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A Brief Introduction

Undergraduate calculus progresses from differentiatiwhiategration of functions
on the real line to functions on the plane and in 3-space. Bherencounters vector-
valued functions and learns about integrals on curves arfdcas. Real analysis
extends differential and integral calculus frdki to R". This book is about the
extension of calculus from curves and surfaces to higheedgions.

The higher-dimensional analogues of smooth curves andcasfare callechan-
ifolds. The constructions and theorems of vector calculus becamgley in the
more general setting of manifolds; gradient, curl, anddjeace are all special cases
of the exterior derivative, and the fundamental theorentifierintegrals, Green’s the-
orem, Stokes’ theorem, and the divergence theorem areatiffenanifestations of a
single general Stokes’ theorem for manifolds.

Higher-dimensional manifolds arise even if one is intexdsinly in the three-
dimensional space which we inhabit. For example, if we catbtation followed
by a translation an affine motion, then the set of all affineiomstin R® is a six-
dimensional manifold. Moreover, this six-dimensional fif@d is not RS,

We consider two manifolds to be topologically the same iféhie a homeomor-
phism between them, that is, a bijection that is continuaukdth directions. A
topological invariant of a manifold is a property such as paginess that remains
unchanged under a homeomorphism. Another example is théeuwh connected
components of a manifold. Interestingly, we can use difféatand integral calculus
on manifolds to study the topology of manifolds. We obtain@erefined invariant
called the de Rham cohomology of the manifold.

Our plan is as follows. First, we recast calculus®hin a way suitable for
generalization to manifolds. We do this by giving meaningh® symbolgdx, dy,
anddz, so that they assume a life of their own,differential formsinstead of being
mere notations as in undergraduate calculus.

While it is not logically necessary to develop differentiaims onR" before
the theory of manifolds—after all, the theory of differexttiorms on a manifold in
Chapter V subsumes that &, from a pedagogical point of view it is advantageous
to treatR" separately first, since it is dR" that the essential simplicity of differential
forms and exterior differentiation becomes most apparent.



Another reason for not delving into manifolds right away dstlsat in a course
setting the students without a background in point-setltapocan read Appendix A
on their own while studying the calculus of differential fias onR".

Armed with the rudiments of point-set topology, we define aiftdd and derive
various conditions for a set to be a manifold. A central idiesadculus is the approx-
imation of a nonlinear object by a linear object. With thismiind, we investigate
the relation between a manifold and its tangent spaces. Xayples are Lie groups
and their Lie algebras.

Finally we do calculus on manifolds, exploiting the interplof analysis and
topology to show on the one hand how the theorems of vectouleed generalize,
and on the other hand, how the results on manifolds defineGieumvariants of a
manifold, the de Rham cohomology groups.

The de Rham cohomology groups are in fact not me@lyinvariants, but also
topological invariants, a consequence of the celebrateBiden theorem that es-
tablishes an isomorphism between de Rham cohomology agdlaincohomology
with real coefficients. To prove this theorem would take usfar afield. Interested
readers may find a proof in the sequel [4] to this book.



Chapter |

Euclidean Spaces



The Euclidean spadR” is the prototype of all manifolds. Not only is it the simplest
but locally every manifold looks lik&". A good understanding @&" is essential in
generalizing differential and integral calculus to a maluif

Euclidean space is special in having a set of standard gtmmHinates. This
is both a blessing and a handicap. It is a blessing becauseradtructions orR"
can be defined in terms of the standard coordinates and apui@tions carried out
explicitly. Itis a handicap because, defined in terms of doates, it is often not ob-
vious which concepts are intrinsic, i.e., independent ofdmates. Since a manifold
in general does not have standard coordinates, only catsdindependent concepts
will make sense on a manifold. For example, it turns out tlma& ananifold of di-
mensiom, it is not possible to integrate functions, because thgmalef a function
depends on a set of coordinates. The objects that can bedtedgare differential
forms. Itis only because the existence of global coordepéemits an identification
of functions with differentiah-forms onR" that integration of functions becomes
possible orR".

Our goal in this chapter is to recast calculusihin a coordinate-free way suit-
able for generalization to manifolds. To this end, we viewrggent vector not as an
arrow or as a column of numbers, but as a derivation on funstidhis is followed
by an exposition of Hermann Grassmann’s formalism of adtéing multilinear func-
tions on a vector space, which lays the foundation for therthef differential forms.
Finally we introduce differential forms oR", together with two of their basic oper-
ations, the wedge product and the exterior derivative, aod/sow they generalize
and simplify vector calculus ifR3.



1

Smooth Functions on a Euclidean Space

The calculus o€~ functions will be our primary tool for studying higher-dimsional
manifolds. For this reason, we begin with a revievCsffunctions onR".

1.1 C* Versus Analytic Functions

Write the coordinates oR" asx?,...,x" and letp = (pt,..., p") be a point in an
open setJ in R". In keeping with the conventions of differential geomethe
indices on coordinates aseiperscriptsnot subscripts. An explanation of the rules
for superscripts and subscripts is given in Subsection 4.7.

Definition 1.1. Let k be a nonnegative integer. A real-valued functfarid — R is
said to beC at pe U if its partial derivatives

ol f
oxi1 ... gxi
of all ordersj < k exist and are continuous @t The functionf: U — R is C®
at pif it is CX for all k > 0; in other words, its partial derivatived f /9x'1 - .. 9x]
of all orders exist and are continuouspat A vector-valued functiorf: U — R™
is said to beCX at pif all of its component functiong?,..., f™ areCk at p. We
say thatf : U — R™Mis CX on U if it is CX at every pointinJ. A similar definition

holds for aC*” function on an open sét. We treat the termsC*” and “smooth” as
synonymous.

Examplel.2
(i) A CO function onU is a continuous function od.
(ii) Let f: R — R be f(x) = x'/3. Then

() = {%XZ/3 for x # 0,

| undefined fox = 0.

Thus the functiorf is C° but notC! atx = 0.
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(iii) Let g: R — R be defined by
X X 3
X)= [ f(t dt:/ t13dt = Sx/3,
009 = [ fdt= | :

Thend'(x) = f(x) = x/3, sog(x) is C! but notC? atx = 0. In the same way one
can construct a function that@ but notC**1 at a given point.

(iv) The polynomial, sine, cosine, and exponential funtsion the real line are all
Cc~.

A neighborhoof a pointinR" is an open set containing the point. The function
f is real-analyticat p if in some neighborhood of it is equal to its Taylor series
atp:

. . 2 ) ) ) )
() = f<p>+zﬁ<p><x'p'>+%§d‘j;x,- (P)X — B4 — pl)

1 oxf i i i i
— - 1_p'1)...(xk — p'k
+ + k| ilzik 0Xi1-~~0Xik(p)(X p ) (X p )+ 9
in which the general term is summed over ak 1, ... ik <n.
A real-analytic function is necessariy”’, because as one learns in real anal-
ysis, a convergent power series can be differentiated tgrterdmn in its region of
convergence. For example, if

, 1 1
f(x):smx:xfgx3+§xsf“',

then term-by-term differentiation gives

The following example shows thatG’ function need not be real-analytic. The
idea is to construct @ function f(x) onRR whose graph, though not horizontal, is
“very flat” near 0 in the sense that all of its derivatives &mat 0.

Fig. 1.1.A C* function all of whose derivatives vanish at 0.
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Examplel.3 (A C” function very flat aD). Define f (x) onR by

e /% forx>0,
f(x) =
0 forx <O.

(See Figure 1.1.) By induction, one can show th& C* on R and that the deriva-
tives f (¢ (0) = 0 for allk > 0 (Problem 1.2).

The Taylor series of this function at the origin is identigaero in any neigh-
borhood of the origin, since all derivativé§¥ (0) = 0. Therefore,f(x) cannot be
equal to its Taylor series arfdx) is not real-analytic at 0.

1.2 Taylor's Theorem with Remainder

Although aC* function need not be equal to its Taylor series, there is éofayhe-
orem with remainder fo€” functions which is often good enough for our purposes.
In the lemma below, we prove the very first case when the Taddes consists of
only the constant termi(p).

We say that a subs&of R" is star-shapedvith respect to a poinp in Sif for
everyxin S, the line segment frorp to x lies in S (Figure 1.2).

Fig. 1.2.Star-shaped with respect  but not with respect tq.

Lemma 1.4 (Taylor's theorem with remainder).Let f be aC function on an open
subset U oR" star-shaped with respect to a pointp(p?,..., p") in U. Then there
are functions g(x),...,gn(x) € C*(U) such that

00 = 1)+ 3 (¢~ F)a 0. G(P) = 5[0

Proof. SinceU is star-shaped with respect tp for anyx in U the line segment
p+t(x—p), 0<t <1liesinU (Figure 1.3). Sof(p-+t(x— p)) is defined for
0<t<1.

By the chain rule,
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Fig. 1.3.The line segment fronp to x.

of

APt p) = 3 O~ P) 2 (pHt(x— p)).

If we integrate both sides with respecttttrom 0 to 1, we get

f(ptix—p)Jp= 30— 9) [ 2Pt pat

Let
i(X) = /Alﬂ( +t(x—p))dt
gi(X) = Jo 9% p p))at.
Theng;(x) isC* and (1.1) becomes
f0—f(p) =3 (X —p)ai(x).
Moreover, .
of of
G(p)= | gz (Pdt=77(p).
In casen = 1 andp = 0, this lemma says that
f(x) = f(0) +xg1(x)
for someC® functiong; (x). Applying the lemma repeatedly gives
6i (%) = 6i(0) +xg +1(%),
whereg;, gi+1 areC® functions. Hence,
f(x) = £(0) +x(91(0) +x(x))
= (0) +xg1(0) +X*(g2(0) + xgs())

= £(0) + g1(0)X+ G2(0)X% + - - + Gi ()X + i1 (X)X .

Differentiating (1.2) repeatedly and evaluating at 0, we ge

1 .
0k(0) = Hf<k>(0), k=1,2,...,i

(1.1)

(1.2)
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So (1.2) is a polynomial expansion 6fx) whose terms up to the last term agree
with the Taylor series of (x) at O.

Remark Being star-shaped is not such a restrictive condition esary open ball
B(p.&) = {xeR"[[]x—p|| < €}
is star-shaped with respect o If f is aC> function defined on an open set
containingp, then there is ag > 0 such that
peB(p,e) CU.

When its domain is restricted 8(p, €), the functionf is defined on a star-shaped
neighborhood op and Taylor’s theorem with remainder applies.

NOTATION. Itis customary to write the standard coordinatesR8rasx, y, and the
standard coordinates ®? asx, y, z.

Problems

1.1. A function that is C? but not C3
Letg: R — R be the function in Example 1.2(iii). Show that the functiafx) =
JSg(t)dtis C? but notC3 atx = 0.

1.2.* AC* function very flat at 0
Let f(x) be the function ofR defined in Example 1.3.

(a) Show by induction that fax > 0 andk > 0, thekth derivativef ¥ (x) is of the
form pok(1/x) e /% for some polynomiapa(y) of degree Riny.
(b) Prove thatf is C* onR and thatf (0) = 0 for allk > 0.

1.3. A diffeomorphism of an open interval withIR
LetU c R" andV c R" be open subsets. 8° mapF: U — V is called adiffeo-
morphismif it is bijective and has € inverseF 1:V — U.

(a) Show that the functiofi: |— 17/2, 1/2[ — R, f(X) = tanx, is a diffeomorphism.

(b) Leta,b be real numbers with < b. Find a linear functiom: Ja,b[ — ]—1,1],
thus proving that any two finite open intervals are diffeopioc.

The compositd - h: |a,b[ — R is then a diffeomorphism of an open interval with

(c) The exponential function exf@R — ]0, [ is a diffeomorphism. Use it to show
that for any real numbewsandb, the intervalsR, ]a, »[, and]— o, b are diffeo-
morphic.

1.4. A diffeomorphism of an open cube withR"
Show that the map
T
r]-33
is a diffeomorphism.

n
[ —R" f(Xg,...,X) = (tanxy,...,tanx,)
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1.5. A diffeomorphism of an open ball withR"

Let0 = (0,0) be the origin andB(0,1) the open unit disk iiR?. To find a diffeomor-
phism betweeiB(0, 1) andR?, we identifyR? with thexy-plane inR® and introduce
the lower open hemisphere

SIX+y+(z—1)2%=1, z<1
in R3 as an intermediate space (Figure 1.4). First note that the ma
f:B(0,1) =S (a,b) —~ (a,b,1—v/1—a2—b?)

is a bijection.

(0,0,1) IS

NN

(a,b,0)

Fig. 1.4.A diffeomorphism of an open disk witR?2.

(a) Thestereographic projection gS— R? from (0,0,1) is the map that sends a
point(a,b,c) € Sto the intersection of the line throudf, 0,1) and(a, b, c) with
thexy-plane. Show that it is given by

(a,b,c) — (u,v) = (i L), c=1-V1-a2-b?

1-c’1-c

with inverse

u \% 1
(U,V)r—>< , ,1— >
VIFW4+v2 11U+ v2 V14 uZ 2

(b) Composing the two mapisandg gives the map

a b
h=g. f: B(0,1) — R, ha,b( , >
g (0.1) (ab) Vi—a2—b?2’ V/1-a2—b?

Find a formula forh—1(u,v) = (f "1« g~1)(u,v) and conclude that is a diffeo-
morphism of the open disR(0, 1) with R?.
(c) Generalize part (b) t&".
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1.6.* Taylor's theorem with remainder to order 2
Prove that iff : R2 — R is C®, then there exis€® functionsgi1, 912, 922 on R?
such that

of of

f(xy) = f(0,0)+ &(07 0)x+ d_y(o’ O)y

+X2g11(X, Y) + Xyi2(X, Y) + Y2G22(X, ).

1.7.* A function with a removable singularity
Let f: R? — R be aC* function with f(0,0) = df/dx(0,0) = df/dy(0,0) = 0.

Define fw
ttu
—— fort #0,
gt,uy=4 ' f
0 fort =0.

Prove thag(t, u) is C* for (t,u) € R?. (Hint: Apply Problem 1.6.)

1.8. BijectiveC” maps

Definef: R — R by f(x) = x>. Show thatf is a bijectiveC® map, but thatf ~* is
notC”. (This example shows that a bijecti@® map need not have@~ inverse.
In complex analysis, the situation is quite different: aebijve holomorphic map
f: C — C necessarily has a holomorphic inverse.)
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Tangent Vectors inR" as Derivations

In elementary calculus we normally represent a vector airet pin R algebraically
as a column of numbers

il

v= |V

v

or geometrically as an arrow emanating frgniFigure 2.1).

p
Fig. 2.1.A vectorv at p.

Recall that a secant plane to a surfac®iis a plane determined by three points
of the surface. As the three points approach a ppioh the surface, if the corre-
sponding secant planes approach a limiting position, therptane that is the lim-
iting position of the secant planes is called the tangenmela the surface ap.
Intuitively, the tangent plane to a surfacegsis the plane irR? that just “touches”
the surface ap. A vector atp is tangent to a surface iR? if it lies in the tangent
plane atp (Figure 2.2).

p v

=

Fig. 2.2.A tangent vectow to a surface ap.
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Such a definition of a tangent vector to a surface presuppbatthe surface is
embedded in a Euclidean space, and so would not apply to tective plane, for
example, which does not sit inside Bf in any natural way.

Our goal in this section is to find a characterization of tarigectors inR" that
will generalize to manifolds.

2.1 The Directional Derivative

In calculus we visualize the tangent spdgéR") at p in R" as the vector space of
all arrows emanating fromp. By the correspondence between arrows and column
vectors, the vector spa@' can be identified with this column space. To distinguish
between points and vectors, we write a poinRihasp = (p?,...,p") and a vector

in the tangent spack(R") as

We usually denote the standard basisR8ror Tp(R") by ey,...,en. Thenv= Zv‘a
for someV' € R. Elements off,(R") are calledangent vectorgor simply vectorg
atpin R". We sometimes drop the parentheses and Wpi&" for To(R").

The line through a poirp = (pt, ..., p") with directionv= (v%,...,v") in R" has
parametrization

c(t) = (pt+tvi,..., pT 1.

Its ith component'(t) is p' +tV. If f isC*™ in a neighborhood op in R" andv is a
tangent vector ap, thedirectional derivativeof f in the directionv at p is defined to

e f(ot) ~ (p) _ d
Dt =l T = | )
By the chain rule,
ndd _ of Lo of
Dy f :.;E(O)W(p):.gvﬁ(p)' (2.1)

Inthe notatiorDy f, it is understood that the partial derivatives are to beuatad
at p, sincev is a vector ap. SoD,f is a number, not a function. We write

0
D=5V 55,

for the map that sends a functidrto the numbeb, f. To simplify the notation we
often omit the subscrigp if it is clear from the context.

The association— Dy, of the directional derivativ®, to a tangent vectaroffers
a way to characterize tangent vectors as certain operamofgnetions. To make
this precise, in the next two subsections we study in gredsail the directional
derivativeDy as an operator on functions.
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2.2 Germs of Functions

A relationon a seSSis a subseR of Sx S, Givenx,yin S, we writex ~ y if and only
if (x,y) € R The relationR is anequivalence relatiorif it satisfies the following
three properties for akt,y,z€ S

(i) (reflexivity) X ~ X,
(i) (symmetry)ifx~y, theny ~ x,
(iii) (transitivity) if x ~yandy ~ z, thenx ~ z

As long as two functions agree on some neighborhood of a ppthey will have
the same directional derivatives@tThis suggests that we introduce an equivalence
relation on theC™ functions defined in some neighborhoodmfConsider the set of
all pairs(f,U), whereU is a neighborhood gb andf : U — R is aC® function. We
say that(f,U) is equivalento (g,V) if there is an open s&/ C U NV containingp
such thatf = gwhen restricted tV. This is clearly an equivalence relation because
it is reflexive, symmetric, and transitive. The equivaledess of( f,U) is called the
germof f atp. We writeC‘g(R”) or simplyCy if there is no possibility of confusion,
for the set of all germs oE* functions onR" at p.

Example.The functions
f(X) — i
1-x
with domainR — {1} and
g(X) = 1+ X+ X+ X3+

with domain the open intervdl- 1, 1] have the same germ at any popin the open
interval]— 1,1].

An algebraover a fieldK is a vector spaca overK with a multiplication map
u:AxA—A,

usually writtenu(a, b) = a- b, such that for ala,b,c € Aandr € K,

(i) (associativity)a-b)-c=a-(b-c),
(i) (distributivity) (a+b)-c=a-c+b-canda-(b+c)=a-b+a-c,
(iii) (homogeneity)(a-b)=(ra)-b=a-(rb).

Equivalently, an algebra over a fiell is a ring A (with or without multiplicative
identity) which is also a vector space okesuch that the ring multiplication satisfies
the homogeneity condition (iii). Thus, an algebra has tla@erations: the addition
and multiplication of a ring and the scalar multiplicatioiheovector space. Usually
we omit the multiplication sign and writgb instead ofa- b.

A mapL: V — W between vector spaces over a filds called dinear mapor
alinear operatorif for anyr € K andu,veV,

(i) L(u+v)=L(u)+L(v);
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(i) L(rv)=rL(v).

To emphasize the fact that the scalars are in the Keklich a map is also said to be
K-linear.

If AandA’ are algebras over a fielt], then amalgebra homomorphisiis a linear
mapL: A — A’ that preserves the algebra multiplicatidr(ab) = L(a)L(b) for all
a,beA

The addition and multiplication of functions induce copesding operations on
Cp, making it into an algebra ovét (Problem 2.2).

2.3 Derivations at a Point

For each tangent vecterat a pointp in R", the directional derivative gt gives a
map of real vector spaces
Dy: C‘r’;’ —R.

By (2.1),Dy is R-linear and satisfies the Leibniz rule

Dv(fg) = (Dvf)g(p) + f(p)Dvg, (2.2)

precisely because the partial derivatido@®x |p have these properties.

In general, any linear map: Cy — R satisfying the Leibniz rule (2.2) is called
aderivation at por apoint-derivationof Cg. Denote the set of all derivations pt
by Dp(R"). This set is in fact a real vector space, since the sum of twigat®ns at
p and a scalar multiple of a derivationtire again derivations @t(Problem 2.3).

Thus far, we know that directional derivativesagre all derivations ap, so
there is a map

@: Tp(R") — Dp(R"), (2.3)
0

SinceDy is clearly linear inv, the mapp is a linear map of vector spaces.

Lemma 2.1.1f D is a point-derivation of , then c) = O for any constant function
C.

Proof. As we do not know if every derivation atis a directional derivative, we need
to prove this lemma using only the defining properties of é&d&on atp.

By R-linearity, D(c) = cD(1). So it suffices to prove thdd(1) = 0. By the
Leibniz rule (2.2)

D(1) =D(1-1) = D(1)- 1+ 1-D(1) = 2D(1).

Subtractind®(1) from both sides gives & D(1). O
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TheKronecker delta) is a useful notation that we frequently call upon:

i 1 ifi=j,
s=4
{0 ifi#j.
Theorem 2.2.The linear mapp: Tp(R") — Dp(R") defined in(2.3)is an isomor-

phism of vector spaces.

Proof. To prove injectivity, suppos®, = 0 for v € Tp(R"). Applying Dy to the
coordinate functiorx! gives

0=Dy(x) = > .gx

| K= vl =l
p i

Hencey = 0 andg is injective.

To prove surjectivity, leD be a derivation ap and let(f,V) be a representative
of a germinCy. MakingV smaller if necessary, we may assume ¥as an open
ball, hence star-shaped. By Taylor's theorem with remaifidemma 1.4) there are
C functionsgi(x) in a neighborhood op such that

(0)+ 300~ P)a(. a(p)= 2k (p)

Applying D to both sides and noting thX( f (p)) = 0 andD(p') = 0 by Lemma 2.1,
we get by the Leibniz rule (2.2)

Df(x) = ( (DX) g. Z p')Dgi(x
_Z (3x'

This proves thab = Dy for v= (Dx},...,Dx"). O

This theorem shows that one may identify the tangent veatqraiith the deriva-
tions atp. Under the vector space isomorphipiR") ~ D,(R"), the standard basis
e1,...,en for To(R") corresponds to the séydx|p,...,d/dx"|, of partial deriva-
tives. From now on, we will make this identification and wréeangent vector
v= (... V) =S Ve as

V—ZvI (3x' ) (2.4)

The vector spac®,(R") of derivations alp, although not as geometric as ar-
rows, turns out to be more suitable for generalization toifolts.

2.4 Vector Fields
A vector field Xon an open subsét of R" is a function that assigns to each point

in U a tangent vectaX, in Tp(R"). SinceT,(R") has basigd/dx |}, the vectoiX,
is a linear combination
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Xo= S al(p) 2 u, a R
p—za(p)ﬁ ) pE ) a(p)e .
p

Omitting p, we may writeX = y a' d/dx, where thea' are now functions o). We
say that the vector field is C* on U if the coefficient functiong' are allC” onU.

Example2.3. OnR? — {0}, let p= (x,y). Then

x—_ Y g X [ -y X
V20X /220y \ /2y /x4 y?
is the vector field in Figure 2.3(a). As is customary, we draveetor atp as an

arrow emanating fronp. The vector fieldY = xd/dx—yd/dy = (x,—y), suitably
rescaled, is sketched in Figure 2.3(b).

770000001311V VNNNYNNN
27777/ 700 010 H VNV NN NN NN
S22 70001 LV YN N NN NN
S 77 4 L 0 T L VNN NN N NN
S 4 4 10 T L VN NN NN NN
/////llllllll\\\\\\\\
- & s 2 T B T N
TIrrT T : oo
NN [ R I
NNNSNANANANAY s
NNNNANANANANNYN IV 77 7SS
NNANANANANANANYN YV v V7S
NNANANANANANAAY YWV v 1727277777
NNANNNANNANY WV V7777777
NNANNANANNANV RV LT 777777
(a) The vector fiel& onR? — {0} (b) The vector fieldx, —y) onR?

Fig. 2.3.Vector fields on open subsetsif.

One can identify vector fields du with column vectors o€~ functions onJ:

al
i 0

— [ .
X = z ag ]
a
This is the same identification as (2.4), but now we are afigwhe pointp to move
inU.

The ring ofC* functions on an open setis commonly denote@>(U) or F(U).

Multiplication of vector fields by functions od is defined pointwise:

(fX)p=f(P)Xp, peU.
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Clearly, if X = ya d/dx is aC* vector field andf is aC* function onU, then
fX = y(fa)d/dx is aC* vector field orlJ. Thus, the set of all* vector fields on
U, denoted%(U), is not only a vector space ovBr; but also anoduleover the ring
C*(U). We recall the definition of a module.

Definition 2.4. If Ris a commutative ring with identity, then a (leRymodulds an
abelian groupA with a scalar multiplication map

U:RxA—A,

usually writtenu(r,a) = ra, such that for all,s€ Randa,b € A,

(i) (associativity)(rs)a=r(sa),
(ii) (identity) if 1 is the multiplicative identity irR, then Ja = a,
(iii) (distributivity) (r+s)ja=ra+sar(a+b)=ra+rb.

If Ris afield, then afR-module is precisely a vector space ofReiin this sense,
a module generalizes a vector space by allowing scalarsiimgaather than a field.

Definition 2.5. Let A andA’ be R-modules. AnR-module homomorphisfrom A
to A' is a mapf: A — A’ that preserves both addition and scalar multiplication: fo
alla,be Aandr e R,

(i) f(a+b)=f(a)+ f(b),
(i) f(ra)=rf(a).

2.5 Vector Fields as Derivations

If X is aC® vector field on an open subdétof R" andf is aC* function onU, we
define a new functioiX f onU by

(Xf)(p) =Xpf foranypeU.
Writing X = y a' d/dx, we get

(X1)(p) = 3 &) 2 (1),

or o
_ i
Xf= Za_dxi’

which shows thaX f is aC* function onU. Thus, aC* vector fieldX gives rise to
anR-linear map

C*(U) = C>(),
f — Xf.
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Proposition 2.6 (Leibniz rule for a vector field). If X is a C* vector field and f
and g are C functions on an open subset URF, then X fg) satisfies the product
rule (Leibniz rule):

X(fg) = (Xf)g+ fXg.

Proof. At each pointp € U, the vectoiX, satisfies the Leibniz rule:
Xp(fg) = (Xpf)a(p) + f(P)Xpg.
As p varies ovelJ, this becomes an equality of functions:
X(fg)=(Xf)g+ fXg O

If Ais an algebra over a field, a derivationof A is aK-linear mapD: A — A
such that
D(ab) = (Da)b+aDb foralla,be A.

The set of all derivations dA is closed under addition and scalar multiplication and
forms a vector space, denoted D¥r. As noted above, @ vector field on an open
setU gives rise to a derivation of the algel€&(U ). We therefore have a map

¢: X(U) — Der(C*(U)),
X (f = XT).

Just as the tangent vectors at a pgirgian be identified with the point-derivations of

Cp., so the vector fields on an open setan be identified with the derivations of the

algebraC(U); i.e., the map is an isomorphism of vector spaces. The injectivity of

¢ is easy to establish, but the surjectivitygptakes some work (see Problem 19.12).
Note that a derivation gt is not a derivation of the algeb&f. A derivation atp

is a map fronCy to R, while a derivation of the algeb; is a map fronC; to Cy.

Problems

2.1. Vector fields
Let X be the vector fielkd /dx+yd/dy and f(x,y,z) the functionx® +y? + 2> on
RR3. ComputeX f.

2.2. Algebra structure onCy
Define carefully addition, multiplication, and scalar nipiitation inCg. Prove that
addition inCy is commutative.

2.3. Vector space structure on derivations at a point
Let D andD’ be derivations ap in R", andc € R. Prove that

(a) the sunD + D’ is a derivation ap.
(b) the scalar multipleD is a derivation ap.

2.4. Product of derivations

Let A be an algebra over a field. If D; andD; are derivations ofA, show that
D1 - D3 is not necessarily a derivation (it isif; or D, = 0), butD; c Do — D3 0 D1
is always a derivation oA.
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The Exterior Algebra of Multicovectors

As noted in the introduction, manifolds are higher-dimensai analogues of curves
and surfaces. As such, they are usually not linear spacesetNeless, a basic
principle in manifold theory is the linearization prinagplaccording to which every
manifold can be locally approximated by its tangent spaeepatint, a linear object.
In this way linear algebra enters into manifold theory.

Instead of working with tangent vectors, it turns out to bererfouitful to adopt
the dual point of view and work with linear functions on a tangspace. After all,
there is only so much that one can do with tangent vectorsciwhiie essentially
arrows, but functions, far more flexible, can be added, ligti, scalar-multiplied,
and composed with other maps. Once one admits linear furgtio a tangent space,
it is but a small step to consider functions of several argusiinear in each argu-
ment. These are the multilinear functions on a vector spabe. determinant of a
matrix, viewed as a function of the column vectors of the imats an example of
a multilinear function. Among the multilinear functionsgrtain ones such as the
determinant and the cross product haveaatisymmetricor alternating property:
they change sign if two arguments are switched. The alt@gnatultilinear func-
tions with k arguments on a vector space are catmdticovectors of degree lor
k-covectordor short.

It took the genius of Hermann Grassmann (1809-1877), a Gemadhemati-
cian, linguist, and high-school teacher, to recognize mgartance of multicovec-
tors. He constructed a vast edifice based on multicovectorg called theexterior
algebra that generalizes parts of vector calculus fri@thto R". For example, the
wedge product of two multicovectors on ardimensional vector space is a gener-
alization of the cross product iR® (see Problem 4.6). Grassmann’s work was little
appreciated in his lifetime. In fact, he was turned down famdversity position
and his Ph. D. thesis rejected, because the leading matise&anatof his day such
as Mobius and Kummer failed to understand his work. It waly anthe turn of
twentieth century, in the hands of the great differentiargeterElie Cartan (1869—
1951), that Grassmann’s exterior algebra found its justgeition as the algebraic
basis of the theory of differential forms. This section iseaposition, using modern
terminology, of some of Grassmann’s ideas.
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3.1 Dual Space

If V andW are real vector spaces, we denote by Hd/W) the vector space of all
linear mapsf : V — W. Define thedual space V of V to be the vector space of all
real-valued linear functions ox:

VY =Hom(V,R).

The elements of V are calleccovectoror 1-covectoronV.

In the rest of this section, assuMeo be afinite-dimensionabector space. Let
e1,...,6n be a basis foi. Then everyv in V is uniquely a linear combination
v=yve with V € R. Leta':V — R be the linear function that picks out the
ith coordinatea’ (v) = V. Note thata' is characterized by

@ =a={5 wiz)
Proposition 3.1.The functionsr®, ..., a” form a basis for V.
Proof. We first prove thatr?,...,a" spanv”. If f €V andv= S Vg €V, then
fv) =S Vi) =Y f@)a' V).

Hence, _
f=% f(e)a,

which shows thatr®, ..., a" spanv". _
To show linear independence, suppgsea' = 0 for somec; € R. Applying
both sides to the vectes; gives

0= IZciai(ej): Zcié} =cj, j=1...,n

Henceal,...,a" are linearly independent. O
This basisa®,...,a" for VY is said to bedualto the basi, ..., e, for V.

Corollary 3.2. The dual space V of a finite-dimensional vector space V has the
same dimension as V.

Example3.3 (Coordinate functions With respect to a basig,, ..., €, for a vector
spaceV, everyv € V can be written uniquely as a linear combinatios y b'(v)e;,
whereb'(v) € R. Leta?, ..., a" be the basis 0f ¥ dual toey, ..., e,. Then

a'(v)=a' (Z b’ (v)e,—) =S bl(v)a'(e) =5 b(v)g =b'(v).
J J J

Thus, the dual basis @, .. ., e, is precisely the set of coordinate functidsts. .., b"
with respect to the bases, . .., e,.



22 3 The Exterior Algebra of Multicovectors
3.2 Permutations

Fix a positive integek. A permutatiorofthe selA={1,...,k} is abijectiono: A—
A. More concretelyg may be thought of as a reordering of the lis21. . k from its
natural increasing order to a new ordgi), o (2),...,a(k). Thecyclic permutation
(ag a2 --- &) where theg; are distinct, is the permutatiam such thato(a;) = ay,
o(a)=as ..., 0(a-1) = (&), o(ay) = a1, ando fixes all the other elements of
A. A cyclic permutation(a; a, --- &) is also called &ycle of length or anr-cycle
A transpositionis a 2-cycle, that is, a cycle of the forfa b) that interchanges and
b, leaving all other elements @éffixed. Two cycleqa; ---a;) and(b; - - - bs) are said
to bedisjointif the sets{ay,...,a } and{b,...,bs} have no elements in common.
Theproductto of two permutationg ando of A is the compositiorr - g: A — A,
in that order; first apply, thenrt.

A simple way to describe a permutation A — Ais by its matrix

[0(11) 0(22) al((k)} '

Example3.4. Suppose the permutatian: {1,2,3,4,5} — {1,2,3,4,5} maps 12,
3,4,5t024,5,1, 3 in that order. As a matrix,

pseg

To write o as a product of disjoint cycles, start with any elemen{in2, 3,4,5},
say 1, and apply to it repeatedly until we return to the initial element; thises a
cycle: 1— 2+— 4 — 1. Next, repeat the procedure to any of the remaining elesnent
say 3, to get a second cycle+835— 3. Theno = (12 4)(35).

/\<>

From this example, it is easy to see that any permutation eamritten as a product
of disjoint cycles(a; --- a)(by --- bs) -

Let S be the group of all permutations of the ddt ..., k}. A permutation is
evenor odd depending on whether it is the product of an even or an odd ruofb
transpositions. From the theory of permutations we knowttiia is a well-defined
concept: an even permutation can never be written as theiproflan odd number
of transpositions and vice versa. Thign of a permutatioro, denoted sgfo) or
sgna, is defined to bet-1 or —1 depending on whether the permutation is even or
odd. Clearly, the sign of a permutation satisfies

sgn(oT) = sgr(o) sgr(T) (3.2)
foro,Tr € S..



3.2 Permutations 23
Example3.5. The decomposition
(12345=(15(14)(13)(12
shows that the 5-cyclgl 2 3 4 § is an even permutation.

More generally, the decomposition

(@a - a)=(ua)(aa-1) (a1 as) (a1 a)

shows that am-cycle is an even permutation if and onlyrifs odd, and an odd per-
mutation if and only ifr is even. Thus one way to compute the sign of a permutation
is to decompose it into a product of cycles and to count thebaurof cycles of even
length. For example, the permutationr= (1 2 4)(3 5) in Example 3.4 is odd because
(12 4)is evenand35) is odd.

An inversionin a permutatioro is an ordered paito(i),o(j)) such that < j
buto(i) > o(j). To find all the inversions in a permutation it suffices to scan the
second row of the matrix of from left to right; the inversions are the paii,b)
with a > b anda to the left ofb. For the permutatiow in Example 3.4, from its
matrix (3.1) we can read off its five inversion&, 1), (4,1), (5,1), (4,3), and(5, 3).

Exercise 3.6 (Inversions).* Find the inversions in the permutation= (1 2 3 4 5 of Exam-
ple 3.5.

A second way to compute the sign of a permutation is to cownntimber of
inversions, as we illustrate in the following example.

Example3.7. Let o be the permutation of Example 3.4. Our goal is to tarinto
the identity permutatiodi by multiplying it on the left by transpositions.

(i) To move 1 to its natural position at the beginning of thesse row of the matrix
of g, we need to move it across the three elemepds®2 This can be accom-
plished by multiplyingo on the left by three transpositions: firfd 1), then
(4 1), and finally(2 1):

o |123458 651 (4 2
2451 2415 2145 12453"

The three transpositior{§ 1), (4 1), and(2 1) correspond precisely to the three
inversions ofo ending in 1.
(ii) The element 2 is already in its natural position in thea®d row of the matrix.
(iif) To move 3 to its natural position in the second row, weed¢o move it across
two elements 4, 5. This can be accomplished by

12345 59 (43 _1
1245 11243 "l123489 "

(43)(53)(21)(41)(5 )0 =1. (3.3)

Thus,
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Note that the two transpositiofs 3) and(4 3) correspond to the two inversions
ending in 3. Multiplying both sides of (3.3) on the left by ttranspositions
(4 3), then(5 3), then(2 1), and so on eventually yields

oc=(51(41(21(53)(43).

This shows thatr can be written as a product of as many transpositions as thbeu
of inversions in it.

With this example in mind, we prove the following propositio

Proposition 3.8.A permutation is even if and only if it has an even number arinv
sions.

Proof. We will obtain the identity permutatioh by multiplying o on the left by a
number of transpositions. This can be achievekisteps.

(i) First, look for the number 1 among(1),0(2),...,0(k). Every number preced-
ing 1 in this list gives rise to an inversion, for if o(i), then(o(1),1),...,
(o(i—1),1) are inversions o&. Now move 1 to the beginning of the list across
thei — 1 elementw(1),...,0(i —1). This requires multiplyingr on the left by
i — 1 transpositions:

o1= (010 =DDO=14 51y ... g(i-1) (i +1) - o(k)]"
Note that the number of transpositions is the number of siges ending in 1.

(i) Next look for the number 2 in the list: , & (1),...,0(i—1),0(i+ 1),...,0(K).
Every number other than 1 preceding 2 in this list gives ris@n inversion
(o(m),2). Suppose there aiig such numbers. Then there ageinversions
ending in 2. In moving 2 to its natural position2L.o(1),0(2),..., we need to
move it across; numbers. This can be accomplished by multiplyiagon the
left by i, transpositions.

Repeating this procedure, we see that for eaehl, . ..k, the number of trans-
positions required to movgto its natural position is the same as the number of in-
versions ending i. In the end we achieve the identity permutation, i.e, therd
list1,2,...,k froma(1),0(2),...,0(k) by multiplying o by as many transpositions
as the total number of inversionsdn Therefore, sgfo) = (—1)# nversionsio

3.3 Multilinear Functions

Denote bk =V x ... x V the Cartesian product &fcopies of a real vector space
V. Afunction f : VK — R isk-linearif it is linear in each of it arguments:

f(...,av+bw...)=af(...,v,...)+bf(...,w...)
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forall a,b € R andv,w € V. Instead of 2-linear and 3-linear, it is customary to say
“bilinear” and “trilinear.” A k-linear function orV is also called &-tensoronV. We

will denote the vector space of aitensors oV by Ly(V). If f is ak-tensor orv,

we also calk thedegreeof f.

Example3.9 (Dot product onR"). With respect to the standard basis. .., e, for
R", thedot product defined by

f(,W) =Vvew= Z\/ivvi, wherev = Zv‘a, w= Zvvia,
|

is bilinear.

ExampleThe determinanf(vy,...,vn) = defv; --- vy], viewed as a function of the
n column vectorss, ..., v, in R", is n-linear.

Definition 3.10. A k-linear functionf : VK — R is symmetridf

f (VO'(l)v"' aVO'(k)) = f(Vl,...,Vk)

for all permutationo € §; it is alternatingif

f (Vo(1)s- -+ Vo) = (59n0) f(vi, ..., i)

forall o € S.

Examples.

(i) The dot product (v,w) =v.wonR" is symmetric.
(i) The determinanf (vy,...,vn) =defv; --- vy onR" is alternating.
(iii) The cross product x wonR? is alternating.
(iv) For any two linear functiond, g: V — R on a vector spac¥, the function
fAQ:V xV — R defined by

(fAg)(u,v) = F(u)g(v) — F(V)g(u)

is alternating. This is a special case of thedge produgtwhich we will soon
define.

We are especially interested in the spagé/) of all alternatingk-linear func-
tions on a vector spacé for k > 0. These are also calleglternating k-tensors
k-covectorsor multicovectors of degreednV. Fork = 0, we define a @&ovectorto
be a constant so thay(V) is the vector spacR. A 1-covector is simply a covector.
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3.4 The Permutation Action on Multilinear Functions

If f is ak-linear function on a vector spabeando is a permutation irg, we define
a newk-linear functiono f by

(f)(va,...,vi) = f (Vo()s- -5 Vo) -

Thus, f is symmetric if and only io f = f for all o € S andf is alternating if and
onlyif of = (sgno)f forall o € S..

When there is only one argument, the permutation gi®up the identity group
and a 1-linear function is both symmetric and alternatingpdrticular,

Ai(V) =Ly (V) =V".
Lemma 3.11.If 0,7 € Scand f is a k-linear function on V, ther(o f) = (t0)f.

Proof. Forvy,...,w eV,

T(of)(Ve,..., W) = (0F) (Ve(ays- -5 Vo)
=(of)(wi,...,w) (lettingwi = vy(i))
= f (Wo(2),- - Wok)
= f (Vo) Vitot)) = T (Viro)@)» -+ Vizo) i)
= (10)f(v1,..., ). O

In general, ifG is a group an is a set, a map

GxX— X,
(0,X) = 0-X

is called deft actionof G on X if

(i) e-x=xwhereeis the identity element i andx is any element irX, and
(i) 7-(o-x)=(10)-xforall 1,0 € G,xe X.

Theorbit of an elemenk € X is defined to be the s@x:= {o-xe X |0 € G}. In
this terminology, we have defined a left action of the permtagroupS; on the
spacely(V) of k-linear functions ofV. Note that each permutation acts as a linear
function on the vector spadg (V) sinceaf is R-linear in f.

A right actionof G on X is defined similarly; it is a ma x G — X such that

(i) x-e=x, and
(i) (x-0)-T=x-(0T)

forall o,7 € Gandx € X.

Remark.n some books the notation farf is 9. In that notation(f¢)" = f79, not
for,
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3.5 The Symmetrizing and Alternating Operators

Given anyk-linear functionf on a vector spacé, there is a way to make a symmetric
k-linear functionS f from it:

(SH(VL, - W) = ;f(vo(l)a---vvo(k))
ge

or, in our new shorthand,

Sf= zs(af.
ge

Similarly, there is a way to make an alternatiatinear function fromf. Define

Af = ;(sgna)af.
oc

Proposition 3.12.1f f is a k-linear function on a vector space V, then

(i) the k-linear function Sf is symmetric, and
(i) the k-linear function Af is alternating.

Proof. We prove (ii) only, leaving (i) as an exercise. Roe &,

T(Af) = ;(sgna)r(af)

age
= zs((sgno)(w)f (by Lemma 3.1}
ge
= (sgnr) ;(sgnra)(ra)f (by (3.2)
oc
= (sgnT)Af,
since aw runs through all permutations &, so doeso. O

Exercise 3.13 (Symmetrizing operator).* Show that theék-linear functionS f is symmetric.

Lemma 3.14.If f is an alternating k-linear function on a vector space Wen Af=
(k) f.

Proof. Since for alternating we haveo f = (sgno)f, and sgro = +1,

Af = ;(sgna)af = Z&k(sgna)(sgna)f = (kO f. O

Exercise 3.15 (Alternating operator).* If f is a 3-linear function on a vector spa¢eand
v1,V2,v3 €V, what is(Af)(vq,V2,v3)?
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3.6 The Tensor Product

Let f be ak-linear function andy an ¢-linear function on a vector spase Their
tensor products the(k+ ¢)-linear functionf @ g defined by

(f@g) (V1. Virr) = F(V1, - Vi)O(Vir 1, - - - Vi t)-

Example3.16 Bilinear map3. Letey, ..., e, be a basis for a vector spadea?, ..

a" the dual basis i, and(, ): V xV — Rabilinear map oV. Setgj; = (a eJ>
R. Ifv= zv‘a andw = ZW'Q then as we observed in Example 3/3= a'(v) and
w! = al(w). By bilinearity, we can express, ) in terms of the tensor product:

w) =3 viwl (e, &) 20{ W)gij
_Zglj ®CYJ V,W).

Hence,(, ) = ygija' ® al. This notation is often used in differential geometry to
describe an inner product on a vector space.

Exercise 3.17 (Associativity of the tensor product)Check that the tensor product of multi-
linear functions is associative: ff g, andh are multilinear functions oW, then

(fegeh=fa(goh).

3.7 The Wedge Product

If two multilinear functionsf andg on a vector spac¥ are alternating, then we
would like to have a product that is alternating as well. Thigtivates the definition
of thewedge produgtalso called thexterior product for f € A (V) andg € A,(V),

fAg= A(f®0); (3.4)

1
K
or explicitly,

(FAQ)(Va,. .., Vi)
1
= (sgno) f (Vo(1),---: Vo) 9 (Va(ks1)s - Vakery) - (3.5)
Kiel 4 »
By Proposition 3.12f A g is alternating.

Whenk = 0, the elementf € Ayp(V) is simply a constant. In this case, the
wedge product A g is scalar multiplication, since the right-hand side of §3s5

1
7 é(sgna)cg(va(l),...,vam) =cg(vy,..., V).
Toe

ThuscAg=cgforce R andg € Ay(V).
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The coefficient 1k!¢! in the definition of the wedge product compensates for
repetitions in the sum: for every permutatiore S 4, there arek! permutations
in S that permute the firdt arguments/; (1), ..., V() and leave the arguments gf
alone; for allt in &, the resulting permutatiorst in S, contribute the same term
to the sum since
(sgnoT)f (Var(l)v---avar(k)) = (sgnoT)(sgnr) f (Va(l)a e 7V0(k))
= (sgno) f (Vo(1):---:Va(K))

where the first equality follows from the fact that(1),..., 7(k)) is a permutation of
(1,...,k). So we divide byk! to get rid of thek! repeating terms in the sum coming
from permutations of thk arguments off; similarly, we divide by/! on account of
the/ arguments o§.

Example3.18 For f € Ax(V) andg € A1(V),
A(f@9)(vi,V2,v3) =  f(v1,v2)g(vs) — f(v1,v3)g(V2) + f(V2,Vv3)g(V1)
— f(v2,v1)g(vs) + f(v3,v1)g(v2) — f(Vv3,v2)9(V1).

Among these six terms, there are three pairs of equal terimishwve have lined up
vertically in the display above:

f(v1,v2)g(va) = —f(v2,v1)g(v3), andsoon
Therefore, after dividing by 2,
(f AQ)(va,V2,V3) = f(V1,V2)g(V3) — f(V1,V3)g(V2) + f(V2,V3)g(V1).

One way to avoid redundancies in the definitiorf afg is to stipulate that in the
sum (3.5),0(1),...,0(k) be in ascending order amdk+1),...,0(k+¢) also be in
ascending order. We call a permutatiore S, a (k, ¢)-shuffleif

ogl)<---<ok and ak+1)<---<oak+?).
By the paragraph before Example 3.18, one may rewrite (3.5) a

(FAQ)(Ve,. -, Visr)

= Y (sgno)f (Vo(),--- Vo) 9 (Vo) Vokio) - (3.6)
(k,¢)-shuffles
g

Written this way, the definition off A g)(v1,...,Vk¢) IS @ sum of(kﬁ) terms, in-

stead of(k+ ¢)! terms.

Example3.19 Wedge product of two covectdrs If f andg are covectors on a
vector spac® andvy, Vo € V, then by (3.6)

(fAQ)(v1,v2) = f(va)g(v2) — f(v2)g(va).

Exercise 3.20 (Wedge product of tw@-covectors).For f,g € Ax(V), write out the definition
of f Agusing(2,2)-shuffles.



30 3 The Exterior Algebra of Multicovectors
3.8 Anticommutativity of the Wedge Product

It follows directly from the definition of the wedge produ8t$) thatf Agis bilinear
in f and ing.

Proposition 3.21.The wedge product ianticommutative if f € A(V) and ge
As(V), then
fAg=(—1)gAf.

Proof. Definet € S, to be the permutation

1o 0 41 04K
Tkl kbl 1 - k|

T
This means that
(1) =k+1,...,1(0) =k+4,T(l+1)=1,...,T(¢{+k) =k
Then
o(l)=01({+1),...,0K) =0T(£+Kk),
ok+1)=o01(1),...,0k+0)=01(¥).
For anyvy,...,Vkir €V,
A(f®9)(V, .-, Vire)
= % (s9n0) f (Vo(1),-- -5 Vo) 9 (Vaks)s- Vo))
O€ X+

= % (s9n0) f (Vor(+1)s-- - »Vor(e+k)) 9 (Var()s -+ »Vor(r))
O€ 3+t
= (sgnr) é (sgno1)g (Vor(1)s---»Vor(r) T (Vor(e+1)s- - Vor(etk)
TEXt0

= (sgnT)A(g® f)(v1,...,Vkre)-

The last equality follows from the fact that asruns through all permutations in
S«+¢, SO doewT.
We have proven
A(f ®g) = (sgnt)A(g® f).
Dividing by k! ¢! gives
f Ag=(sgnr)gA f.

Exercise 3.22 (Sign of a permutation).*Show that sgm = (—1)¥’. 0
Corollary 3.23. If f is a multicovector of odd degree on 'V, then f = 0.
Proof. Letk be the degree of. By anticommutativity,
fAf=(—1)KFAf
=—fAf,

sincek is odd. Hence, 2A f = 0. Dividing by 2 givesf A f = 0. O



3.9 Associativity of the Wedge Product 31

3.9 Associativity of the Wedge Product

The wedge product of kcovectorf and an/-covectorg on a vector spac¥ is by
definition the(k + ¢)-covector

1

To prove the associativity of the wedge product, we willéall Godbillon [14] by
first proving a lemma on the alternating operaior

Lemma 3.24.Suppose f is a k-linear function and g &tinear function on a vector
space V. Then

() A(A(f)®g) =KIA(f®g), and
(i) A(f @ A(Q)) =IA(f ®0).

Proof. (i) By definition,

SGULLESD <sgno>a<;<sgnr><rf>®g>.

We can viewr € S also as a permutation 8., fixing k+1,...,k+ £. Viewed this
way, T satisfies

(tf)eg=1(f®0).
Hence,

AA(f)@g) = % ;(SQHG)(SQHT)(UT)U ®Q). 3.7)

For eachu € S, and eaclt € §, there is a unique elemeat= ut—* € S, such
thaty = o1, so eachu € S, appears once in the double sum (3.7) for enehS,,
and hencé! times in total. So the double sum (3.7) can be rewritten as

AA(f)®g) =Kk é (sgnu)u(fg)
HEX+e
=KA(f®0).
The equality in (i) is proved in the same way. O
Proposition 3.25 (Associativity of the wedge product). Let V be a real vector

space and fg,h alternating multilinear functions on V of degreed n, respec-
tively. Then

(fAg)Ah=fA(gAh).

Proof. By the definition of the wedge product,
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(fAQ)Ah= Ft)!m!A((ng)@uh)

1 1
(k—+0)!ml kit
(k+0)!

= WA(U ®g)®h) (by Lemma 3.24(j)

A((fog)oh).

AA(fog) @h)

~ kim!

Similarly,

fA(gAh) = mA(f@ﬁA(g@h))

= —k!;m!A(f@@(g@h)).

Since the tensor product is associative, we conclude that
(fAg)Ah=fA(gAh). O

By associativity, we can omit the parentheses in a multigege product such
as(f Ag) Ahand write simplyf AgAh.

Corollary 3.26. Under the hypotheses of the proposition,

fogeh).

1
Fagnh= Al

This corollary easily generalizes to an arbitrary numbeffagftors: if f; €
Ag (V), then

1
fl/\.../\fr:mA(ﬁ@---@fr). (3.8)

In particular, we have the following proposition. We use rﬂmaaation[bij] to denote
the matrix whoséi, j)-entry isbij .

Proposition 3.27 (Wedge product ofl-covectors).If a?,...,ak are linear func-
tions on a vector spaceV ang,v..,v €V, then

1

(@A Aa¥)(va,..., ) = deta(v))].

Proof. By (3.8),

IhAad ) (va, . v = Aat @@ ak) (v, v)

= ;(ng)al (Vo) - o (Vo)

age

(a

= defa' (vj)]. O
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An algebraA over a fieldK is said to begradedif it can be written as a direct sum
A= Pp_, A of vector spaces ovéf so that the multiplication map send$x A’ to
At The notatiomA = @p_, A means that each nonzero elemenfd$ uniquely
afinite sum

a=a,+ - +aip,

wherea;; # 0 € Ali. A graded algebra = @‘;:OA" is said to beanticommutativer
graded commutativié for all a € AX andb € A,

ab=(—1)ba

A homomorphism of graded algebraésan algebra homomorphism that preserves
the degree.

Example The polynomial algebra = Rx,y] is graded by degre&¥ consists of all
homogeneous polynomials of total degkeae the variablex andy.

For a finite-dimensional vector spa¢esay of dimensiom, define

co n

A (V) = PAV) = PAV).
k=0

k=0

With the wedge product of multicovectors as multiplicatidn(V) becomes an an-
ticommutative graded algebra, called theerior algebraor theGrassmann algebra
of multicovectors on the vector space

3.10 A Basis fork-Covectors

Lete,...,e, be a basis for a real vector spatgand leta?, ..., a" be the dual basis
for VV. Introduce the multi-index notation

and writeg for (g,,...,6,) anda' fora't A--- A alk.

A k-linear functionf onV is completely determined by its values onlatuples
(&,...,8,). If fis alternating, then it is completely determined by its ealon
(&,,-..,8,) With 1 <ii <--- <i < n; that is, it suffices to consides with | in
strictly ascendingrder.

Lemma 3.28.Let g, ..., e, be a basis for a vector space V and tet,...,a" be its
dualbasisinV. Ifl = (1<i;<---<ik<njandJ=(1<j; <--- < jgk<n)are
strictly ascending multi-indices of length k, then

1 forl=1J,

oy _ sl _
0(63)53{0 for | #J.
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Proof. By Proposition 3.27,
a'(ey) = defa’ (&))lier jes-

If I =J, then[a'(e))] is the identity matrix and its determinant is 1.
If 1 £ J, we compare them term by term until the terms differ:

i1=J1, ooy bm1=Jo—1, e F Jo, oo

Without loss of generality, we may assumpe< j,. Theni, will be different from
j1,---,Jje—1 (because these are the sam&as.,i,, andl is strictly ascending), and
i, will also be different fromjy, js.1,..., jk (becausd is strictly ascending). Thus,
i, will be different from jy, ..., jk, and thefth row of the matrixa (e;)] will be all
zero. Hence, d@'(ej)] = 0. 0

Proposition 3.29.The alternating k-linear functions', | = (i; < --- <iy), form a
basis for the spaceldV) of alternating k-linear functions on V.

Proof. First, we show linear independence. Supppsea' =0, ¢; € R, andl runs
over all strictly ascending multi-indices of length Applying both sides te;, J =
(j1 <--+ < jk), we get by Lemma 3.28,

0= an'(ej) = Zc.éj =cy,

since among all strictly ascending multi-indidesf lengthk, there is only one equal
to J. This proves that the' are linearly independent.
To show that thexr' spanA,(V), let f € A, (V). We claim that

f:Zf(a)a',

wherel runs over all strictly ascending multi-indices of lengti_etg=75 f (e )a'.
By k-linearity and the alternating property, if twecovectors agree on &, where
J=(j1 < - < jk), then they are equal. But

gle) =3 f(e)a'(ey) = f(er)d) = f(ey).
Thereforef =g=75 f(e)a'. 0

Corollary 3.30. If the vector space V has dimension n, then the vector spgté A
of k-covectors on V has dimensi¢).

Proof. A strictly ascending multi-indek= (i1 < --- < ix) is obtained by choosing a
subset ok numbers from 1..,n. This can be done ify) ways. O

Corollary 3.31. If k > dimV, then A(V) = 0.

Proof. Ina't A---Aa'k, at least two of the factors must be the same, sy a =
a. Because is a 1-covectory Aa =0 by Corollary 3.23,s@'* A---Aa'k=0. O
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Problems

3.1. Tensor product of covectors
Letey,...,e, be abasis for a vector spagend leta?,. .., a" be its dual basis V.
Supposég;j] € R™"is ann x n matrix. Define a bilinear functiofi: V xV — R by

fuw) = 5 gijvVw
n

1<i,)<

forv=yVvie andw= ywlej in V. Describef in terms of the tensor products af
anda!, 1<i,j<n.

3.2. Hyperplanes

(a) LetV be a vector space of dimensinandf : V — R a nonzero linear functional.
Show that dimkef = n— 1. A linear subspace &f of dimensiom — 1 is called
ahyperplanégnV.

(b) Show that a nonzero linear functional on a vector spatedetermined up to a
multiplicative constant by its kernel, a hyperplan&/inin other words, iff and
g: V — R are nonzero linear functionals and Ket kerg, theng = cf for some
constant € R.

3.3. A basis fork-tensors

LetV be a vector space of dimensiarwith basisey,...,e,. Letal,...,a" be the
dual basis fo"V. Show that a basis for the spacgV) of k-linear functions on
Vis {a't®---®a'k} for all multi-indices(iy, . .. ,ix) (not just the strictly ascending
multi-indices as forAc(L)). In particular, this shows that dibg(V) = n¥. (This
problem generalizes Problem 3.1.)

3.4. A characterization of alternatingk-tensors
Let f be ak-tensor on a vector spate Prove thatf is alternating if and only iff
changes sign whenever two successive arguments are iateyeth:

flo o Vign, Vi) = —F (oo ViyViga,...)
fori=1,..., k—1.

3.5. Another characterization of alternatingk-tensors
Let f be ak-tensor on a vector spade Prove thatf is alternating if and only if
f(v1,...,w) = 0 whenever two of the vectors, ...,V are equal.

3.6. Wedge product and scalars
LetV be a vector space. Farb e R, f € A(V) andg € A,(V), show thaaf Abg=
(ab) f A Q.

3.7. Transformation rule for a wedge product of covectors
Suppose two sets of covectors on a vector spacg?,...,pK andy?,...,\ are
related by
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e
B'= j;aij, i=1,....k
for ak x k matrix A= [al]. Show that

BIA---ABX=(detA)ytA-- A YK

3.8. Transformation rule for k-covectors
Let f be ak-covector on a vector spabe Suppose two sets of vectars . .., ux and
vi,...,Vk inV are related by

k .
uj :_Za'jvi, i=1....k
i=

for ak x k matrix A= [a]. Show that
f(ug,...,ux) = (detA)f(vy,..., ).

3.9. Vanishing of a covector of top degree
LetV be a vector space of dimensianProve that if am-covectorw vanishes on a
basisey, ..., e, forV, thenw is the zero covector ov.

3.10* Linear independence of covectors
Let al,...,ak be 1-covectors on a vector spa¢e Show thata® A--- A a* # 0 if
and only ifal,..., a¥ are linearly independent in the dual spate

3.11.* Exterior multiplication

Let o be a nonzero 1-covector anda k-covector on a finite-dimensional vector
spaceV. Show thata Ay =0 if and only if y = a A B for some(k — 1)-covector
onvV.
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Differential Forms on R"

Just as a vector field assigns a tangent vector to each pa@ntagen subsét of R",
so dually a differentigk-form assigns &-covector on the tangent space to each point
of U. The wedge product of differential forms is defined poinanés the wedge
product of multicovectors. Since differential forms exigt an open set, not just
at a single point, there is a notion of differentiation foffeliential forms. In fact,
there is a unique one, called tbgterior derivative characterized by three natural
properties. Although we define it using the standard coattésofR", the exterior
derivative turns out to be independent of coordinates, ashadl see later, and is
therefore intrinsic to a manifold. It is the ultimate abstraxtension to a manifold
of the gradient, curl, and divergence of vector calculu® Differential forms
extend Grassmann'’s exterior algebra from the tangent sgacpoint globally to an
entire manifold. Since its creation around the turn of therttieth century, generally
credited toE. Cartan [5] and H. Poincaré [34], the calculus of diffdi@rforms has
had far-reaching consequences in geometry, topology, Bysigs. In fact, certain
physical concepts such as electricity and magnetism atddresulated in terms of
differential forms.

In this section we will study the simplest case, that of ddfgial forms on an
open subset dR". Even in this setting, differential forms already provide/ay to
unify the main theorems of vector calculusis.

4.1 Differential 1-Forms and the Differential of a Function

The cotangent spaceo R" at p, denoted by (R") or T;R", is defined to be the
dual spacéTpR")" of the tangent spach,(R"). Thus, an element of the cotangent
spaceT;(R") is a covector or a linear functional on the tangent spag&"). In
parallel with the definition of a vector field,@vector fieldor adifferential 1-form

on an open subskt of R" is a functionw that assigns to each poipin U a covector
wp € Ty (R™),
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w:U— | | TSR,
peU
P awp e Ty (RY).

Here the notatiop| stands for “disjoint union,” meaning that the s&fgR") are all
disjoint. We call a differential 1-form a-formfor short.

From anyC” function f: U — R, we can construct a 1-foruhf, called thedif-
ferentialof f, as follows. Fop € U andX, € TpU, define

(df)p(Xp) = Xpf.

A few words may be in order about the definition of the differain The directional
derivative of a function in the direction of a tangent vecibra pointp sets up a
bilinear pairing

To(R") xC5(R") = R,
(va f) = <Xpa f> = pr'

One may think of a tangent vector as a function on the secomuanaent of this
pairing: (X, - ). The differentialdf), at p is a function on the first argument of the
pairing:

df)p=(-,f).

The value of the differentialf at p is also writtendf| .
Letx!,...,x" be the standard coordinates®&A. We saw in Subsection 2.3 that
the set{d/9x!|p,...,8/9x"|,} is a basis for the tangent spaGgR").

Proposition 4.1.1f x, ... x" are the standard coordinates @&, then at each point
peR", {(dx')p,...,(dx")p} is the basis for the cotangent spaci(R") dual to the
basis{d/9x!|p,...,8/9x"|,} for the tangent spacey(R").

- 17} 7}

If wis a 1-form on an open subgétof R", then by Proposition 4.1, at each point
pin U, w can be written as a linear combination

wp =Y a&(p) (dx)p,

for somea;(p) € R. As p varies ovelJ, the coefficients; become functions ob,
and we may writaw = ¥ & dX. The covector fieldw is said to beC® on U if the
coefficient functionsy are allC* onU.

If x,y, andz are the coordinates d&?, thendx, dy, anddzare 1-forms ofiR3. In
this way, we give meaning to what was merely a notation in efgary calculus.

Proof. By definition,

xi:6}. O
p
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Proposition 4.2 (The differential in terms of coordinates) If f: U - RisaC”
function on an open set U iR", then

of
df:zﬁdk. 4.2)
Proof. By Proposition 4.1, at each poiptin U,

(df)p= T ai(p) (@¥)p (4.2)

for some real numbers;(p) depending orp. Thus,df = yadX for some real
functionsa onU. To find aj, apply both sides of (4.2) to the coordinate vector
field 9/9x!:

0

df <ﬁ> = Zaidx' <%> = Zaa} =aj.

On the other hand, by the definition of the differential,

d of
df(%) = 0

Equation (4.1) shows that if is aC” function, then the 1-forrdf is alsoC™.

ExampleDifferential 1-forms arise naturally even if one is inteészbonly in tangent
vectors. Every tangent vectd, € Tp(R") is a linear combination of the standard

basis vectors: 5

Xp= Zbi (Xp) N

p

In Example 3.3 we saw that at each pome R", we haveb'(Xp) = (dX)p(Xp).
Hence, the coefficierit' of a vector atp with respect to the standard ba@iﬁdxﬂp,
..., 0/0X"|p is none other than the dual covectbt|, onR". As p varies,b' = dx.

4.2 Differential k-Forms

More generally, aifferential formc of degree kor ak-formon an open subsét
of R" is a function that assigns to each ponin U an alternatind-linear function
on the tangent spack(R"), i.e., wp € A(TpR"). SinceA(TpR") = T (R"), the
definition of ak-form generalizes that of a 1-form in Subsection 4.1.

By Proposition 3.29, a basis fég(TpR") is

dXy=dxXg A AdxE, 1<iz<-<i<n,
Therefore, at each poiqtin U, wp is a linear combination
wp=a(p)dx, 1<iz<--<ik<n,

and ak-form w onU is a linear combination
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w:Za|dx',

with function coefficients, : U — R. We say that &-form w is C* onU if all the
coefficientsy areC™ functions orlJ.

Denote byQK(U) the vector space @ k-forms onU. A 0-form onU assigns
to each poinip in U an element ofAy(T,R") = R. Thus, a O-form otJ is simply a
function onU, andQ%(U) = C®(U).

There are no nonzero differential forms of degrea on an open subset &".
This is because if dax > n, then in the expressiaiX at least two of the 1-forms
dxe must be the same, forcitK = 0.

Thewedge producof a k-form w and anl-form T on an open sdt is defined
pointwise:

(WAT)p=wpATp, peU.

In terms of coordinates, i = ¥, a dX andt = ¥ ;bydx’, then
WAT = Z(a.bJ)dx' AdX.

In this sum, ifl andJ are not disjoint on the right-hand side, théd A dx’ = 0.
Hence, the sum is actually over disjoint multi-indices:

WAT = dz (aby)dX AdX,
1,J disjoint

which shows that the wedge product of t@% forms isC®. So the wedge product
is a bilinear map
Az QKUY x QYU) — Q% U).

By Propositions 3.21 and 3.25, the wedge product of difféaéforms is anticom-
mutative and associative.
In case one of the factors has degree 0,ks&y0, the wedge product

A QOU) x QY(U) — QY(U)
is the pointwise multiplication of & ¢-form by aC* function:
(f Aw)p = f(p) A awp = f(p)awp,

since as we noted in Subsection 3.7, the wedge product withav€ctor is scalar
multiplication. Thus, iff € C*(U) andw € Q‘(U), thenf Aw = fw.

ExampleLetx, y, zbe the coordinates dk3. TheC* 1-forms onR? are
fdx+gdy+hdz
wheref, g, h range over alC*® functions orR3. TheC® 2-forms are
fdyAdz+gdxAdz+hdxady

and theC® 3-forms are
fdxAndyAdz
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Exercise 4.3 (A basis for3-covectors).* Letxt, x2, x3, x* be the coordinates di* andp a
point in R4, Write down a basis for the vector spatg(Tp(R%)).

With the wedge product as multiplication and the degree ofmfas the grading,
the direct sumR*(U) = @R_,Q*(U) becomes an anticommutative graded algebra
overR. Since one can multiplg® k-forms byC® functions, the se@*(U) of C* k-
forms onU is both a vector space ov&rand a module oveZ™ (U ), and so the direct
sumQ*(U) = @p_oQK(U) is also a module over the rir@*(U) of C* functions.

4.3 Differential Forms as Multilinear Functions on Vector Fields

If wis aC® 1-form andX is aC® vector field on an open s&k in R", we define a
functionw(X) onU by the formula

w(X)p=wp(Xp), peU.

Written out in coordinates,

: 9 :
L _ < hi plec®
w_Zadk, X_Zb Ew for somea;,b! € C*(U),

o)
, 9 :
— . | I -
w(X) = (Zad%) (Zb axi> = Zab,
which shows thato(X) is C* onU. Thus, aC” 1-form onU gives rise to a map
fromX(U) toC*(U).
This function is actually linear over the rilg”(U); i.e., if f € C*(U), then

w(fX) = fw(X). To show this, it suffices to evaluate(fX) at an arbitrary point
peU:

(w(fX))p = wp(f(P)Xp) (definition of w(fX))
= f(p)wp(Xp) (wpisR-linear)
= (fw(X))p  (definitition of fw(X)).

Let F(U) =C>”(U). In this notation, a 1-fornw onU gives rise to arF(U)-
linear mapX(U) — F(U), X — w(X). Similarly, ak-form w onU gives rise to a
k-linear map ovefF(U)

XU) x - xX(U) = FU),
k times

(X]_,...,Xk) — OJ(X]_,...,Xk).

Exercise 4.4 (Wedge product of &-form with a 1-form).* Let w be a 2-form and a 1-
form onR3. If X,Y,Z are vector fields oM, find an explicit formula fow A 7)(X,Y,Z) in
terms of the values ab andt on the vector fieldX,Y, Z.
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4.4 The Exterior Derivative

To define theexterior derivativeof aC® k-form on an open subskt of R", we first
define it on O-forms: the exterior derivative o€& function f € C*(U) is defined to
be its differentiadf € Q1(U); in terms of coordinates, Proposition 4.2 gives

af .
df = Z N dx.
Definition 4.5. Fork> 1, if w =¥, a dx € QX(U), then

dw= Zdaq AdX = Z (z%dﬂ) AdX € Q¥LU).
]

Example Let w be the 1-formf dx+ gdyonR?, wheref andg areC* functions on
R?. To simplify the notation, writefy = d f /dX, fy=0f/dy. Then

dw=df Adx+dgAady
= (fxdx+ fydy) Adx+ (gxdx+gydy) Ady

In this computatiodyA dx= —dxA dyanddxA dx= dyA dy= 0 by the anticom-
mutative property of the wedge product (Proposition 3.24 Garollary 3.23).

Definition 4.6. LetA= @°k°:0Ak be a graded algebra over a fiédd An antideriva-
tion of the graded algebra is aK-linear mapD: A — A such that fora € A and
be A,

D(ab) = (Da)b+ (—1)aDh. (4.3)

If there is an integem so that the antiderivatioB sendsA to At™ for all k, then
we say that it is an antiderivation degree mBy definingA, = 0 for k < 0, we can
extend the grading of a graded algeBrto negative integers. With this extension,
the degreen of an antiderivation can be negative. (An example of an enitidtion

of degree—1 is interior multiplication, to be discussed in Subsec26r4.)

Proposition 4.7.
() The exterior differentiation dQ*(U) — Q*(U) is an antiderivation of degre&

d(wAT) = (dw) AT+ (—1)%*FpAdr.

(i) d2 =0.
(iii) If f €C™(U) and Xe X(U), then(df)(X) = X f.
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Proof.
(i) Since both sides of (4.3) are lineardmand int, it suffices to check the equality
for w= fdx andt = gdx. Then

d(wAT) =d(fgdX AdX)
-3 dfg d¥ AdX AdX

o9
= Zﬁgdw\dx' Adx! -+ FordX AdX AdX.

In the second sum, moving the 1-foridg/dx ) dx across thé-form dX results in
the sign(—1) by anticommutativity. Hence,

d(wAT) Z—d)&Ad)('/\gd)(’+ Zfdx‘A@dxAdx’

=dwAT+ (-1 wAdr.

(i) Again by theR-linearity ofd, it suffices to show that?w = 0 for w = fdxX . We
compute:

2(fdx) = <z d)d/\dx'>

0%f
_ j
=5 S ox - dx AdX AdX.

In this sum ifi = j, thendx AdX = 0; if i # |, thend?f /dx dx) is symmetric ini
andj, butdx' AdX is alternating iri andj, so the terms witl+ j pair up and cancel
each other. For example,

0°f
3 del/\dxz—i—a 20 1dx2Adx1
02
= 5ig2 XA dx2+a T 2( dxt AdX) =
Thereforeg?(fdx) =
(i) This is simply the definition of the exterior derivagwf a function as the differ-
ential of the function. O

Proposition 4.8 (Characterization of the exterior derivatve). The three proper-
ties of Proposition 4.7 uniquely characterize exteriofel&ntiation on an open set
U in R"; thatis, if D: Q*(U) — Q*(U) is (i) an antiderivation of degre& such that
(i) D? = 0 and(jii) (Df)(X) =X f for f € C*(U) and X X(U), then D=d.

Proof. Since everyk-form onU is a sum of terms such asdX1 A --- A dXk, by
linearity it suffices to show thdd = d on ak-form of this type. By (iii),Df = df
onC® functions. It follows thaDdxX = DDx' = 0 by (ii). A simple induction ork,
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using the antiderivation property &%, proves that for alk and all multi-indices of
lengthk, _ _
D(dX) = D(dXt A---Adxk) =0. (4.4)

Finally, for everyk-form f dx,
D(fdX) = (Df)AdX 4 fD(dX) (by (i)
(df)AdX (by (i) and (4.4)
d(fdx) (definition ofd).

HenceD =d onQ*(U). O

4.5 Closed Forms and Exact Forms

A k-form w onU is closedif dw = 0; it is exactif there is a(k— 1)-form 1 such that
w=drt onU. Sinced(dr) = 0, every exact form is closed. In the next section we
will discuss the meaning of closed and exact forms in theecdrf vector calculus
onR3.

Exercise 4.9 (A closed-form on the punctured plane). Define a 1-formw onR? — {0} by

Show thatw is closed.

A collection of vector space®/¥}p_, with linear mapsi: VK — V&+1 such that
dk.1 o dx = 0 is called adifferential compleor a cochain complex For any open
subset) of R", the exterior derivativel makes the vector spa¢¥ (U) of C* forms
onU into a cochain complex, called tlide Rham complexf U:

0-0%U) 4 otu) & Q2u) - -

The closed forms are precisely the elements of the kernélasfd the exact forms
are the elements of the imageaf

4.6 Applications to Vector Calculus

The theory of differential forms unifies many theorems inteecalculus oriR3. We
summarize here some results from vector calculus and them Bbw they fit into
the framework of differential forms.

By a vector-valued functiomn an open subsét of R3, we mean a function
F=(P,Q,R): U — R3. Such a function assigns to each pgint U a vectorkF, €
RS ~ Tp(R3). Hence, a vector-valued function this precisely a vector field od.
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Recall the three operators gradient, curl, and divergensealar- and vector-valued

functions onJ:

q _
{scalar func} o {vector func} cut {vector func} dy {scalar func}

[0/0x] fx
gradf = |9/ay| f = |fy]|,
10/0z] f,
[Pl [d/0x] [P R —Q;
curl Q| = 19/dy| x |Q| = | —-(R=P) |,
|R] 10/0z] R Qx—PR
[P [0/ox] [P
div|Q| = [d/dy| - |Q| =R+ Q+R.
R 10/dz| |R

Since every 1-form obJ is a linear combination with function coefficientsax,

dy, anddz we can identify 1-forms with vector fields dhvia
P
Pdx+Qdy+Rdz+— | Q] .
R
Similarly, 2-forms orlJ can also be identified with vector fields bn
P
PdyAndz+ QdzAadx+ RdxAdy «+— | Q] ,
R
and 3-forms oJ can be identified with functions du:
fdxAdyAadz «— f.

In terms of these identifications, the exterior derivatifa 6-form f is

o /0x
df:ﬂdx+ﬂdy+ﬁdZH of/dy| = gradf;
ox 9y T 0z f /ox

the exterior derivative of a 1-form is

d(Pdx+Qdy+ Rd2
= (Ry—Q;)dyAdz— (R«— P,)dzA dx+ (Qx— Ry) dxAdy,

P Ry —Q;
curl|Q| = [—-(R«—PRy) | ;
R X&—R

which corresponds to

(4.5)
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the exterior derivative of a 2-form is
d(PdyA dz+ QdzA dx+ RdxAdy)
= (P«+Qy+ Ry dxAdyAdz (4.6)
which corresponds to

P
div H =R+ Q+R.
R

Thus, after appropriate identifications, the exteriordsivesd on 0-forms, 1-
forms, and 2-forms are simply the three operators grad, and div. In summary,
on an open subset of RS, there are identifications

Under these identifications, a vector figll Q,R) on R® is the gradient of &
function f if and only if the corresponding 1-forfddx+ Qdy-+ Rdzis df.
Next we recall three basic facts from calculus concernirgligeurl, and div.

0

P
Proposition B. div (curl [Q] ) =0.
R

Proposition C. On R3, a vector fieldF is the gradient of some scalar function f if
and only ifcurl F=0.

0
Proposition A. curl(gradf) = {0] .

Propositions A and B express the propedfy= 0 of the exterior derivative on
open subsets dk3; these are easy computations. Proposition C expresseadhe f
that a 1-form orR? is exact if and only if it is closed. Proposition C need not be
true on a region other thaR?, as the following well-known example from calcu-
lus shows.

Examplelf U = R3 — {zaxis}, andF is the vector field

F=(5——, =——,0
<X2+y2’ X+ y? >
onR3, then curF = 0, butF is not the gradient of ang® function onU. The reason

is that if F were the gradient of &* function f on U, then by the fundamental
theorem for line integrals, the line integral
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__y X
/(; X2+y2dx+ X2+y2dy

over any closed curv€ would be zero. However, on the unit circlein the (x,y)-
plane, withx = cogt andy = sint for 0 <t < 27, this integral is

. 27T
/fydx+xdy:/ —(sint)dcogt + (cogt) dsint = 27
Jc Jo

In terms of differential forms, the 1-form

_ Ty
w= )(2+y2dx+ ERY:

dy

is closed but not exact ad. (This 1-form is defined by the same formula as the
1-formw in Exercise 4.9, but is defined on a different space.)

It turns out that whether Proposition C is true for a redibmepends only on
the topology olU. One measure of the failure of a clodefbrm to be exact is the
quotient vector space

Hk(U) . {closedk-forms onU }
" {exactk-forms onU} ’

called thekth de Rham cohomologyf U.

The generalization of Proposition C to any differentiaifioon R" is called the
Poinca© lemma for k > 1, every closek-form onR" is exact. This is of course
equivalent to the vanishing of the¢h de Rham cohomologyX(R") for k > 1. We
will prove it in Section 27.

The theory of differential forms allows us to generalizeteecalculus fromR3
to R" and indeed to a manifold of any dimension. The general Stokesrem for a
manifold that we will prove in Subsection 23.5 subsumes anifiles the fundamental
theorem for line integrals, Green’s theorem in the plane dhassical Stokes’ theo-
rem for a surface ifR3, and the divergence theorem. As a first step in this program,
we begin the next chapter with the definition of a manifold.

4.7 Convention on Subscripts and Superscripts

In differential geometry it is customary to index vectordighwith subscriptsy, ...,
en, and differential forms with superscripts, ..., w". Being O-forms, coordinate
functions take superscripts!,...,x". Their differentials, being 1-forms, should
also have superscripts, and indeed they dg*,...,dx". Coordinate vector fields
d/0xL, ..., d/dx" are considered to have subscripts becausgithé/dx, although
a superscript fox', is in the lower half of the fraction.

Coefficient functions can have superscripts or subscrigtedding on whether
they are the coefficient functions of a vector field or of aafiéntial form. For a
vector fieldX = Zaia, the coefficient functions! have superscripts; the idea is
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that the superscript ia' “cancels out” the subscript ig. For the same reason, the
coefficient functiong; in a differential formw = ¥ b; dx) have subscripts.

The beauty of this convention is that there is a “consermadioindices” on the
two sides of an equality sign. For exampleXit= Zai d/0X, then

a = (dx)(X).

Here both sides have a net supersdrigts another example, b = 5 b; dx, then

w(X) = (3 bjdx) (zd%) ~ S ba!

after cancellation of superscripts and subscripts, baolssof the equality sign have
zero net index. This convention is a useful mnemonic aid mesof the transforma-
tion formulas of differential geometry.

Problems

4.1. Al-form on R3
Let w be the 1-formzdx— dzand letX be the vector field/d/dx+xd/dy onR3,
Computew(X) anddcw.

4.2. A2-formon R®
At each pointp € R3, define a bilinear functiomy, on Tp(R®) by

all [bt al bl
wp(ab) =y | (82|, |P?| | = p3det{ 2 2} :
23 b3 a‘b

for tangent vectora, b € T,(R®), wherep? is the third component @i = (pt, p?, p3).
Sincewy, is an alternating bilinear function ofp(R3), wis a 2-form onR3. Write
w in terms of the standard basig A dx! at each point.

4.3. Exterior calculus

Suppose the standard coordinate®3rare called and® (thisR? is the(r, 8)-plane,
not the(x,y)-plane). Ifx =rcosf andy = rsinf, calculatedx, dy, anddxAdyin
terms ofdr anddé.

4.4. Exterior calculus

Suppose the standard coordinatesRSrare calledp, ¢, and6. If x = psin@coss,
y = psingsind, andz = p cosy, calculatedx, dy, dz, anddxA dyA dzin terms of
dp, dg, andd®b.

4.5. Wedge product
Let a be a 1-form ang8 a 2-form onR3. Then

a =a;dxt +a,dX? + azdxC,
B =brdX A+ bydxC A dxXE + badxt AdXC.

Simplify the expressiom A 3 as much as possible.
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4.6. Wedge product and cross product
The correspondence between differential forms and veathisfion an open subset
of R3 in Subsection 4.6 also makes sense pointwise. L&k a vector space of
dimension 3 with basigy, e, e3, and dual basisr!,a?,a2. To a 1-covectonr =
ajat+axa®+azad onV, we associate the vectoy = (a;,az,a3) € R3. To the
2-covector

y=cia’ral+calAat+czatAa?
onV, we associate the vectoy = (y,Cp,C3) € R3. Show that under this corre-
spondence, the wedge product of 1-covectors corresporidhe toross product of
vectors inR3: if a =ajal+aa?+azad andf = bral +bya?+bzas, then
Va/\B = Vg X VB.

4.7. Commutator of derivations and antiderivations

LetA= ea[f}wAk be a graded algebra over a fisddwith A = 0 fork < 0. Letm
be an integer. Auperderivation of A of degree maK-linear mapD: A — A such
that for allk, D(AX) ¢ A“"™ and for alla € A% andb € A’,

D(ab) = (Da)b+ (—1)™a(Db).

If D; andD» are two superderivations @éf of respective degrees; andmy, define
theircommutatoito be

[D1,D3] = Dy o Dz — (—1)™™D; o Dy.

Show thafD1,D;] is a superderivation of degre® + m,. (A superderivation is said
to beevenor odddepending on the parity of its degree. An even superdeonéadia
derivation; an odd superderivation is an antiderivation.)
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3.6 Inversions
1234

2345
(21),(31),(41),(51). o

3.13 Symmetrizing operator
A k-linear functionh: V — R is symmetric if and only ifth=hfor all T € §. Now

1(Sf)=1 %af = %‘(Ta)fl

As o runs over all elements of the permutation groGgsso doeso. Hence,

ZS‘(ra)f = z&(ro)f =Sf.

This proves that(Sf) = Sf. O

As a matrix, T = j . Scanning the second row, we see thdtas four inversions:

3.15 Alternating operator
f(ve,v2,v3) — f(v1,V3,V0) + f(V2,v3,vq) — f(V2,v1,V3) + f(V3,v1,V2) — f(V3,V2,V1). O

3.20 Wedge product of two2-covectors

(f AQ)(V1,Vo,V3,V4)
= f(v1,v2)9(V3,Va) — T (V1,V3)Q(V2,Va) + T (V1,Va)g(V2,V3)
+ f(v2,v3)9(va,Va) — f(V2,Va)g(v1,V3) + f(V3,Va)g(V1, V2). O

3.22 Sign of a permutation
We can achieve the permutatiorirom the initial configuration 12, ... k+ ¢ in k steps.

(1) First, move the elemerk to the very end across theelementsk+1,...,k+¢. This
requirest transpositions.
(2) Next, move the elemekt— 1 across thé elementk+1,..., k+¢.

(3) Then move the elemekt- 2 across the sameelements, and so on.

Each of thek steps require$ transpositions. In the end we achiewé&om the identity using
(K transpositions.
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Alternatively, one can count the number of inversions inleemutationt. There arek
inversions starting withk+ 1, namely,(k+1,1),...,(k+ 1,k). Indeed, for each=1,...,¢,
there arek inversions starting witlx+i. Hence, the total number of inversionstiris k¢. By
Proposition 3.8, sgit) = (—1)K. O

4.3 A basis for3-covectors
By Proposition 3.29, a basis fohg(Tp(R%)) is (dxl/\dxz/\d)@)p, (dxl/\dxz/\dx“)p,

(dx A dx Adxt) (@A AdXE) . O

4.4 Wedge product of a2-form with a 1-form
The (2,1)-shuffles arg1 < 2,3), (1< 3,2), (2 < 3,1), with respective signs-, —, +. By
Equation (3.6),

(wAT)(X,Y,Z) = w(X,Y)T(Z) — w(X,2)T(Y) + w(Y,Z)T(X). %

6.14 Smoothness of a map to a circle

Without further justification, the fact that both d¢oasnd sirt areC* proves only the smooth-
ness of(cogt, sint) as a map fronR to R2. To show thaF : R — Sl isC®, we need to coves!
with charts(U;, @) and examine in turn eagpo F: F~1(U;) - R. Let{(U;,@) |i=1,...,4}
be the atlas of Example 5.16. G 1(U1), @1 o F(t) = (Xo F)(t) = cost isC®. OnF ~1(U3),
@ o F(t) = sint isC®. Similar computations of ~1(U,) andF ~1(U,) prove the smoothness
of F. O

6.18 Smoothness of a map to a Cartesian product

Fix pe N, let (U,p) be a chart aboup, and let(Vqi x Vo, 41 X @) be a chart about
(f1(p), f2(p)). We will be assuming eitheff, f2) smooth or bothf; smooth. In either

case, (f1, fp) is continuous. Hence, by choositg sufficiently small, we may assume
(f]_, fz) (U) Cc Vi xVo. Then

(Y W2) o (1, f2) 0@~ = (Yro fro@ Lo fro )
maps an open subset &f' to an open subset @™ ™. |t follows that(fy, fo) isC*® at p if
and only if bothf; and f, areC” at p. O
7.11 Real projective space as a quotient of a sphere _
Definef: RP" — S/~ by f([x]) = [ﬁ] € S'/~. This map is well defined becau$€tx]) =
[i] = (=] = [g]- Note that ifrg: R™* — {0} — RP" and 752 §" — "/~ are the
projection maps, then there is a commutative diagram

RN {0} — > g

By Proposition 7.1f is continuous because o f is continuous.
Next defineg: S — R" — {0} by g(x) = x. This map induces a mag S'/~— RP",
9([X)) = [X]. By the same argument as aboges well defined and continuous. Moreover,

) = | ] =%

Q|
o
—

—~



Hints and Solutions to Selected End-of-Section
Problems

Problems with complete solutions are starred (*). Equatiare numbered consecutively
within each problem.

1.2* A C* function very flat at 0
(a) Assumex > 0. Fork =1, f'(x) = (1/x?) e /X, With py(y) = y?, this verifies the claim.
Now supposef (K (x) = pac(1/x) e 1/X. By the product rule and the chain rule,

1 1 1 1
o0 =paca () ()¢t eee(5) e
1 1 _
= (QZk+1 (;) + Ook+2 (;)) e
1\ _
= Pok+2 (;) e

whereqn(y) andpn(y) are polynomials of degreein y. By induction, the claim is true for all
k > 1. Itis trivially true fork = 0 also.

Xl
Xl

Xl

(b) Forx > 0, the formula in (a) shows thd{x) is C*. Forx < 0, f(x) = 0, which is trivially
C®. It remains to show that(¥) (x) is defined and continuous =t= 0 for all k.
Supposef (K (0) = 0. By the definition of the derivative,

() — £ 0
(ki) (0) = |im07f ) Xf ©_ Iimo—f X(X).
X— X—

The limit from the left is clearly 0. So it suffices to compule timit from the right:

x—0t X N x—0t X - X—0t P21 X o
e Paca(y) L1
= }!inm 5 (replacmgX byy].

Applying I'Hopital’'s rule Z+ 1 times, we reduce this limit to 0. Henct&+1)(0) = 0. By
induction, f (K (0) = 0 for allk > 0.

A similar computation as (1.2.1) for lign,g f¥)(x) = 0 proves thaff (K)(x) is continuous
atx=0. O
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1.3 (b) h(t) = (rr/(b—a))(t —a) — (17/2).
15
(a) The line passing throudl®,0,1) and(a,b,c) has a parametrization

x=at, y=bt, z=(c-1t+1

This line intersects thry-plane when
1 a b
z=0st= ]_TC @(X,y) = (rc,rc) .

To find the inverse ofy, write down a parametrization of the line throughv,0) and
(0,0,1) and solve for the intersection of this line wigh

1.6* Taylor's theorem with remainder to order 2
To simplify the notation, we writ@ for (0,0). By Taylor's theorem with remainder, there exist
C® functionsgs, gy such that

f(xy) = f(0) +xaL(xy) +YR(XY)- (1.6.1)

Applying the theorem again, but tg andgp, we obtain

g1(x.Y) = 01(0) +x011 (%, Y) + ya12(X,Y), (1.6.2)
92(%,Y) = 02(0) +Xg1(X,Y) +Y&2(X,Y)- (1.6.3)

Sinceg; (0) = df/dx(0) andgy(0) = @ f/dy(0), substituting (1.6.2) and (1.6.3) into (1.6.1)
gives the result. %

1.7* A function with a removable singularity
In Problem 1.6, set =t andy = tu. We obtain

f(t,tu)—f(0) +t%(0) +tug—;(0) +12(--4),

where
(---) = g1a(t, tu) + ugr2(t, tu) + UPgpa(t, tu)

is aC* function oft andu. Sincef (0) = df/dx(0) =df/dy(0) =0,

f(t,tu

¥ =t(--),
which is clearlyC® in t,u and agrees witg whent = 0. %
1.8 See Example 1.2(ii).
31f=ygjaeal
3.2
(a) Use the formula dimkedr+dimimf = dimV.

(b) Choose a basis,...,e,_1 for kerf, and extend it to a basks,...,en_1,e, for V. Let
al,..., a" be the dual basis forY. Write bothf andg in terms of this dual basis.

3.3 We write temporarilya! for 't @ --- @ a'x ande; for (ej,,.. ., €j,).
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(a) Prove thatf =5 f(e)a' by showing that both sides agree on (@)). This proves that
the set{a'} spans.

(b) Supposg ¢ a' = 0. Applying both sides te; givescy = SC a'(ey) = 0. This proves
that the se{a'} is linearly independent.

3.9 To computew(vy,...,Vn) for anyvy,...,vq €V, write vj = 3; e.aij and use the fact that
w is multilinear and alternating.

3.10* Linear independence of covectors
(=) If al,...,a¥ are linearly dependent, then one of them is a linear comibimatf the
others. Without loss of generality, we may assume that

k1
ak= Zcia'.
=
In the wedge productr® A--- A ak~1 A (5K Lgal), every term has a repeated. Hence,
aln---nak=o0.

(<) Supposea?,..., ak are linearly independent. Then they can be extended to a basi

al,....ak,....a"forVV. Letvy,...,v, be the dual basis for. By Proposition 3.27,
(@t A na®) (v, ) = defa (v))] = defd]] = 1.

Hence,alA---Aak#£0. 0

3.11* Exterior multiplication
(«) Clear because Aa = 0.

(=) Supposex A w = 0. Extenda to a basisa®,...,a" for VV, with a® = a. Write w =
ycial. Inthe sumo Aw =5 cya Aa?, all the termsy A a? with j; = 1 vanish sincer = a.
Hence,
O=aAw= ; caAa’.
j171

Since{a A aJ}jﬁél is a subset of a basis fé%.1(V), it is linearly independent and so all
¢y =0if j; # 1. Thus,

W= ZcJaJ_a/\<ZcJaj2/\m/\ajk>4 O
j1=1 j1i=1
4.1 w(X) =yz, dw = —dxAdz

4.2 Write w = yi;cjdX Adx. Thencj(p) = wp(e,€j), whereg = d/dx. Calculate
c12(p), c13(p), andcz(p). The answer isop = p>dxt A dx2.

4.3 dx=cosfdr—rsin6dO, dy=sin8,dr+rcosfdO, dxAndy=rdr Ad6.
4.4 dxAdyAdz= p?singdp AdpAde.
45 anB= (a1b1+a2b2+a3b3)dx1/\dx2/\dx3.

5.3 The imagem(U14) = {(x,2) | -1<z< 1, 0<x< Vv1-Z2}.
The transition functior o ¢;l(x, 2)=@(XY,2) = (,2) = (—V1-x2 - 22 2) is aC* func-
tion of x, z.
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A

Point-Set Topology

Point-set topology, also called “general topology,” is cemed with properties that
remain invariant under homeomorphisms (continuous mapmdaontinuous in-
verses). The basic development in the subject took pladeeitate nineteenth and
early twentieth centuries. This appendix is a collectiobadic results from point-set
topology that are used throughout the book.

A.1 Topological Spaces

The prototype of a topological space is the Euclidean sgicélowever, Euclidean
space comes with many additional structures, such as aoyaiirdinates, an inner
product, and an orientation, that are extraneous to itdaogyo The idea behind the
definition of a topological space is to discard all those prps of R" that have
nothing to do with continuous maps, thereby distilling tlidion of continuity to its
very essence.

In advanced calculus one learns several characterizatfom€ontinuous map,
among which is the following: a mapfrom an open subset @&" to R™ is contin-
uous if and only if the inverse image (V) of any open se¥ in R™ is open inR",
This shows that continuity can be defined solely in terms efnogets.

To define open sets axiomatically, we look at properties ehggets irR". Recall
that inRR" thedistancebetween two pointg andg is given by

. 1/2
d(p,q) = [Z(p‘ —q‘)Z] :

and theopen ball Bp,r) with centerp € R" and radius > 0 is the set
B(p,r) = {x€R" |d(x,p) <r}.

A setU in R" is said to beopenif for every pin U, there is an open bai(p,r) with
centerp and radiug such thaB(p,r) C U (Figure A.1). It is clear that the union of
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- ~
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Fig. A.1. An open set ifR".

an arbitrary collectioqUq } of open sets is open, but the same need not be true of
the intersection of infinitely many open sets.

Example. The intervals)— 1/n,1/n[, n = 1,2,3,..., are all open inRk%, but their
intersectiom;_; |— 1/n,1/n[is the singleton sef0}, which is not open.

What is true is that the intersection offiaite collection of open sets iiR" is
open. This leads to the definition of a topology on a set.

Definition A.1. A topologyon a setSis a collectionJ of subsets containing both
the empty sey and the sef such thatl' is closed under arbitrary unions and finite
intersections; i.e., ily € T for all a in an index set A, thefgcaUa € T and if
Us,...,Un € T, thenOL, U; € 7.

The elements of are calledbpen setsind the pai(S 7) is called aopological
space To simplify the notation, we sometimes simply refer to ar§&j7) as “the
topological spac&’ when there is no chance of confusion. neighborhoodf a
point pin Sis an open sdt) containingp. If 71 andT, are two topologies on a set
SandT; C T, then we say thal; is coarserthanTy, or thatT, is finer thanT;.

A coarser topology has fewer open sets; conversely, a fipetdgy has more open
sets.

Example The open subsets &" as we understand them in advanced calculus form
atopology orR", thestandard topologyf R". In this topology a sdt is open inR"

if and only if for everyp € U, there is an open bal( p, €) with centerp and radiug
contained iJ. Unless stated otherwis& will always have its standard topology.

The criterion for openness iR" has a useful generalization to a topological
space.

Lemma A.2 (Local criterion for openness) Let S be a topological space. A subset
Ais openin Sifand only if for everyepA, there is an open setV such that py C A.

Proof.
(=) If Ais open, we can také = A.
(<) Suppose for everp € Athere is an open s#, such thatp € V, C A. Then
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Ac | UWcA,
peA

so that equalityA = Jpca Vp holds. As a union of open set&,is open. O

ExampleFor any seS, the collection’ = {&, S} consisting of the empty set and
the entire seBis a topology or5, sometimes called thtevial orindiscrete topology
It is the coarsest topology on a set.

Example. For any setS, let T be the collection of all subsets & ThenT is a
topology onS, called thediscrete topology A singleton seis a set with a single
element. The discrete topology can also be characterizéteaspology in which
every singleton subsép} is open. A topological space having the discrete topology
is called adiscrete spaceThe discrete topology is the finest topology on a set.

The complement of an open set is calledlased set By de Morgan’s laws
from set theory, arbitrary intersections and finite uniohglosed sets are closed
(Problem A.3). One may also specify a topology by descrilihthe closed sets.

Remark. When we say that a topology @osedunder arbitrary union and finite
intersection, the word “closed” has a different meaningftbat of a “closed subset.”

ExampleA.3 (Finite-complement topology d&'). Let T be the collection of subsets
of R? consisting of the empty set, the lineR?! itself, and the complements of finite
sets. SupposE, andF; are finite subsets dR! for a € some index set A and
i=1,...,n. By de Morgan'’s laws,

n

UJ(R~Fy) =R'~[Fz and ﬁ (R F) =R~ JF.

a i=1

Since the arbitrary intersectigh, a Fo and the finite unionJi'_; F are both finite,
T is closed under arbitrary unions and finite intersectiofmasIJ defines a topology
onR?, called thefinite-complement topology

For the sake of definiteness, we have defined the finite-cangrietopology on
R, but of course, there is nothing specific abBdthere. One can define in exactly
the same way the finite-complement topology on any set.

ExampleA.4 (Zariski topology. One well-known topology is th&ariski topology
from algebraic geometry. Lét be a field and le§ be the vector spad€”. Define
a subset oK" to beZariski closedf it is the zero seZ(fy, ..., f;) of finitely many
polynomialsfy, ..., fr on K". To show that these are indeed the closed subsets of
a topology, we need to check that they are closed under anpimtersections and
finite unions.

Letl = (fq,..., f;) be the ideal generated Hy, ..., f; in the polynomial ring
K[X,...,%n]. ThenZ(fy,..., fr) = Z(l), the zero set ol the polynomials in the
ideal . Conversely, by the Hilbert basis theorem [£9,6, Th. 21], any ideal in
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K[xi,...,%n] has a finite set of generators. Hence, the zero set of finitalyyrpoly-
nomials is the same as the zero set of an ideKl[ia, ..., X,]. If | = (fy,..., f;) and
J=(01,...,0s) are two ideals, then theroduct ideal IJis the ideal inK[xy, ..., Xn]
generated by all producfsgj, 1 <i<r, 1< j<s If {lg}qca is afamily of ideals
in K[Xq,...,X%], then theirsumy 4 14 is the smallest ideal iK[xy, ..., X] containing
all the ideald .

Exercise A.5 (Intersection and union of zero sets)Let |4, |, andJ be ideals in the polyno-
mial ring K[xq, ..., X%s]. Show that

() Nz(la) :Z(ZID)

a

and
(ii) Z(HuzJ)=2(13).

The complement of a Zariski closed subseKdfis said to beZariski open If
| = (0) is the zero ideal, theA(l) = K", and if| = (1) = K[xg, ..., Xa] is the entire
ring, thenZ(l) is the empty ses. Hence, both the empty set aid are Zariski
open. It now follows from Exercise A.5 that the Zariski opeisets oK" form a
topology onK", called thezariski topologyonK". Since the zero set of a polynomial
onR! is a finite set, the Zariski topology dR! is precisely the finite-complement
topology of Example A.3.

A.2 Subspace Topology

Let (S,7) be a topological space arda subset o6. DefineTa to be the collection
of subsets
Ta={UNA|U eT}.

By the distributive property of union and intersection,

UWUanA) = (L&JUG) NA

[of

and

UiNA) = <Oui> NA,

which shows thafa is closed under arbitrary unions and finite intersectionerevl
over,g,A € Ta. So Ty is a topology onA, called thesubspace topologgr the
relative topologyof A in S, and elements dfa are said to b@pen in A To empha-
size the fact that an open $2tiin A need not be open i, we also say thatl is open
relative to Aor relatively open in A The subseA of Swith the subspace topology
Ta is called asubspacef S.
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Example.Consider the subsét = [0,1] of RL. In the subspace topology, the half-
open interval0,1/2[ is open relative td\, because

1 11
03[ = ]-33[NA
(See Figure A.2.)
[ L AY 1
\ [ 7 1
e 0 1 1
2 2
Fig. A.2. A relatively open subset 40, 1].
A.3 Bases

Itis generally difficult to describe directly all the opensim a topologyl. What one
can usually do is to describe a subcollecti®dnf T so that any open set is expressible
as a union of open sets .

Definition A.6. A subcollectionB of a topologyJ on a topological spac8is a
basis for the topology if given an open sdt) and pointpin U, there is an open set
B € B such thatp € B c U. We also sayB generateghe topologyJ or thatB is a
basis for the topological space S

Example The collection of all open ballB(p,r) in R", with p € R" andr a positive
real number, is a basis for the standard topolog'bf

Proposition A.7. A collectionB of open sets of S is a basis if and only if every open
setin S is a union of sets iB.

Proof.
(=) Supposé is a basis ant is an open set i. For everyp € U, there is a basic
open seB;, € B such thaip € B, C U. ThereforelJ =y Bp.

(<) Suppose every open setdis a union of open sets iB. Given an open séd
and a pointp in U, sinceU = Ug, <5 Ba, there is @By € B such thatp € By C U.
Hence,B is a basis. O

The following proposition gives a useful criterion for daicig if a collectionB
of subsets is a basis for some topology.

Proposition A.8. A collectionB of subsets of a set S is a basis for some topology
on S if and only if
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(i) S is the union of all the sets iB, and
(i) given any two setsiBand B, € B and a point pc B; N By, there is a set B B
such that pe B € B; N By (Figure A.3).

Fig. A.3. Criterion for a basis.

Proof.
(=) (i) follows from Proposition A.7.

(ii) If B is a basis, the; andB, are open sets and hence sdBis B,. By the
definition of a basis, there isBic B such thatp € B C By N B,.

(<) DefineT to be the collection consisting of all sets that are unionseté inB.
Then the empty set and the seSare inT andT7 is clearly closed under arbitrary
union. To show tha¥ is closed under finite intersection, let= U, By andV =
Uy By beinT, whereB,,By € B. Then

UmV(U&)m(U&)
u Y
u,v
Thus, anyp in U NV is in By N B, for someu,v. By (i) there is a seBp in B

such thap € B, C B, NB,. Therefore,

unv= |J BpeT. O
peunv

Proposition A.9. Let B = {By} be a basis for a topological space S, and A a sub-
space of S. ThefBy NA} is a basis for A.

Proof. LetU’ be any open set iA andp € U’. By the definition of subspace topol-
ogy,U’ =UnNAfor some open séf in S. Sincep € UNA C U, there is a basic open
setBy such thatp € B, C U. Then

pEByNACUNA=U’,

which proves that the collectiofB, NA | By € B} is a basis foA. O
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A.4 First and Second Countability

First and second countability of a topological space hawotwith the countability

of a basis. Before taking up these notions, we begin with amgxe. We say that a
pointinRR" is rational if all of its coordinates are rational numbers. (@be the set

of rational numbers an@™ the set of positive rational numbers. From real analysis,
it is well known that every open interval iR contains a rational number.

Lemma A.10.Every open set iiR" contains a rational point.

Proof. An open setJ in R" contains an open baB(p,r), which in turn contains
an open cubg], I;, wherel; is the open intervalp' — (r/y/n), p' + (r//N)[ (see
Problem A.4). For each let g be a rational number if. Then(q!,...,q") is a
rational pointin[]i_; i € B(p,r) C U. O

Proposition A.11. The collectionB,; of all open balls inR" with rational centers
and rational radii is a basis foRR".

Fig. A.4. A ball with rational center and rational radius/2.

Proof. Given an open séf in R" and pointpin U, there is an open bel(p,r’) with
positive real radius’ such thatp € B(p,r’) C U. Take a rational numberin ]O,r'[.
Thenp e B(p,r) CU. By Lemma A.10, there is a rational poiptn the smaller ball
B(p,r/2). We claim that

r

peB(a3) CB(R.D). (A1)
(See Figure A.4.) Since(p,q) < r/2, we havep € B(q,r/2). Next, if x € B(q,r/2),
then by the triangle inequality,

M&mSM&m+qu<%+%=t

Sox € B(p,r). This proves the claim (A.1). Becaupes B(q,r/2) C U, the collec-
tion Bt of open balls with rational centers and rational radii is sibforR". O
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Both of the set€) andQ™ are countable. Since the centers of the ball$ig
are indexed byQ", a countable set, and the radii are indexedy also a countable
set, the collectioB,4t is countable.

Definition A.12. A topological space is said to lmecond countabld it has a
countable basis.

ExampleA.13. Proposition A.11 shows th&" with its standard topology is second
countable. With the discrete topologg" would not be second countable. More
generally, any uncountable set with the discrete topolegyt second countable.

Proposition A.14. A subspace A of a second countable space S is second countable

Proof. By Proposition A.9, ifB = {B;} is a countable basis f@, thenBa := {BiN
A} is a countable basis fe. O

Definition A.15. Let Sbe a topological space amdh pointinS. A basis of neighbor-
hoods at por aneighborhood basis at is a collectionB = {B,} of neighborhoods
of p such that for any neighborhottof p, there is @8, € B such thapp € By C U.

A topological spacé&is first countabléf it has a countable basis of neighborhoods
at every poinp € S.

Example.For p € R", let B(p,1/n) be the open ball of centgr and radius Inin
R". Then{B(p,1/n)}~_; is a neighborhood basis pt Thus,R" is first countable.

Example An uncountable discrete space is first countable but nothgkcountable.
Every second countable space is first countable (the prdeftis Problem A.18).

Suppose is a point in a first countable topological space &%id? ; is a count-
able neighborhood basis pt By takingU; = V1N ---NV;, we obtain a countable
descending sequence

UiDUyDUzD -

that is also a neighborhood basispat Thus, in the definition of first countability,
we may assume that at every point the countable neighbotthesis at the point is a
descending sequence of open sets.

A.5 Separation Axioms

There are various separation axioms for a topological spce only ones we will
need are the Hausdorff condition and normality.

Definition A.16. A topological spac&is Hausdorffif, given any two distinct points
X,y in S, there exist disjoint open sdtsV such thax € U andy € V. A Hausdorff

space isnormalif given any two disjoint closed set§ G in S, there exist disjoint
open setd),V such thaF c U andG C V (Figure A.5).
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Mo DD

Fig. A.5. The Hausdorff condition and normality.

Proposition A.17.Every singleton seta one-point setin a Hausdorff space S is
closed.

Proof. Letx € S. For anyy € S—{x}, by the Hausdorff condition there exist an open
setU > x and an open s&t > y such that) andV are disjoint. In particular,

yeV cS—Uc S—{x}.

By the local criterion for openness (Lemma A.8); {x} is open. Therefore(x} is
closed. O

Example.The Euclidean spadR" is Hausdorff, for given distinct pointsy in R",
if €= %d(x,y), then the open balB(x, ) andB(y, £) will be disjoint (Figure A.6).

~
e .
-——— V4
/’ \\ 1 \
’ Y] ,
1 ./\\/.y 1
1 "\ 4
X I° ’
\ ’ \~_’/
\ ’
S ’

- -

Fig. A.6. Two disjoint neighborhoods iR".

ExampleA.18 (Zariski topology. Let S= K" be a vector space of dimensiarover

a fieldK, endowed with the Zariski topology. Every open Bein Sis of the form

S—Z(l), wherel is an ideal inK[xy,...,%)]. The open set) is nonempty if and
only if I is not the zero ideal. In the Zariski topology any two nonengyen sets
intersect: ifU = S—Z(l) andV = S— Z(J) are nonempty, thehandJ are nonzero
ideals and

unv =(S-z())n(s-2@3))
(Z(1Huz()) (de Morgan'’s law)

S—
=S-27(19), (Exercise A.5)
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which is nonempty becausé is not the zero ideal. Therefor&!" with the Zariski
topology is not Hausdorff.

Proposition A.19. Any subspace A of a Hausdorff space S is Hausdorff.

Proof. Let x andy be distinct points irA. SinceSis Hausdorff, there exist disjoint
neighborhood&) andV of x andy respectively inS. ThenU N A andV NA are
disjoint neighborhoods of andy respectively inA. O

A.6 Product Topology

The Cartesian producof two setsA andB is the setA x B of all ordered pairga, b)
with a € Aandb € B. Given two topological spacesandY, consider the collection
B of subsets oK x Y of the formU x V, with U open inX andV open inY. We will
call elements o3 basic open set;m X x Y. If Uy x V1 andU, x V, are inB, then

(Uj_ X Vj_) n (Uz X Vz) = (Uj_ﬁ Uz) X (VlﬁVZ),

which is also inB (Figure A.7). From this, it follows easily tha satisfies the
conditions of Proposition A.8 for a basis and generates alégly onX x Y, called

the product topology Unless noted otherwise, this will always be the topology we
assign to the product of two topological spaces.

Y

|
1 [
1 [
Va i :----Ir-----l !
[ N

| - |

X

— U ——f

— Uy ——f

Fig. A.7. Intersection of two basic open subsetsGx Y.

Proposition A.20.Let {U;} and {V;} be bases for the topological spaces X and Y,
respectively. TheflU; x V;} is a basis for Xx Y.
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Proof. Given an open s& in X x Y and point(x,y) € W, we can find a basic open
setU xV in X x Y such tha{x,y) € U xV C W. SinceU is open inX and{U;} is a
basis forX,

xelUicu

for someU;. Similarly,
yevjcVv

for someVj. Therefore,

(Xy) €UixVjCcUxV CW.
By the definition of a basigU; x V;} is a basis foiX x Y. O
Corollary A.21. The product of two second countable spaces is second cdentab
Proposition A.22. The product of two Hausdorff spaces X and Y is Hausdorff.
Proof. Given two distinct point$xy, y1), (X2,¥2) in X x Y, without loss of generality

we may assume thag # xp. SinceX is Hausdorff, there exist disjoint open sets
Uj3,Uz in X such thatx; € U; andx, € U,. ThenU; x Y andU;, x Y are disjoint

neighborhoods ofxi,y1) and(xz,y2) (Figure A.8), soX x Y is Hausdorff. O
Y
[ ]
(2, ¥2)
]
(1, y1)
X1 X2 X
— U1 —| f— Uy —

Fig. A.8. Two disjoint neighborhoods iK x Y.

The product topology can be generalized to the product oflgitrary collection
{Xa}aca Of topological spaces. Whatever the definition of the protiymology, the
projection mapsty, : [q Xa — Xa;» T ([TXa) = X Should all be continuous. Thus,
for each open séily, in Xg, the inverse imagergil(Uai) should be open if]4 Xq.

By the properties of open sets fiaite intersection_; ngil(Uai) should also be
open. Such a finite intersection is a set of the fggLaUq, WhereUy is open in
Xq andUy = X4 for all but finitely manya € A. We define thegroduct topology
on the Cartesian produff,ca Xa to be the topology with basis consisting of sets of
this form. The product topology is the coarsest topologyerXs such that all the
projection mapst, : [q Xa — Xg; are continuous.
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A.7 Continuity

Let f: X — Y be a function of topological spaces. Mimicking the defimtioom
advanced calculus, we say thfais continuous at a point i X if for every neigh-
borhoodV of f(p) inY, there is a neighborhodd of p in X such thatf(U) C V.
We say thaff is continuous on Xf it is continuous at every point of.

Proposition A.23 (Continuity in terms of open sets)A function f: X — Y is con-
tinuous if and only if the inverse image of any open set is open

Proof.

(=) Suppose/ is open inY. To show thatf ~(V) is open inX, let p € f~1(V).
Thenf(p) € V. Sincef is assumed to be continuousgtthere is a neighborhood
U of p such thatf (U) c V. Thereforepc U c f~1(V). By the local criterion for
openness (Lemma A.2J,"1(V) is open inX.

(<) Let p be a point inX, andV a neighborhood of (p) in Y. By hypothesis,

f~1(V) is openinX. Sincef(p) €V, p€ f~1(V). ThenU = f~1(V) is a neighbor-
hood ofp such thatf (U) = f(f~1(V)) C V, sof is continuous ap. O

ExampleA.24 (Continuity of an inclusion mgplf A is a subspace oX, then the
inclusion map: A— X, i(a) = ais continuous.

Proof. If U is open inX, theni—1(U) = U NA, which is open in the subspace topol-
ogy of A. O

ExampleA.25 (Continuity of a projection m@p The projectionrt: X x Y — X,
1i(x,y) = X is continuous.

Proof. LetU be open inX. Thenm1(U) =U x Y, which is open in the product
topology onX x Y. O

Proposition A.26. The composition of continuous maps is continuous: iKf— Y
and g Y — Z are continuous, thengf : X — Z is continuous.

Proof. LetV be an open subset @f Then
(o £)7L(v) = FYgL(V)),
because for any € X,
xe (go )"HV)iff g(f(x)) eV iff f(x) eg (V) iff xe f-1(g (V).
By Proposition A.23, sincg is continuousg—1(V) is open inY. Similarly, sincef

is continuousf ~1(g~%(V)) is open inX. By Proposition A.23 agairg. f: X — Z
is continuous. O
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If Ais a subspace of andf: X — Y is a function, theestrictionof f to A,
f |A A=Y,

is defined by

(fla)(a) = f(a).
With i: A — X being the inclusion map, the restrictidiy is the compositef o i.
Since bothf andi are continuous (Example A.24) and the composition of cotirs
functions is continuous (Proposition A.26), we have thé&feing corollary.

Corollary A.27. The restriction fa of a continuous function :fX — Y to a sub-
space A is continuous.

Continuity may also be phrased in terms of closed sets.

Proposition A.28 (Continuity in terms of closed sets)A function f: X =Y is
continuous if and only if the inverse image of any closedsselnised.

Proof. Problem A.9. O

Amapf: X —Y is said to beopenif the image of every open set X is open
inY; similarly, f: X — Y is said to beclosedif the image of every closed set is
closed inY.

If f: X =Y is a bijection, then its inverse map: Y — X is defined. In this
context, for any subs&t C Y, the notationf 1(V) a priori has two meanings. It can
mean either the inverse image\ofunder the mag,

(V)= {xe X | f(x) eV},
or the image o¥ under the mag 1,
FHV)={f*y)eX|yeV}.

Fortunately, becauge= f(x) iff x= f~1(y), these two meanings coincide.

A.8 Compactness

While its definition may not be intuitive, the notion of congpaess is of central
importance in topology. Le be a topological space. A collectiditg} of open
subsets ofis said tocover Sor to beopen covenf Sif Sc |J,Uq. Of course,
becaus&is the ambient space, this condition is equivaler@+el J, Uy. A subcover
of an open cover is a subcollection whose union still corst&nThe topological
spaceSis said to becompactf every open cover o has a finite subcover.

With the subspace topology, a sub8etf a topological spacgis a topological
space in its own right. The subspakean be covered by open setsAror by open
sets inS. An open cover of A in & a collection{U, } of open sets iilSthat covers
A. In this terminologyA is compact if and only if every open cover Afin A has a
finite subcover.
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Fig. A.9. An open cover oA in S

Proposition A.29. A subspace A of a topological space S is compact if and only if
every open cover of Aiin S has a finite subcover.

Proof.
(=) AssumeA compact and le{Uy} be an open cover oA in S. This means
A C UqUq. Hence,

AcC (UU0> NA=JUqsNA).

SinceA is compact, the open covgtly, NA} has a finite subcovefUq NA}_;.
Thus,

r r
AcC U (Uai ﬂA) - U UC!i;
i=1 i=1

which meangUg, }{_; is a finite subcover ofUq }.

(<) Suppose every open cover Afin S has a finite subcover and 1€V, } be an
open cover oA by in A. Then eaclVy = Uy NAfor some open sél, in S. Since

Ac|JVa cJUa,
a

a

by hypothesis, there are finitely many sétk; } such thatA C [J;Uq,. Hence,

AcC <Uum> NA={JUq NA) =Va;,

So{Vy,} is a finite subcover ofV, } that coverdA. ThereforeAis compact. O
Proposition A.30. A closed subset F of a compact topological space S is compact.

Proof. Let {Uq} be an open cover &F in S. The collection{U,,S— F} is then an
open cover of. By the compactness & there is a finite subcovelt)y ,S— F} that
coversS, soF C [JjUg,. This proves thaf is compact. O

Proposition A.31.1n a Hausdorff space S, itis possible to separate a compésietu
K and a point p not in K by disjoint open sets; i.e., there eaistopen set b K
and an open set 4 p such thatUnV = @.
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Proof. By the Hausdorff property, for everye K, there are disjoint open seflg > x
andVy > p. The collection{Ux}xck is a cover ofK by open subsets @& SinceK is
compact, it has a finite subcovfdy }.

LetU = J;Ux andV =(;Vy. ThenU is an open set db containingK. Being
the intersection of finitely many open sets containny is an open set containing
p. Moreover, the set

unv=_JUxnNV)
I

is empty since eadly, NV C Uy, NV, which is empty. O
Proposition A.32.Every compact subset K of a Hausdorff space S is closed.

Proof. By the preceding proposition, for every poijnin S— K, there is an open set
V such thatp € V ¢ S— K. This proves thaS— K is open. HenceK is closed. O

Exercise A.33 (Compact Hausdorff space).*Prove that a compact Hausdorff space is nor-
mal. (Normality was defined in Definition A.16.)

Proposition A.34. The image of a compact set under a continuous map is compact.

Proof. Let f: X — Y be a continuous map adla compact subset of. Suppose
{Uq} is a cover off (K) by open subsets of. Sincef is continuous, the inverse
imagesf ~1(U,) are all open. Moreover,

Kcff(K)cf? (Uua> =Jf (Ua).

So{f~1(Uq)} is an open cover & in X. By the compactness &, there is a finite
subcollection{ f ~1(Ug,)} such that

KcJft(Ug)=f"1 <Uuai> :

Thenf(K) C J;Ug. Thus,f(K) is compact. O

Proposition A.35. A continuous map X — Y from a compact space X to a Haus-
dorff space Y is a closed map.

Proof. Let F be a closed subset of the compact spac®y Proposition A.30F is
compact. As the image of a compact set under a continuousff@pjs compactin
Y (Proposition A.34). As a compact subset of the Hausdorftsia f (F) is closed
(Proposition A.32). O

A continuous bijectionf : X — Y whose inverse is also continuous is called a
homeomorphism

Corollary A.36. A continuous bijection fX — Y from a compact space X to a
Hausdorff space Y is a homeomorphism.
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Proof. By Proposition A.28, to show that™1: Y — X is continuous, it suffices to
prove that for every closed sEtin X, the set f ~1)~1(F) = f(F) is closed inY, i.e.,
thatf is a closed map. The corollary then follows from Proposi#o85. O

Exercise A.37 (Finite union of compact sets)Prove that a finite union of compact subsets
of a topological space is compact.

We mention without proof an important result. For a proofe $§29, Theo-
rem 26.7, p. 167, and Theorem 37.3, p. 234].

Theorem A.38 (The Tychonoff theorem)The product of any collection of compact
spaces is compact in the product topology.

A.9 Boundedness iR"

A subsetA of R" is said to beboundedf it is contained in some open ball(p,r);
otherwise, it isunbounded

Proposition A.39. A compact subset &" is bounded.

Proof. If Awere an unbounded subsefRf, then the collectiod B(0,i)};” ; of open
balls with radius increasing to infinity would be an open aafA in R" that does
not have a finite subcover. O

By Propositions A.39 and A.32, a compact subseRdis closed and bounded.
The converse is also true.

Theorem A.40 (The Heine—Borel theorem)A subset oR" is compact if and only
if it is closed and bounded.

For a proof, see for example [29].

A.10 Connectedness

Definition A.41. A topological spac&is disconnectedf it is the unionS=U UV
of two disjoint nonempty open subséisandV (Figure A.10). It isconnectedf
it is not disconnected. A subsAtof Sis disconnectedf it is disconnected in the
subspace topology.

Proposition A.42. A subset A of a topological space S is disconnected if andibnly
there are open sets U and V in S such that

() UNA#3,VNA#D,
(i) UNVNA= g,
(i) ACUUV.



A.10 Connectedness 361
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Fig. A.11. A separation ofA.

A pair of open sets in S with these properties is calledparationf A (Figure A.11).

Proof. Problem A.15. |

Proposition A.43. The image of a connected space X under a continuous map
f: X =Y is connected.

Proof. Suppose (X) is not connected. Then there is a separafidrV } of f(X) in
Y. By the continuity off, both f~1(U) and f ~1(V) are open inX. We claim that
{f71(U), f71(V)} is a separation oX.

(i) SinceU N f(X) # @, the open sef~1(U) # @.
(i) If xe f=1U)Nnf-1(V), thenf(x) cUNV N f(X) =@, acontradiction. Hence,
LU N LV = 2.
(iii) Since f(X) cUUV, we haveX C f~1(UUV) = f-1U)u f~1(V).

The existence of a separationXfcontradicts the connectednessXfThis contra-
diction proves thaf (X) is connected. O

Proposition A.44.1n a topological space S, the union of a collection of coneéct
subsets A having a point p in common is connected.

Proof. SupposéJ, Az =U UV, whereU andV are disjoint open subsets|gf, Aq.
The pointp € J, As belongs toU or V. Assume without loss of generality that
peU.

For eacha,

Ag =AsNUUV)=(AgNU)U(AgNV).
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The two open setd; NU andAy NV of Ay are clearly disjoint. Sinceg € Ag NU,
Aq NU is nonempty. By the connectedness®gf, Ay NV must be empty for altr.
Hence,

V= <L&JAO,> nv = L&J(Aa nv)

is empty. SdJ, As must be connected. O

A.11 Connected Components

Let x be a point in a topological spa& By Proposition A.44, the unioBy of all
connected subsets 8fcontainingx is connected. It is called thedonnected compo-
nentof Scontainingx.

Proposition A.45.Let G be a connected component of a topological space S. Then
a connected subset A of S is either disjoint froyro€is contained entirely in €

Proof. If A andC, have a point in common, then by Proposition A.#4,)C, is a
connected set containing Hence AUCy C Cy, which implies thatA C C,. O

Accordingly, the connected componeByt is the largest connected subsetSf
containingx in the sense that it contains every connected subsgtohtainingx.

Corollary A.46. For any two points xy in a topological space S, the connected com-
ponents Gand G either are disjoint or coincide.

Proof. If C andCy are not disjoint, then by Proposition A.45, they are corgdiim
each other. In this cas€, = C,. O

As a consequence of Corollary A.46, the connected compsioétpartition S
into disjoint subsets.

A.12 Closure

Let Sbe a topological space arda subset of.

Definition A.47. Theclosureof Ain S, denotedA, cl(A), or cls(A), is defined to be
the intersection of all the closed sets containdng

The advantage of the bar notatiéris its simplicity, while the advantage of the
cls(A) notation is its indication of the ambient spaceAlf B C S, then the closure
of Ain B and the closure oA in Sneed not be the same. In this case, it is useful to
have the notationsg{A) and cly (A) for the two closures.

As an intersection of closed sefsjs a closed set. It is the smallest closed set
containingA in the sense that any closed set contaifrmpntainsA.
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Proposition A.48 (Local characterization of closure)Let A be a subset of a topo-
logical space S. A pointg Sis in the closurel(A) if and only if every neighborhood
of p contains a point of AFigure A.12).

Here by “local,” we mean a property satisfied by a basis of m@ghoods at a
point.

Proof. We will prove the proposition in the form of its contraposgti
pé¢cl(A) <= thereis aneighborhood @fdisjoint fromA.
(=) Suppose
p¢ cl(A) =({F closed inS| F > A}.

Thenp ¢ some closed seéft containingA. It follows thatp € S—F, an open set
disjoint fromA.

(<) Suppose € an open set) disjoint fromA. Then the complemetft .= S—U
is a closed set containirgand not containing. Thereforep ¢ cl(A). O

Fig. A.12.Every neighborhood of contains a point oA.

Example.The closure of the open digk0,r) in R? is the closed disk

B(0,r) = {p€R?|d(p,0) <r}.

Definition A.49. A point pin Sis anaccumulation poinof A if every neighborhood
of pin Scontains a point oA other thanp. The set of all accumulation points &f
is denoted a@).

If U is a neighborhood op in S, we callU — {p} adeleted neighborhoodf p.
An equivalent condition fop to be an accumulation point &fis to require that every
deleted neighborhood gfin Scontain a point ofA. In some books an accumulation
point is called dimit point.

Examplelf A= [0,1[ U {2} in R, then the closure okis [0, 1] U {2}, but the set of
accumulation points oA is only the closed intervd0, 1].
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Proposition A.50.Let A be a subset of a topological space S. Then
cl(A) = AuadA).

Proof.
(D) By definition,A C cl(A). By the local characterization of closure (Proposition
A.48), adA) C cl(A). HenceAuadA) C cl(A).

(C) Suppose € cl(A). Eitherpe Aorp ¢ A. If pe A thenpe AuadA). Suppose
p ¢ A. By Proposition A.48, every neighborhood pftontains a point oA, which
cannot bep, sincep ¢ A. Therefore, every deleted neighborhoodm€ontains a
point of A. In this case,

p€adA) C AUadA).

So clA) c AuadA). O
Proposition A.51.A set A is closed if and only if & A.

Proof.
(<) If A=A thenAis closed becausgis closed.

(=) Supposé\is closed. Theris a closed set containing so thatA C A. Because
A C A, equality holds. O

Proposition A.52.1f A C B in a topological space S, theé\c B.

Proof. SinEeE containsB, it also contain®\. As a closed subset &containingA,
it containsA by definition. O

Exercise A.53 (Closure of a finite union or finite intersectio). Let A andB be subsets of
a topological spac8. Prove the following:

(@) AUB=AUB,

(b) ANBC ANB.

The example oA =]a, 0] andB =]0,b[ in the real line shows that, in generdlNB # ANB.

A.13 Convergence

Let Sbe a topological space. gequencén Sis a map from the séft of positive
integers tdS. We write a sequence as

(%) or X1,X2,X3,....
Definition A.54. The sequencé;) convergeso p if for every neighborhood of

p, there is a positive integ@t such that for all > N, x; € U. In this case we say that
pis alimit of the sequencéq) and writex; — p or limj_e. X = p.

Proposition A.55 (Uniqueness of the limit). In a Hausdorff space S, if a sequence
(xi) converges to p and to q, then=pg.
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Proof. Problem A.19. O
Thus, in a Hausdorff space we may speakhaflimit of a convergent sequence.

Proposition A.56 (The sequence lemma).et S be a topological space and A a
subset of S. If there is a sequer{eg in A that converges to p, thengcl(A). The
converse is true if S is first countable.

Proof.

(=) Suppose; — p, wherea; € Afor alli. By the definition of convergence, every
neighborhood) of p contains all but finitely many of the poings. In particularU
contains a point irA. By the local characterization of closure (Proposition®,4

p € cl(A).

(<) Supposep € cl(A). SinceSis first countable, we can find a countable basis of
neighborhood$U,} at p such that

U DUyD---.

By the local characterization of closure, in edghthere is a poing € A. We claim
that the sequencg;) converges tg. If U is any neighborhood of, then by the
definition of a basis of neighborhoodsgtthere is &Jy such thatp € Uy C U. For
alli > N, we then have

U cUyCU,

Therefore, for ali > N,
ajecU; CU.

This proves thata;) converges t@. O

Problems

A.l. Set theory
If U; andU, are subsets of a s&t, andV; andV, are subsets of a s¥t prove that

(Uj_ X Vj_) n (Uz X Vz) = (Uj_ﬁ Uz) X (VlﬁVZ).

A.2. Union and intersection

Suppos&J1 NV =U>NV, = @ in a topological spac&. Show that the intersection
U1 NUs is disjoint from the uniov, UVs,. (Hint: Use the distributive property of an
intersection over a union.)

A.3. Closed sets
Let Sbe a topological space. Prove the following two statements.

(a) If {FR}", is a finite collection of closed sets $ thenJ{, F; is closed.
(b) If {Fq}qea is an arbitrary collection of closed sets$nthen, Fy is closed.
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A.4. Cubes versus balls

Prove that the open cule-a,a[" is contained in the open ba#i(0,/na), which
in turn is contained in the open cube y/na /na". Therefore, open cubes with
arbitrary centers ifR" form a basis for the standard topologyRRh.

A.5. Product of closed sets
Prove that ifA is closed inX andB is closed inY, thenA x Bis closed inX x Y.

A.6. Characterization of a Hausdorff space by its diagonal
Let Sbe a topological space. The diagoAgh Sx Sis the set

A= {(x,x) € Sx S}.

Prove thaSis Hausdorff if and only if the diagondlis closed inSx S. (Hint: Prove
thatSis Hausdorff if and only ifSx S— Ais open inSx S)

A.7. Projection
Prove that ifX andY are topological spaces, then the projectionX xY — X,
1i(X,y) = X is an open map.

A.8. The €-9 criterion for continuity
Prove that a functiorf : A — R™ is continuous ap € A if and only if for every
€ > 0, there exists & > 0 such that for alk € A satisfyingd(x, p) < , one has

d(f(x),f(p)) <e.

A.9. Continuity in terms of closed sets
Prove Proposition A.28.

A.10. Continuity of a map into a product
Let X, Y1, andY, be topological spaces. Prove thata map (f1, f2): X > Y1 xY;
is continuous if and only if both componerfis X — Y; are continuous.

A.11. Continuity of the product map
Given two mapsf: X — X’ andg: Y — Y’ of topological spaces, we define their
productto be

fxg: XxY—=X'xY, (fxg)xy) =(f(x),q(y)).

Note that if m;: X xY — X andm: X xY — Y are the two projections, then
fxg=(fom,f o). Prove thatf x gis continuous if and only if botlf and
g are continuous.

A.12. Homeomorphism
Prove that if a continuous bijectioh: X — Y is a closed map, then it is a homeo-
morphism (cf. Corollary A.36).

A.13.* The Lindeldf condition
Show that if a topological space is second countable, thisrLiindelof; i.e., every
open cover has a countable subcover.
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A.14. Compactness
Prove that a finite union of compact sets in a topological sf@as compact.

A.15.* Disconnected subset in terms of a separation
Prove Proposition A.42.

A.16. Local connectedness

A topological spac&is said to bdocally connected at g Sif for every neighbor-
hoodU of p, there is a connected neighborhabdf p such thaV C U. The spac&
is locally connectedf it is locally connected at every point. Prove thaSifs locally
connected, then the connected componen&ast open.

A.17. Closure
Let U be an open subset ardan arbitrary subset of a topological spateProve
thatU NA=# g ifandonly ifUNA# @.

A.18. Countability
Prove that every second countable space is first countable.

A.19.* Uniqueness of the limit
Prove Proposition A.55.

A.20.* Closure in a product
Let SandY be topological spaces adc S. Prove that

C|Sxy(A X Y) = C|S(A) xY
in the product spacBx Y.

A.21. Dense subsets
A subsetA of a topological spac8is said to belensen Sif its closure c[A) = S.

(a) Prove that is dense irSif and only if for everyp € S, every neighborhood
of p contains a point oA.

(b) LetK be a field. Prove that a Zariski open subdedf K" is dense irk". (Hint:
Example A.18.)
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The Inverse Function Theorem onR" and Related
Results

This appendix reviews three logically equivalent theordrom real analysis, the
inverse function theorem, the implicit function theoremgahe constant rank theo-
rem, which describe the local behavior a8 map fromR" to R™. We will assume
the inverse function theorem and deduce the other two, isithplest cases, from
the inverse function theorem. In Section 11 these theoreenalied to manifolds
in order to clarify the local behavior of@” map when the map has maximal rank at
a point or constant rank in a neighborhood.

B.1 The Inverse Function Theorem

A C® mapf: U — R" defined on an open subdétof R" is locally invertibleor a
local diffeomorphisnat a pointpin U if f has aC* inverse in some neighborhood of
p. The inverse function theorem gives a criterion for a mapetdolgally invertible.
We call the matrix) f = [0 f' /dx]] of partial derivatives of the Jacobian matrixof

f and its determinant digtf' /dx]] the Jacobian determinaruf f.

Theorem B.1 (Inverse function theorem).Let f: U — R" be a C° map defined on
an open subset U @&". At any point p in U, the map f is invertible in some neigh-
borhood of p if and only if the Jacobian determinaet[d f' /dx! (p)] is not zero.

For a proof, see for example [35, Theorem 9.24, p. 221]. Algtoit appar-
ently reduces the invertibility of on an open set to a single numbermpatecause
the Jacobian determinant is a continuous function, theamistiing of the Jacobian
determinant ap is equivalent to its nonvanishing in a neighborhoogof

Since the linear map represented by the Jacobian mat(i) is the best linear
approximation tof at p, it is plausible thatf is invertible in a neighborhood qf if
and only ifJf(p) is also, i.e., if and only if d¢d f(p)) # 0.
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B.2 The Implicit Function Theorem

In an equation such a(x,y) = 0, it is often impossible to solve explicitly for one
of the variables in terms of the other. If we can show the erist of a function
y = h(x), which we may or may not be able to write down explicitly, subht
f(x,h(x)) = 0, then we say that(x,y) = 0 can be solvedmplicitly for y in terms
of x. The implicit function theorem provides a sufficient coratiton a system of
equationsf'(x,...,x") = 0,i = 1,...,munder whichlocally a set of variables can
be solved implicitly a€££* functions of the other variables.

Example Consider the equation
f(xy) =x+y*—1=0.
The solution set is the unit circle in thxg-plane.

N
NV

Fig. B.1. The unit circle.

-1

From the picture we see that in a neighborhood of any poirgrdtian(+1,0),

yis a function ofx. Indeed,
y==+v1-x,

and either function i€~ as long ax # +1. At (£1,0), there is no neighborhood on
whichy is a function ofx.

On a smooth curvé(x,y) = 0 in R?,

y can be expressed as a functiorxdf a neighborhood of a poirtg, b)
<= the tangentline td (x,y) = 0 at(a,b) is not vertical
<= the normal vector grafi:= (f, fy) to f(x,y) = 0 at(a,b) is not horizontal
< fy(a,b) #0.

The implicit function theorem generalizes this conditiorhigher dimensions. We
will deduce the implicit function theorem from the inversmétion theorem.

Theorem B.2 (Implicit function theorem). Let U be an open subset iR" x R™
and f: U — R™a C” map. Write(x,y) = (x*,...,x",y*,...,y™ for a point in U.
At a point(a,b) € U where f(a,b) = 0 and the determinardefd f' /dy!(a,b)] # O,
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there exist a neighborhood:AB of (a,b) in U and a unique function hA — B such
thatin AxBCcU Cc R"x R™M,

f(x,y)=0 <= y=h(x).

Moreover, his C.

y v
U
Vi
F=(xTf) /‘\
— f(X7 y) =0
(a,0) u
\ X

Fig. B.2.F 1 maps thau-axis to the zero set df.

Proof. To solve f(x,y) = O for y in terms ofx using the inverse function theorem,
we first turn it into an inverse problem. For this, we need a ipetween two open
sets of the same dimension. Sint,y) is a map from an open set in R™™ to
R™, it is natural to extend to a mapF : U — R™™M by adjoiningx to it as the firsh
components:

F(xy) = (uv) = (x f(xy)).

To simplify the exposition, we will assume in the rest of tmeqf thatn=m=1.
Then the Jacobian matrix &f is

10
JF= [df/dx df/ay}

At the point(a,b),
of
F = .
detJF(a,b) ay (a,b)#0
By the inverse function theorem, there are neighborhaddsf (a,b) andV; of
F(a,b) = (a,0) in R? such that-: U; — V; is a diffeomorphism withiC* inverse
F~1 (Figure B.2). Sincé : U; — V; is defined by

v=f(x,y),

the inverse map —1: V; — Uy must be of the form
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X=U,
y=9(u,v)

for someC® functiong: Vi — R. Thus,F~1(u,v) = (u,g(u,v)).
The two compositions 1 - F andF - F 1 give

(va) = (Fil ° F)(va) = Fil(xa f(X,y)) = (ng(xa f(X,y))),
(U,V) = (F ° Fil)(uav) = F(U,g(U,V)) = (U, f(U,g(U,V))).
Hence,
y=g(x f(xy)) forall(xy)eUy, (B.1)
v=f(u,g(u,v)) forall (u,v) e Vi. (B.2)

If f(x,y) =0, then (B.1) givey = g(x,0). This suggests that we defihéx) =
g(x,0) for all x € R? for which (x,0) € V;. The set of all suchk is homeomorphic to
V1N (R x {0}) and is an open subset Bft. Sinceg is C* by the inverse function
theoremhis alsoC”.

Claim. For (x,y) € U1 such tha(x,0) € V4,
f(x,y)=0 <= y=h(x).

Proof (of Claim).
(=) As we saw already, from (B.1), if(x,y) = 0, then

y=9(x f(xy)) =9(x,.0) = h(x). (B.3)
(<) If y=h(x) and in (B.2) we sefu,v) = (x,0), then
0= f(x,g(x,0)) = f(x,h(x)) = f(x,y). O

By the claim, in some neighborhood @d,b) € U;, the zero set off(x,y) is
precisely the graph df. To find a product neighborhood ¢, b) as in the statement
of the theorem, lef\; x B be a neighborhood dfa, b) contained inJ; and letA =
h=1(B)NA;. Sinceh is continuousA is open in the domain di and hence iR™.
Thenh(A) C B,

AxBCA;xBcU;, and Ax{0}cCV.
By the claim, for(x,y) € Ax B,
f(x,y)=0 <= y=h(x).
Equation (B.3) proves the uniquenessof O

Replacing a partial derivative such &$,/dy with a Jacobian matrifd f' /dyl],
we can prove the general case of the implicit function theoireexactly the same
way. Of course, in the theoreyh, . .., y™ need not be the lagh coordinates iR™™;
they can be any set ofi coordinates iR"™.
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Theorem B.3.The implicit function theorem is equivalent to the invensection
theorem.

Proof. We have already shown, at least for one typical case, thawtkese function
theorem implies the implicit function theorem. We now praflre reverse implica-
tion.

So assume the implicit function theorem, andflet) — R" be aC* map defined
on an open subseét of R" such that at some poiqte U, the Jacobian determinant
defdf'/axi(p)] is nonzero. Finding a local inverse fge= f(x) nearp amounts to
solving the equation

gxy) = f(x)—y=0
for xin terms ofy near(p, f(p)). Note thatdg'/dx) = df' /oxI. Hence,

det[ﬁ—f}(p, (o) det[j—i}(p)] 0

By the implicit function theoremx can be expressed in terms wflocally near
(p, f(p)); i.e., there is & function x = h(y) defined in a neighborhood df(p)
in R" such that

g(x.y) = f(x) —y= f(h(y)) —y=0.
Thus,y = f(h(y)). Sincey = f(x),

Therefore,f andh are inverse functions defined ngaand f (p) respectively. O

B.3 Constant Rank Theorem

EveryC” mapf: U — R™on an open sdi of R" has arank at each poinpin U,
namely the rank of its Jacobian matfif'/ox! (p)].

Theorem B.4 (Constant rank theorem). If f : R" > U — R™ has constant rank k
in a neighborhood of a point g U, then after a suitable change of coordinates near
pinU and f(p) in R™, the map f assumes the form

More precisely, there are a diffeomorphism G of a neighborhof p in U sending p
to the origin inR" and a diffeomorphism F of a neighborhood ¢pj in R™ sending
f(p) to the origin inR™ such that

(FofoG) 2xt,... X" =(x,...,%0,...,0).
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Proof (forn=m=2, k= 1). Supposd = (f!, f?): R? 5U — R? has constant rank
1 in a neighborhood of € U. By reordering the functions?, 2 or the variables,
y, we may assume thatf/dx(p) # 0. (Here we are using the fact thithas rank
> 1 atp.) DefineG: U — R? by

G(xy) = (u,v) = (fH(x.y),y).

The Jacobian matrix d& is

 [af/ox att/ay
so- [Pryx atan)

Since detiG(p) = df1/dx(p) # 0, by the inverse function theorem there are neigh-
borhooddJ; of p € R? andV; of G(p) € R? such thatG: U; — V; is a diffeomor-
phism. By makindJ; a sufficiently small neighborhood @ we may assume thdt
has constant rank 1 duy.
OonVy,
(u,v) = (Go G YH(u,v) = (f1a G Lyo G YH(u,v).

Comparing the first components gives- (!« G1)(u,v). Hence,

(fo G H(uv)=(f1e G L f2.G ) (u,v)
= (u,f? o G Y(u,v))

(u,h(u,v)),

where we seh = f2.G 1.
Becaus&s~1: Vi — Uy is a diffeomorphism and has constant rank 1 dsh, the
compositef - G1 has constant rank 1 dn. Its Jacobian matrix is

_ 1 0
A6 = [dh/du dh/dv]'

For this matrix to have constant rankdh/dv must be identically zero ov. (Here
we are using the fact thdt has rank< 1 in a neighborhood op). Thus,his a
function ofu alone and we may write

(f o G (u,v) = (u,h(u)).

Finally, let F: R? — R? be the change of coordinatésx,y) = (x,y — h(x)).
Then
(FofoG 1) (u,v)=F(uh(u) = (uh(u)—h(u)) = (u,0). O

ExampleB.5. If aC® mapf: R" > U — R" defined on an open subdétof R" has
nonzero Jacobian determinant @t p)) # O at a pointp € U, then by continuity it
has nonzero Jacobian determinant in a neighborhopd ©herefore, it has constant
rankn in a neighborhood op.
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Problems

B.1.* The rank of a matrix

Therank of a matrixA, denoted rl4, is defined to be the number of linearly indepen-
dent columns of\. By a theorem in linear algebra, it is also the number of lilyea
independent rows dk. Prove the following lemma.

Lemma. Let A be an nx n matrix (not necessarily squajeand k a positive integer.
ThenrkA > k if and only if A has a nonsingular X k submatrix. Equivalently,
rkA < k— 1if and only if all kx k minors of A vanish(A k x k minor of a matrix A
is the determinant of a k k submatrix of A

B.2.* Matrices of rank at most r

For an integer > 0, defineD; to be the subset &™" consisting of allmx n real
matrices of rank at most Show thatD; is a closed subset &™". (Hint: Use
Problem B.1.)

B.3.* Maximal rank

We say that the rank of amx n matrix A is maximalif rk A = min(m,n). Define
Dmax to be the subset d8™*" consisting of allm x n matrices of maximal rank.
Show thatDmax is an open subset @™ ". (Hint: Supposen < m. ThenDmax =
R™N _—D,_;. Apply Problem B.2.)

B.4.* Degeneracy loci and maximal rank locus of a map
LetF: S— R™" be a continuous map from a topological sp&ce the spac&™".
Thedegeneracy locus of rankaf F is defined to be

Di(F) :={xe S|rkF(x) <r}.

(a) Show that the degeneracy loddgF) is a closed subset & (Hint: D;(F) =
F~1(Dy), whereD, was defined in Problem B.2.)
(b) Show that thenaximal rank locusf F,

Dmax(F) := {x € S| rkF(x) is maximal,
is an open subset &

B.5. Rank of a composition of linear maps
Suppose&/, W, V', W' are finite-dimensional vector spaces.

(a) Prove that if the linear map: V — W is surjective, then for any linear map
frW =W, rk(foL)=rkf.

(b) Prove that if the linear map: V — W is injective, then for any linear map
g: V' =V, rk(L.g) =rkg.

B.6. Constant rank theorem
Generalize the proof of the constant rank theorem (TheorghiB the text to arbi-
trary n, m, andk.

B.7. Equivalence of the constant rank theorem and the invelsfunction theorem
Use the constant rank theorem (Theorem B.4) to prove thesavianction theorem
(Theorem B.1). Hence, the two theorems are equivalent.
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Supposeb, b’ € BX both map toc underj. Thenj(b—b') = jb— jb’ = c—c = 0. By the
exactness &, b—b/ = i(a") for somea’ € AX.

With the choice ob as preimage, the elemedit|c] is represented by a cocydec Akl
such thai(a) = db. Similarly, with the choice ob' as preimage, the elemedt|c] is repre-
sented by a cocycle’ € A“1 such thai(a’) = db. Theni(a—a') =d(b—b') =di(@) =
id(a"). Sincei is injective,a— & = dad’, and thuga] = [&]. This proves that*[c| is indepen-
dent of the choice ab.

The proof that the cohomology classafs independent of the choice ofin the coho-
mology clasgc] can be summarized by the commutative diagram

a—d —— > db—db =0

b”l—j»c”.

Supposdc] = [¢] € H¥(@). Thenc—¢ = dc” for somec” e Ck~1. By the surjectivity of
j: Bkl k-1 thereis @’ € B< 1 that maps t@” underj. Chooseb € B¥ such thafj (b) = ¢
and lett/ = b—db’ € B. Thenj(b') = j(b) — jdb” = c—dj(b’) = c—dc’ = . With the
choice ofb as preimaged*|c] is represented by a cocyces Akl such thai(a) = db. With
the choice oby as preimaged* ] is represented by a cocyaée Akt1 such thai(a’) = db.
Then

i(a—a)=d(b—b)=ddy’ =0.

By the injectivity ofi, a= &/, so[a] = [a]. This shows thatl*[c] is independent of the choice
of cin the cohomology clasg]. ¢

A.33 Compact Hausdorff space

Let Sbe a compact Hausdorff space, ahd two closed subsets & By Proposition A.30A
andB are compact. By Proposition A.31, for aay Athere are disjoint open sdilg > aand
Va D B. SinceA is compact, the open covéa}aca for A has a finite subcoveiUs } ;. Let
U =UL;Ug andV =N, Va. ThenAC U andB C V. The open setd andV are disjoint
because ik € U NV, thenx € Uy, for somei andx € V5, for the same, contradicting the fact
thatUy NV, = 2. O
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dw=(71)“/ f(xl,...,x“’l,o)dxl...dffl:/ o

JHN Rn-1 OHN
becausg—1)"R"1 is preciselyd H" with its boundary orientation. So Stokes’ theorem also
holds in this case. O

23.5 Take the exterior derivative of +y? 4 72 = 1 to obtain a relation among the 1-forms
dx, dy, anddzon 2. Then show for example that far 0, one hasixAdy = (z/X)dyAdz

24.1 Assumew = d f. Derive a contradiction using Problem 8.10(b) and Profmwsit7.2.

25.4* The snake lemma
If we view each column of the given commutative diagram ascham complex, then the
diagram is a short exact sequence of cochain complexes

0O—-A—-B—-C—0.

By the zig-zag lemma, it gives rise to a long exact sequencehiomology. In the long exact
sequenceti®(A) = kera, H1(A) = A/ima = cokera, and similarly forB and €. O

26.2 Defined_1 = 0. Then the given exact sequence is equivalent to a collectichort
exact sequences
Oaimdk,1—>Ak$imdk—>O, k=0,....m-1
By the rank-nullity theorem,
dimAK = dim(imdy_1) + dim(imdj).

When we compute the alternating sum of the left-hand side rigtht-hand side will can-
celto 0. O

28.1 Let U be the punctured projective plaiiP2 — {p} andV a small disk containing.

BecausdJ can be deformation retracted to the boundary circle, whftdr &entification is
in fact RPL, U has the homotopy type &P, SinceRP! is homeomorphic t&', H*(U) ~

H*(St). Apply the Mayer-Vietoris sequence. The answed %RP?) = R, HK(RP?) = 0 for

k> 0.

28.2 HX(S") = R for k = 0,n, andHK(S") = 0 otherwise.
28.3 One way is to apply the Mayer—Vietoris sequenctlte: R? — {p},V = R? — {q}.

A.13* The Lindel df condition
Let {B;}ic| be a countable basis aftdy }qca an open cover of the topological spa@eFor
everyp € Ug, there exists &; such that

peBiCcUg.
Since thisB; depends omp anda, we writei = i(p, a). Thus,
pe Bi(pﬁa) CUq.

Now letJ be the set of all indice$ € | such thatj = i(p,a) for somep and somex. Then
Ujes Bj = Sbecause everp in Sis contained in somB; , o) = Bj.

For eachj € J, choose ara(j) such thatBj C Ug(j). ThenS={J;Bj C U;jUq(j)- So
{Uq(j)}jea is a countable subcover ¢Uq }qea- O



416 Hints and Solutions to Selected End-of-Section Problem

A.15* Disconnected subset in terms of a separation
(=) By (ii),
A=UnNV)NA=UNAU(NNA).
By (i) and (ii), U N A andV N A are disjoint nonempty open subsetsfofHence A is discon-
nected.

(<) SupposeA is disconnected in the subspace topology. TReaU’ UV’, whereU’ and
V' are two disjoint nonempty open subsetsfofBy the definition of the subspace topology,
U’ =UnNAandV’' =V NAfor some open setd,V in S

(i) holds becaus®’ andV’ are nonempty.
(i) holds becaus&’ andV’ are disjoint.
(ii) holds becausé& = U’ UV’ CcUUV. O

A.19* Uniqueness of the limit

Suppose # g. SinceSis Hausdorff, there exist disjoint open sktgandUg such thaip € Up

andqg € Ug. By the definition of convergence, there are integéssand Ng such that for all
i > Np, X €Up and for alli > Ng, X €Uq. This is a contradiction sincd, NUq is the
empty set.

A.20* Closure in a product
(C) By Problem A.5, oA) x Y is a closed set containinfgyx Y. By the definition of closure,
cl(AxY) Ccl(A) xY.

(D) Conversely, suppos@,y) € cl(A) x Y. If pe A, then(p,y) e AxY C cl(AxY). Suppose
p ¢ A. By Proposition A.50,p is an accumulation of. LetU x V be any basis open set in
SxY containing(p,y). Becausep € aqA), the open sét) contains a poina € Awith a# p.
SoU x V contains the pointa,y) € AxY with (a,y) # (p,y). This proves thatp,y) is an
accumulation point oA x Y. By Proposition A.50 agair(p,y) € adAxY) C cl(AxY). This
proves that lA) x Y C cl(AxY).

B.1* The rank of a matrix

(=) Suppose riA > k. Then one can fin# linearly independent columns, which we cal,
.., a. Since themx k matrix [a; --- a] has rankk, it hask linearly independent rows,

..., bX. The matrixB whose rows aré?, ..., b¥ is ak x k submatrix ofA, and rkB = k. In

other wordsB is nonsingulak x k submatrix ofA.

(«=) SupposeA has a nonsinguldt x k submatrixB. Letay, ..., ak be the columns oA such
that the submatrifa; --- a] containsB. Since[a; --- ax] hask linearly independent rows, it
also hak linearly independent columns. Thus Ak k. O

B.2* Matrices of rank at most r

Let A be anmx nmatrix. By Problem B.1, rlA <r if and only if all (r + 1) x (r 4+ 1) minors
my(A),...,ms(A) of Avanish. As the common zero set of a collection of continuoustions,
Dy is closed inR™<", O

B.3* Maximal rank
For definiteness, suppose< m. Then the maximal rank is and every matriA € R™" has
rank< n. Thus,

Dmax= {A€R™" | rkA=n} =R™"-D,,_;.

SinceDy,_1 is a closed subset &™" (Problem B.2) Dmax is open inR™<", O

B.4* Degeneracy loci and maximal rank locus of a map
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(a) LetDy be the subset dR™" consisting of matrices of rank at mast The degeneracy
locus of rankr of the mapF : S— R™" may be described as

D:(F) = {xe S|F(x) e D;} =F (D).

SinceDy is a closed subset @™ " (Problem B.2) and- is continuous,F*l(Dr) is a
closed subset d&

(b) Let Dmax be the subset oR™" consisting of all matrices of maximal rank. Then
Dmax(F) = F~1(Dmax). SinceDmax is open inR™" (Problem B.3) andF is continu-
ous,F ~1(Dmax) is open inS. O

B.7 Use Example B.5.



