Rf∗QX , H
2(N ′)[−2]).

The map ũmaps to a map in Hom(Rf∗QX , H
2(N ′)[−2]) = Hom(R2f∗QX , H

2(N ′)) =
Hom(H2(f−1(N)), H2(f−1(N ′)). This map is just the restriction map, which
fits in the long exact sequence

. . . −→ H2(C)
I−→ H2(C) ' H2(f−1(N)) −→ H2(f−1(N ′)) −→ . . .

where I ∈ Hom(H2(C), H2(C)) ' H2(C) ⊗ H2(C) is just the intersection
matrix discussed above. This being nondegenerate, we have that I is an
isomorphism, and the restriction map H2(f−1(N)) −→ H2(f−1(N ′) vanishes.
This means that there exists a (unique) lift ṽ : Rf∗QX → τ≤1Rj∗QU .

Taking the cone of this map, one obtains a distinguished triangle

C → f∗QX → τ≤1j∗QU
[1]→ .

An argument similar to the previous one, shows that ṽ admits a canonical
splitting so that there is a canonical isomorphism in DY :

Rf∗QX ' τ≤1Rj∗QU ⊕ H2(C)y[−2].

The upshot is that QY → Rf∗QX does not split, however, in looking
for the non-existing map Rf∗QX → QY we find the remarkable and more
interesting splitting map ṽ.

Why is this interesting? Because, up to shift, the complex τ≤1Rj∗QN ′

is, by definition, the intersection cohomology complex (see next lecture) ICY
of Y. The complex H2(C)y[−2] is, up to shift, the intersection cohomology
complex of y with multiplicity b2(Z). We may re-write the splitting as

Rf∗QX [2] ' ICY ⊕ ICb2(Z)
y

thus obtaining a first non trivial example of the decomposition Theorem.
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We can do something similar for a projective map f : X −→ Y with X
a nonsingular surface, and Y a nonsingular curve. For simplicity, we assume
that the generic fibre is connected. Set j : Y ′ −→ Y the open imbedding of
the regular value locus of f . The restriction f ′ : X ′ := f−1(Y ′) −→ Y ′ is a
smooth family of curves, and by theorem 2.0.2 we have a splitting in DY ′

Rf ′∗QX′ ' R0f ′∗QX′ ⊕R1f ′∗QX′ [−1]⊕R2f ′∗QX′ [−2], (4.1.1)

which we may re-write as

Rf ′∗QX′ ' QY ′ ⊕R1f ′∗QX′ [−1]⊕QY ′ [−2], (4.1.2)

as we have R0f ′∗QX′ = R2f ′∗QX′ = QY ′ , since the fibres over Y ′ are nonsin-
gular and connected.

If we try to investigate whether we can extend the splitting (4.1.2) to Y ,
we see that this time, at the crucial step, we may use Zariski’s lemma, to
conclude that there is an isomorphism

Rf∗QX ' QY ⊕ j∗R1f ′∗QX′ [−1]⊕Q[−2]⊕ (⊕Vyi) (4.1.3)

where Vyi is a skyscraper sheaf concentrated at the points yi where the fibre is
reducible; the dimension of Vyi equals the number of irreducible components
of the fibre over yi minus one.

Again, it turns out that the sheaf j∗R
1f ′∗QY ′ (j∗ is the non-derived direct

image sheaf: j∗R
1f ′∗QY ′ = τ≥0Rj∗R

1f ′∗QY ′) is the intersection cohomology
complex of the local system R1f ′∗QY ′ . The two examples discussed above
turn out to be special cases of the general theorems, to be discussed in the
last lecture of this course.

4.2 the local invariant cycle theorem, the limit mixed
Hodge structure and the Clemens-Schmid exact
sequence.

We consider again the family of curves f : X −→ Y and, specifically, the
sheaf theoretic decomposition 4.1.3. Let y ∈ Y \Y ′, and take the stalk at y of
the first cohomology sheaf H1. Pick a disc N around y, and let y0 ∈ N \{y}.
We have a monodromy operator T : H1(f−1(y0),Q) −→ H1(f−1(y0),Q).
Recall that if V is a local system on the punctured disc, with monodromy T ,
then (j∗V)0 = H0(∆∗,V) ' Ker(T − I). We find

H1(f−1(y),Q) = (R1f∗Q)y = (j∗R
1f ′∗QY ′)y = Ker(T − I) ⊆ H1(f−1(y0),Q).
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This is, in this particular case, the content of the local invariant cycle
theorem, whose general statement is:

Theorem 4.2.1. Local invariant cycle theorem Let f : X → ∆ a projec-
tive flat map, smooth over the puntured disc ∆∗, and assume X nonsingular.
Denote by X0 := f−1(0) the central fibre, let t0 ∈ ∆∗ be a fixed base-point,
and Xt0 := f−1(t0). Let T : Hk(Xt0) −→ Hk(Xt0) be the monodromy around
0. Then, for every k, the sequence

Hk(X0,Q) −→ Hk(Xt0 ,Q)
T−I−→ Hk(Xt0 ,Q)

is exact.

Note that the degeneration at E2 theorem 2.0.2 implies that every mon-
odromy invariant cohomology class on a generic fibre Xt0 is the restriction
of a class on X \X0. The local invariant cycle theorem however says much
more: if ∆ is small enough, there is a homotopy equivalence X ' X0 (the
retraction on the central fibre). Theorem 4.2.1 states that every monodromy
invariant cohomology class on Xt0 comes in fact from a cohomology class on
the total space X.

The statement of theorem 4.2.1 can be refined by introducing a rather
non-intuitive mixed Hodge structure on Hk(Xt0 ,Q), the limit mixed Hodge
structure.

Let f : X∗ → ∆∗ be a projective smooth map over the puntured disc
∆∗. The monodromy operators T : Hk(Xt0 ,Q) −→ Hk(Xt0Q) are quasi-
unipotent, namely (T a− I)b = 0. Taking base change by ζa : ∆∗ −→ ∆∗ has
the effect of replacing the monodromy T with its power T a, hence we can
suppose T unipotent. We define

N := log T =
∑ 1

k
(T − I)k,

noting that the sum is finite. N is nilpotent: Suppose N b = 0 (it actually
follows from the monodromy theorem that we can take b = k + 1 if we
are considering the monodromy of Hk(Xt0)). We have the following linear
algebra result:

Theorem 4.2.2. (Monodromy weight filtration.)There is an increasing
filtration of Q-subspaces of Hk(Xt0 ,Q):

{0} ⊆ W0 ⊆ W1 ⊆ . . .W2k−1 ⊆ W2k = Hk(Xt0)

such that
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• N(Wl) ⊆ Wl−2 for every l

• N l : Grk+lW −→ Grk−lW is an isomorphism for every l.

We have the following surprising

Theorem 4.2.3. (The limit mixed Hodge structure) For every k, there
exists a decreasing filtration F •lim on Hk(Xt0 ,C), such that (Hk(Xt0 ,C),W•, F

•
lim),

where W• is the filtration associated with the endomorphism log T as de-
scribed in theorem 4.2.2, is a mixed Hodge structure. Furthermore, the map
log T : Hk(Xt0 ,Q) −→ Hk(Xt0 ,Q) becomes a map of type (−1,−1) with
respect to this limit mixed Hodge structure.

Even more remarkably, this limit mixed Hodge structure, which, we em-
phasize, is constructed just from the family over the punctured disc, is related
by the mixed Hodge structure of the central fibre, thus giving a delicate in-
terplay between the monodromy properties of the smooth family and the
geometry of the central fibre. This is the content of the Clemens-Schmid
exact sequence theorem.

Suppose f : X −→ ∆ is a projective map, smooth outside 0, such that
the central fibre is a reduced divisor with global normal crossing, namely, in
the irreducible components decomposition

f−1(0) =
⋃

Xα,

the Xα are nonsingular and meet transversely. The semistable reduction the-
orem states that any degeneration over the disc may be brought in semistable
form after a finite base change ramified at 0 and a birational modifica-
tion. The mixed Hodge structure of the cohomology of a normal crossing
is easily expressed by a spectral sequence in the category of mixed Hodge
structures involving the cohomology groups of the Xα’s and their inter-
sections. We have the (co)specialization map, defined as the composition

Hk(X0,Q)
'−→ Hk(X,Q) −→ Hk(Xt0 ,Q).

Theorem 4.2.4. Clemens-Schmid exact sequence. The specialization
map is a map of mixed Hodge structures if we consider on Hk(Xt0 ,Q) the
limit mixed Hodge structure. There is an exact sequence of mixed Hodge
structures (with appropriate Tate twists)

. . . −→ H2 dimX−k(X0,Q) −→ Hk(X0,Q) −→ Hk(Xt0 ,Q)
N−→ Hk(Xt0 ,Q) −→

−→ H2 dimX−k−2(X0,Q) −→ Hk+2(X0,Q) −→ Hk+2(Xt0 ,Q)
N−→ . . .
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