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A Brief Introduction

Undergraduate calculus progresses from differentiation and integration of functions
on the real line to functions on the plane and in 3-space. Thenone encounters vector-
valued functions and learns about integrals on curves and surfaces. Real analysis
extends differential and integral calculus fromR3 to Rn. This book is about the
extension of calculus from curves and surfaces to higher dimensions.

The higher-dimensional analogues of smooth curves and surfaces are calledman-
ifolds. The constructions and theorems of vector calculus become simpler in the
more general setting of manifolds; gradient, curl, and divergence are all special cases
of the exterior derivative, and the fundamental theorem forline integrals, Green’s the-
orem, Stokes’ theorem, and the divergence theorem are different manifestations of a
single general Stokes’ theorem for manifolds.

Higher-dimensional manifolds arise even if one is interested only in the three-
dimensional space which we inhabit. For example, if we call arotation followed
by a translation an affine motion, then the set of all affine motions inR3 is a six-
dimensional manifold. Moreover, this six-dimensional manifold is notR6.

We consider two manifolds to be topologically the same if there is a homeomor-
phism between them, that is, a bijection that is continuous in both directions. A
topological invariant of a manifold is a property such as compactness that remains
unchanged under a homeomorphism. Another example is the number of connected
components of a manifold. Interestingly, we can use differential and integral calculus
on manifolds to study the topology of manifolds. We obtain a more refined invariant
called the de Rham cohomology of the manifold.

Our plan is as follows. First, we recast calculus onRn in a way suitable for
generalization to manifolds. We do this by giving meaning tothe symbolsdx, dy,
anddz, so that they assume a life of their own, asdifferential forms, instead of being
mere notations as in undergraduate calculus.

While it is not logically necessary to develop differentialforms onRn before
the theory of manifolds—after all, the theory of differential forms on a manifold in
Chapter V subsumes that onRn, from a pedagogical point of view it is advantageous
to treatRn separately first, since it is onRn that the essential simplicity of differential
forms and exterior differentiation becomes most apparent.
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Another reason for not delving into manifolds right away is so that in a course
setting the students without a background in point-set topology can read Appendix A
on their own while studying the calculus of differential forms onRn.

Armed with the rudiments of point-set topology, we define a manifold and derive
various conditions for a set to be a manifold. A central idea of calculus is the approx-
imation of a nonlinear object by a linear object. With this inmind, we investigate
the relation between a manifold and its tangent spaces. Key examples are Lie groups
and their Lie algebras.

Finally we do calculus on manifolds, exploiting the interplay of analysis and
topology to show on the one hand how the theorems of vector calculus generalize,
and on the other hand, how the results on manifolds define newC∞ invariants of a
manifold, the de Rham cohomology groups.

The de Rham cohomology groups are in fact not merelyC∞ invariants, but also
topological invariants, a consequence of the celebrated deRham theorem that es-
tablishes an isomorphism between de Rham cohomology and singular cohomology
with real coefficients. To prove this theorem would take us too far afield. Interested
readers may find a proof in the sequel [4] to this book.



Chapter I

Euclidean Spaces



The Euclidean spaceRn is the prototype of all manifolds. Not only is it the simplest,
but locally every manifold looks likeRn. A good understanding ofRn is essential in
generalizing differential and integral calculus to a manifold.

Euclidean space is special in having a set of standard globalcoordinates. This
is both a blessing and a handicap. It is a blessing because allconstructions onRn

can be defined in terms of the standard coordinates and all computations carried out
explicitly. It is a handicap because, defined in terms of coordinates, it is often not ob-
vious which concepts are intrinsic, i.e., independent of coordinates. Since a manifold
in general does not have standard coordinates, only coordinate-independent concepts
will make sense on a manifold. For example, it turns out that on a manifold of di-
mensionn, it is not possible to integrate functions, because the integral of a function
depends on a set of coordinates. The objects that can be integrated are differential
forms. It is only because the existence of global coordinates permits an identification
of functions with differentialn-forms onRn that integration of functions becomes
possible onRn.

Our goal in this chapter is to recast calculus onRn in a coordinate-free way suit-
able for generalization to manifolds. To this end, we view a tangent vector not as an
arrow or as a column of numbers, but as a derivation on functions. This is followed
by an exposition of Hermann Grassmann’s formalism of alternating multilinear func-
tions on a vector space, which lays the foundation for the theory of differential forms.
Finally we introduce differential forms onRn, together with two of their basic oper-
ations, the wedge product and the exterior derivative, and show how they generalize
and simplify vector calculus inR3.
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Smooth Functions on a Euclidean Space

The calculus ofC∞ functions will be our primary tool for studying higher-dimensional
manifolds. For this reason, we begin with a review ofC∞ functions onRn.

1.1 C∞ Versus Analytic Functions

Write the coordinates onRn asx1, . . . ,xn and letp = (p1, . . . , pn) be a point in an
open setU in Rn. In keeping with the conventions of differential geometry,the
indices on coordinates aresuperscripts, not subscripts. An explanation of the rules
for superscripts and subscripts is given in Subsection 4.7.

Definition 1.1. Let k be a nonnegative integer. A real-valued functionf : U → R is
said to beCk at p∈U if its partial derivatives

∂ j f

∂xi1 · · ·∂xi j

of all orders j ≤ k exist and are continuous atp. The function f : U → R is C∞

at p if it is Ck for all k≥ 0; in other words, its partial derivatives∂ j f /∂xi1 · · ·∂xi j

of all orders exist and are continuous atp. A vector-valued functionf : U → Rm

is said to beCk at p if all of its component functionsf 1, . . . , f m areCk at p. We
say thatf : U → Rm is Ck on U if it is Ck at every point inU . A similar definition
holds for aC∞ function on an open setU . We treat the terms “C∞” and “smooth” as
synonymous.

Example1.2.
(i) A C0 function onU is a continuous function onU .
(ii) Let f : R→R be f (x) = x1/3. Then

f ′(x) =

{
1
3x−2/3 for x 6= 0,

undefined forx= 0.

Thus the functionf is C0 but notC1 at x= 0.
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(iii) Let g: R→R be defined by

g(x) =
∫ x

0
f (t)dt =

∫ x

0
t1/3dt =

3
4

x4/3.

Theng′(x) = f (x) = x1/3, sog(x) isC1 but notC2 atx= 0. In the same way one
can construct a function that isCk but notCk+1 at a given point.

(iv) The polynomial, sine, cosine, and exponential functions on the real line are all
C∞.

A neighborhoodof a point inRn is an open set containing the point. The function
f is real-analyticat p if in some neighborhood ofp it is equal to its Taylor series
at p:

f (x) = f (p)+∑
i

∂ f
∂xi (p)(x

i− pi)+
1
2! ∑i, j

∂ 2 f
∂xi∂x j (p)(x

i− pi)(x j − p j)

+ · · ·+ 1
k! ∑

i1,...,ik

∂ k f
∂xi1 · · ·∂xik

(p)(xi1− pi1) · · · (xik− pik)+ · · · ,

in which the general term is summed over all 1≤ i1, . . . , ik ≤ n.
A real-analytic function is necessarilyC∞, because as one learns in real anal-

ysis, a convergent power series can be differentiated term by term in its region of
convergence. For example, if

f (x) = sinx= x− 1
3!

x3+
1
5!

x5−·· · ,

then term-by-term differentiation gives

f ′(x) = cosx= 1− 1
2!

x2+
1
4!

x4−·· · .

The following example shows that aC∞ function need not be real-analytic. The
idea is to construct aC∞ function f (x) onR whose graph, though not horizontal, is
“very flat” near 0 in the sense that all of its derivatives vanish at 0.

x

y

1

Fig. 1.1.A C∞ function all of whose derivatives vanish at 0.
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Example1.3 (A C∞ function very flat at0). Define f (x) onR by

f (x) =

{
e−1/x for x> 0,

0 for x≤ 0.

(See Figure 1.1.) By induction, one can show thatf is C∞ onR and that the deriva-
tives f (k)(0) = 0 for all k≥ 0 (Problem 1.2).

The Taylor series of this function at the origin is identically zero in any neigh-
borhood of the origin, since all derivativesf (k)(0) = 0. Therefore,f (x) cannot be
equal to its Taylor series andf (x) is not real-analytic at 0.

1.2 Taylor’s Theorem with Remainder

Although aC∞ function need not be equal to its Taylor series, there is a Taylor’s the-
orem with remainder forC∞ functions which is often good enough for our purposes.
In the lemma below, we prove the very first case when the Taylorseries consists of
only the constant termf (p).

We say that a subsetS of Rn is star-shapedwith respect to a pointp in S if for
everyx in S, the line segment fromp to x lies in S(Figure 1.2).

b

b

b

p

q
x

Fig. 1.2.Star-shaped with respect top, but not with respect toq.

Lemma 1.4 (Taylor’s theorem with remainder).Let f be a C∞ function on an open
subset U ofRn star-shaped with respect to a point p= (p1, . . . , pn) in U. Then there
are functions g1(x), . . . ,gn(x) ∈C∞(U) such that

f (x) = f (p)+
n

∑
i=1

(xi− pi)gi(x), gi(p) =
∂ f
∂xi (p).

Proof. SinceU is star-shaped with respect top, for any x in U the line segment
p+ t(x− p), 0≤ t ≤ 1 lies in U (Figure 1.3). Sof (p+ t(x− p)) is defined for
0≤ t ≤ 1.

By the chain rule,
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b

b

p

x U

Fig. 1.3.The line segment fromp to x.

d
dt

f (p+ t(x− p)) = ∑(xi− pi)
∂ f
∂xi (p+ t(x− p)).

If we integrate both sides with respect tot from 0 to 1, we get

f (p+ t(x− p))
]1
0 = ∑(xi− pi)

∫ 1

0

∂ f
∂xi (p+ t(x− p))dt. (1.1)

Let

gi(x) =
∫ 1

0

∂ f
∂xi (p+ t(x− p))dt.

Thengi(x) is C∞ and (1.1) becomes

f (x)− f (p) = ∑(xi− pi)gi(x).

Moreover,

gi(p) =
∫ 1

0

∂ f
∂xi (p)dt =

∂ f
∂xi (p). ⊓⊔

In casen= 1 andp= 0, this lemma says that

f (x) = f (0)+ xg1(x)

for someC∞ functiong1(x). Applying the lemma repeatedly gives

gi(x) = gi(0)+ xgi+1(x),

wheregi, gi+1 areC∞ functions. Hence,

f (x) = f (0)+ x(g1(0)+ xg2(x))

= f (0)+ xg1(0)+ x2(g2(0)+ xg3(x))

...

= f (0)+g1(0)x+g2(0)x
2+ · · ·+gi(0)xi +gi+1(x)x

i+1. (1.2)

Differentiating (1.2) repeatedly and evaluating at 0, we get

gk(0) =
1
k!

f (k)(0), k= 1,2, . . . , i.
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So (1.2) is a polynomial expansion off (x) whose terms up to the last term agree
with the Taylor series off (x) at 0.

Remark.Being star-shaped is not such a restrictive condition, since any open ball

B(p,ε) = {x∈ Rn | ‖x− p‖< ε}

is star-shaped with respect top. If f is a C∞ function defined on an open setU
containingp, then there is anε > 0 such that

p∈ B(p,ε)⊂U.

When its domain is restricted toB(p,ε), the functionf is defined on a star-shaped
neighborhood ofp and Taylor’s theorem with remainder applies.

NOTATION. It is customary to write the standard coordinates onR2 asx, y, and the
standard coordinates onR3 asx, y, z.

Problems

1.1. A function that is C2 but not C3

Let g: R→ R be the function in Example 1.2(iii). Show that the functionh(x) =∫ x
0 g(t)dt is C2 but notC3 at x= 0.

1.2.* A C∞ function very flat at 0
Let f (x) be the function onR defined in Example 1.3.

(a) Show by induction that forx > 0 andk≥ 0, thekth derivative f (k)(x) is of the
form p2k(1/x)e−1/x for some polynomialp2k(y) of degree 2k in y.

(b) Prove thatf is C∞ onR and thatf (k)(0) = 0 for all k≥ 0.

1.3. A diffeomorphism of an open interval withR
Let U ⊂ Rn andV ⊂ Rn be open subsets. AC∞ mapF : U → V is called adiffeo-
morphismif it is bijective and has aC∞ inverseF−1 : V→U .

(a) Show that the functionf : ]−π/2,π/2[→ R, f (x) = tanx, is a diffeomorphism.
(b) Let a,b be real numbers witha< b. Find a linear functionh: ]a,b[→ ]−1,1[,

thus proving that any two finite open intervals are diffeomorphic.

The compositef ◦ h: ]a,b[→R is then a diffeomorphism of an open interval withR.

(c) The exponential function exp:R→ ]0,∞[ is a diffeomorphism. Use it to show
that for any real numbersa andb, the intervalsR, ]a,∞[, and]−∞,b[ are diffeo-
morphic.

1.4. A diffeomorphism of an open cube withRn

Show that the map

f :
]
−π

2
,

π
2

[n
→ Rn, f (x1, . . . ,xn) = (tanx1, . . . , tanxn)

is a diffeomorphism.
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1.5. A diffeomorphism of an open ball withRn

Let 0= (0,0) be the origin andB(0,1) the open unit disk inR2. To find a diffeomor-
phism betweenB(0,1) andR2, we identifyR2 with thexy-plane inR3 and introduce
the lower open hemisphere

S: x2+ y2+(z−1)2 = 1, z< 1

in R3 as an intermediate space (Figure 1.4). First note that the map

f : B(0,1)→ S, (a,b) 7→ (a,b,1−
√

1−a2−b2)

is a bijection.

b

b b

b

b

b b

S S(0,0,1)

(a,b,0)

(a,b,c) (a,b,c)

(u,v,0)
B(0,1) R2⊂ R3

0 0
( )

Fig. 1.4.A diffeomorphism of an open disk withR2.

(a) Thestereographic projection g: S→ R2 from (0,0,1) is the map that sends a
point(a,b,c) ∈ Sto the intersection of the line through(0,0,1) and(a,b,c) with
thexy-plane. Show that it is given by

(a,b,c) 7→ (u,v) =

(
a

1− c
,

b
1− c

)
, c= 1−

√
1−a2−b2

with inverse

(u,v) 7→
(

u√
1+u2+ v2

,
v√

1+u2+ v2
,1− 1√

1+u2+ v2

)
.

(b) Composing the two mapsf andg gives the map

h= g ◦ f : B(0,1)→R2, h(a,b) =

(
a√

1−a2−b2
,

b√
1−a2−b2

)
.

Find a formula forh−1(u,v) = ( f−1 ◦ g−1)(u,v) and conclude thath is a diffeo-
morphism of the open diskB(0,1) with R2.

(c) Generalize part (b) toRn.
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1.6.* Taylor’s theorem with remainder to order 2
Prove that if f : R2→ R is C∞, then there existC∞ functionsg11, g12, g22 on R2

such that

f (x,y) = f (0,0)+
∂ f
∂x

(0,0)x+
∂ f
∂y

(0,0)y

+ x2g11(x,y)+ xyg12(x,y)+ y2g22(x,y).

1.7.* A function with a removable singularity
Let f : R2→ R be aC∞ function with f (0,0) = ∂ f/∂x(0,0) = ∂ f/∂y(0,0) = 0.
Define

g(t,u) =

{
f (t,tu)

t for t 6= 0,

0 for t = 0.

Prove thatg(t,u) is C∞ for (t,u) ∈ R2. (Hint: Apply Problem 1.6.)

1.8. BijectiveC∞ maps
Define f : R→ R by f (x) = x3. Show thatf is a bijectiveC∞ map, but thatf−1 is
not C∞. (This example shows that a bijectiveC∞ map need not have aC∞ inverse.
In complex analysis, the situation is quite different: a bijective holomorphic map
f : C→ C necessarily has a holomorphic inverse.)



2

Tangent Vectors inRn as Derivations

In elementary calculus we normally represent a vector at a point p in R3 algebraically
as a column of numbers

v=




v1

v2

v3




or geometrically as an arrow emanating fromp (Figure 2.1).

b

p

v

Fig. 2.1.A vectorv at p.

Recall that a secant plane to a surface inR3 is a plane determined by three points
of the surface. As the three points approach a pointp on the surface, if the corre-
sponding secant planes approach a limiting position, then the plane that is the lim-
iting position of the secant planes is called the tangent plane to the surface atp.
Intuitively, the tangent plane to a surface atp is the plane inR3 that just “touches”
the surface atp. A vector atp is tangent to a surface inR3 if it lies in the tangent
plane atp (Figure 2.2).

b

p v

Fig. 2.2.A tangent vectorv to a surface atp.
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Such a definition of a tangent vector to a surface presupposesthat the surface is
embedded in a Euclidean space, and so would not apply to the projective plane, for
example, which does not sit inside anRn in any natural way.

Our goal in this section is to find a characterization of tangent vectors inRn that
will generalize to manifolds.

2.1 The Directional Derivative

In calculus we visualize the tangent spaceTp(R
n) at p in Rn as the vector space of

all arrows emanating fromp. By the correspondence between arrows and column
vectors, the vector spaceRn can be identified with this column space. To distinguish
between points and vectors, we write a point inRn asp= (p1, . . . , pn) and a vector
in the tangent spaceTp(R

n) as

v=




v1
...

vn


 or 〈v1, . . . ,vn〉.

We usually denote the standard basis forRn or Tp(R
n) by e1, . . . ,en. Thenv= ∑viei

for somevi ∈ R. Elements ofTp(R
n) are calledtangent vectors(or simplyvectors)

at p in Rn. We sometimes drop the parentheses and writeTpR
n for Tp(R

n).
The line through a pointp= (p1, . . . , pn) with directionv= 〈v1, . . . ,vn〉 in Rn has

parametrization
c(t) = (p1+ tv1, . . . , pn+ tvn).

Its ith componentci(t) is pi + tvi. If f is C∞ in a neighborhood ofp in Rn andv is a
tangent vector atp, thedirectional derivativeof f in the directionv at p is defined to
be

Dv f = lim
t→0

f (c(t))− f (p)
t

=
d
dt

∣∣∣∣
t=0

f (c(t)).

By the chain rule,

Dv f =
n

∑
i=1

dci

dt
(0)

∂ f
∂xi (p) =

n

∑
i=1

vi ∂ f
∂xi (p). (2.1)

In the notationDv f , it is understood that the partial derivatives are to be evaluated
at p, sincev is a vector atp. SoDv f is a number, not a function. We write

Dv = ∑vi ∂
∂xi

∣∣∣∣
p

for the map that sends a functionf to the numberDv f . To simplify the notation we
often omit the subscriptp if it is clear from the context.

The associationv 7→Dv of the directional derivativeDv to a tangent vectorvoffers
a way to characterize tangent vectors as certain operators on functions. To make
this precise, in the next two subsections we study in greaterdetail the directional
derivativeDv as an operator on functions.
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2.2 Germs of Functions

A relationon a setS is a subsetRof S×S. Givenx,y in S, we writex∼ y if and only
if (x,y) ∈ R. The relationR is anequivalence relationif it satisfies the following
three properties for allx,y,z∈ S:

(i) (reflexivity) x∼ x,
(ii) (symmetry) if x∼ y, theny∼ x,
(iii) (transitivity) if x∼ y andy∼ z, thenx∼ z.

As long as two functions agree on some neighborhood of a pointp, they will have
the same directional derivatives atp. This suggests that we introduce an equivalence
relation on theC∞ functions defined in some neighborhood ofp. Consider the set of
all pairs( f ,U), whereU is a neighborhood ofp and f : U→R is aC∞ function. We
say that( f ,U) is equivalentto (g,V) if there is an open setW ⊂U ∩V containingp
such thatf = g when restricted toW. This is clearly an equivalence relation because
it is reflexive, symmetric, and transitive. The equivalenceclass of( f ,U) is called the
germof f at p. We writeC∞

p (R
n) or simplyC∞

p if there is no possibility of confusion,
for the set of all germs ofC∞ functions onRn at p.

Example.The functions

f (x) =
1

1− x

with domainR−{1} and

g(x) = 1+ x+ x2+ x3+ · · ·

with domain the open interval]−1,1[ have the same germ at any pointp in the open
interval]−1,1[.

An algebraover a fieldK is a vector spaceA overK with a multiplication map

µ : A×A→ A,

usually writtenµ(a,b) = a ·b, such that for alla,b,c∈ A andr ∈ K,

(i) (associativity)(a ·b) ·c= a · (b ·c),
(ii) (distributivity) (a+b) ·c= a ·c+b ·canda · (b+ c) = a ·b+a ·c,
(iii) (homogeneity)r(a ·b) = (ra) ·b= a · (rb).
Equivalently, an algebra over a fieldK is a ringA (with or without multiplicative
identity) which is also a vector space overK such that the ring multiplication satisfies
the homogeneity condition (iii). Thus, an algebra has threeoperations: the addition
and multiplication of a ring and the scalar multiplication of a vector space. Usually
we omit the multiplication sign and writeab instead ofa ·b.

A mapL : V→W between vector spaces over a fieldK is called alinear mapor
a linear operatorif for any r ∈ K andu,v∈V,

(i) L(u+ v) = L(u)+L(v);
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(ii) L(rv) = rL(v).

To emphasize the fact that the scalars are in the fieldK, such a map is also said to be
K-linear.

If A andA′ are algebras over a fieldK, then analgebra homomorphismis a linear
mapL : A→ A′ that preserves the algebra multiplication:L(ab) = L(a)L(b) for all
a,b∈ A.

The addition and multiplication of functions induce corresponding operations on
C∞

p , making it into an algebra overR (Problem 2.2).

2.3 Derivations at a Point

For each tangent vectorv at a pointp in Rn, the directional derivative atp gives a
map of real vector spaces

Dv : C∞
p →R.

By (2.1),Dv is R-linear and satisfies the Leibniz rule

Dv( f g) = (Dv f )g(p)+ f (p)Dvg, (2.2)

precisely because the partial derivatives∂/∂xi |p have these properties.
In general, any linear mapD : C∞

p → R satisfying the Leibniz rule (2.2) is called
a derivation at por apoint-derivationof C∞

p . Denote the set of all derivations atp
byDp(R

n). This set is in fact a real vector space, since the sum of two derivations at
p and a scalar multiple of a derivation atp are again derivations atp (Problem 2.3).

Thus far, we know that directional derivatives atp are all derivations atp, so
there is a map

φ : Tp(R
n)→Dp(R

n), (2.3)

v 7→Dv = ∑vi ∂
∂xi

∣∣∣∣
p
.

SinceDv is clearly linear inv, the mapφ is a linear map of vector spaces.

Lemma 2.1.If D is a point-derivation of C∞p , then D(c) = 0 for any constant function
c.

Proof. As we do not know if every derivation atp is a directional derivative, we need
to prove this lemma using only the defining properties of a derivation atp.

By R-linearity, D(c) = cD(1). So it suffices to prove thatD(1) = 0. By the
Leibniz rule (2.2)

D(1) = D(1 ·1) = D(1) ·1+1 ·D(1)= 2D(1).

SubtractingD(1) from both sides gives 0= D(1). ⊓⊔
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TheKronecker deltaδ is a useful notation that we frequently call upon:

δ i
j =

{
1 if i = j ,

0 if i 6= j .

Theorem 2.2.The linear mapφ : Tp(R
n)→ Dp(R

n) defined in(2.3) is an isomor-
phism of vector spaces.

Proof. To prove injectivity, supposeDv = 0 for v ∈ Tp(R
n). Applying Dv to the

coordinate functionx j gives

0= Dv(x
j) = ∑

i
vi ∂

∂xi

∣∣∣∣
p
x j = ∑

i
viδ j

i = v j .

Hence,v= 0 andφ is injective.
To prove surjectivity, letD be a derivation atp and let( f ,V) be a representative

of a germ inC∞
p . MakingV smaller if necessary, we may assume thatV is an open

ball, hence star-shaped. By Taylor’s theorem with remainder (Lemma 1.4) there are
C∞ functionsgi(x) in a neighborhood ofp such that

f (x) = f (p)+∑(xi − pi)gi(x), gi(p) =
∂ f
∂xi (p).

Applying D to both sides and noting thatD( f (p)) = 0 andD(pi) = 0 by Lemma 2.1,
we get by the Leibniz rule (2.2)

D f (x) = ∑(Dxi)gi(p)+∑(pi− pi)Dgi(x)

= ∑(Dxi)
∂ f
∂xi (p).

This proves thatD = Dv for v= 〈Dx1, . . . ,Dxn〉. ⊓⊔
This theorem shows that one may identify the tangent vectorsat p with the deriva-

tions atp. Under the vector space isomorphismTp(R
n)≃Dp(R

n), the standard basis
e1, . . . ,en for Tp(R

n) corresponds to the set∂/∂x1|p, . . . ,∂/∂xn|p of partial deriva-
tives. From now on, we will make this identification and writea tangent vector
v= 〈v1, . . . ,vn〉= ∑viei as

v= ∑vi ∂
∂xi

∣∣∣∣
p
. (2.4)

The vector spaceDp(R
n) of derivations atp, although not as geometric as ar-

rows, turns out to be more suitable for generalization to manifolds.

2.4 Vector Fields

A vector field Xon an open subsetU of Rn is a function that assigns to each pointp
in U a tangent vectorXp in Tp(R

n). SinceTp(R
n) has basis{∂/∂xi |p}, the vectorXp

is a linear combination
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Xp = ∑ai(p)
∂
∂xi

∣∣∣∣
p
, p∈U, ai(p) ∈ R.

Omitting p, we may writeX = ∑ai ∂/∂xi , where theai are now functions onU . We
say that the vector fieldX is C∞ on U if the coefficient functionsai are allC∞ onU .

Example2.3. OnR2−{0}, let p= (x,y). Then

X =
−y√

x2+ y2

∂
∂x

+
x√

x2+ y2

∂
∂y

=

〈
−y√
x2+ y2

,
x√

x2+ y2

〉

is the vector field in Figure 2.3(a). As is customary, we draw avector atp as an
arrow emanating fromp. The vector fieldY = x∂/∂x− y∂/∂y = 〈x,−y〉, suitably
rescaled, is sketched in Figure 2.3(b).

2
0

2

1

1

0-2

-1

-1

-2

◦

(a) The vector fieldX onR2−{0} (b) The vector field〈x,−y〉 onR2

Fig. 2.3.Vector fields on open subsets ofR2.

One can identify vector fields onU with column vectors ofC∞ functions onU :

X = ∑ai ∂
∂xi ←→




a1
...

an


 .

This is the same identification as (2.4), but now we are allowing the pointp to move
in U .

The ring ofC∞ functions on an open setU is commonly denotedC∞(U) orF(U).
Multiplication of vector fields by functions onU is defined pointwise:

( f X)p = f (p)Xp, p∈U.
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Clearly, if X = ∑ai ∂/∂xi is aC∞ vector field andf is a C∞ function onU , then
f X = ∑( f ai)∂/∂xi is aC∞ vector field onU . Thus, the set of allC∞ vector fields on
U , denotedX(U), is not only a vector space overR, but also amoduleover the ring
C∞(U). We recall the definition of a module.

Definition 2.4. If R is a commutative ring with identity, then a (left)R-moduleis an
abelian groupA with a scalar multiplication map

µ : R×A→ A,

usually writtenµ(r,a) = ra, such that for allr,s∈ R anda,b∈ A,

(i) (associativity)(rs)a= r(sa),
(ii) (identity) if 1 is the multiplicative identity inR, then 1a= a,
(iii) (distributivity) (r + s)a= ra+ sa, r(a+b) = ra+ rb.

If R is a field, then anR-module is precisely a vector space overR. In this sense,
a module generalizes a vector space by allowing scalars in a ring rather than a field.

Definition 2.5. Let A andA′ beR-modules. AnR-module homomorphismfrom A
to A′ is a mapf : A→ A′ that preserves both addition and scalar multiplication: for
all a, b∈ A andr ∈ R,

(i) f (a+b) = f (a)+ f (b),
(ii) f (ra) = r f (a).

2.5 Vector Fields as Derivations

If X is aC∞ vector field on an open subsetU of Rn and f is aC∞ function onU , we
define a new functionX f onU by

(X f)(p) = Xp f for any p∈U.

Writing X = ∑ai ∂/∂xi , we get

(X f)(p) = ∑ai(p)
∂ f
∂xi (p),

or

X f = ∑ai ∂ f
∂xi ,

which shows thatX f is aC∞ function onU . Thus, aC∞ vector fieldX gives rise to
anR-linear map

C∞(U)→C∞(U),

f 7→ X f.
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Proposition 2.6 (Leibniz rule for a vector field). If X is a C∞ vector field and f
and g are C∞ functions on an open subset U ofRn, then X( f g) satisfies the product
rule (Leibniz rule):

X( f g) = (X f)g+ f Xg.

Proof. At each pointp∈U , the vectorXp satisfies the Leibniz rule:

Xp( f g) = (Xp f )g(p)+ f (p)Xpg.

As p varies overU , this becomes an equality of functions:

X( f g) = (X f)g+ f Xg. ⊓⊔
If A is an algebra over a fieldK, a derivationof A is aK-linear mapD : A→ A

such that
D(ab) = (Da)b+aDb for all a,b∈ A.

The set of all derivations ofA is closed under addition and scalar multiplication and
forms a vector space, denoted Der(A). As noted above, aC∞ vector field on an open
setU gives rise to a derivation of the algebraC∞(U). We therefore have a map

ϕ : X(U)→ Der(C∞(U)),

X 7→ ( f 7→ X f).

Just as the tangent vectors at a pointp can be identified with the point-derivations of
C∞

p , so the vector fields on an open setU can be identified with the derivations of the
algebraC∞(U); i.e., the mapϕ is an isomorphism of vector spaces. The injectivity of
ϕ is easy to establish, but the surjectivity ofϕ takes some work (see Problem 19.12).

Note that a derivation atp is not a derivation of the algebraC∞
p . A derivation atp

is a map fromC∞
p toR, while a derivation of the algebraC∞

p is a map fromC∞
p toC∞

p .

Problems

2.1. Vector fields
Let X be the vector fieldx∂/∂x+ y∂/∂y and f (x,y,z) the functionx2+ y2+ z2 on
R3. ComputeX f .

2.2. Algebra structure onC∞
p

Define carefully addition, multiplication, and scalar multiplication inC∞
p . Prove that

addition inC∞
p is commutative.

2.3. Vector space structure on derivations at a point
Let D andD′ be derivations atp in Rn, andc∈ R. Prove that

(a) the sumD+D′ is a derivation atp.
(b) the scalar multiplecD is a derivation atp.

2.4. Product of derivations
Let A be an algebra over a fieldK. If D1 andD2 are derivations ofA, show that
D1 ◦ D2 is not necessarily a derivation (it is ifD1 or D2 = 0), butD1 ◦ D2−D2 ◦ D1

is always a derivation ofA.
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The Exterior Algebra of Multicovectors

As noted in the introduction, manifolds are higher-dimensional analogues of curves
and surfaces. As such, they are usually not linear spaces. Nonetheless, a basic
principle in manifold theory is the linearization principle, according to which every
manifold can be locally approximated by its tangent space ata point, a linear object.
In this way linear algebra enters into manifold theory.

Instead of working with tangent vectors, it turns out to be more fruitful to adopt
the dual point of view and work with linear functions on a tangent space. After all,
there is only so much that one can do with tangent vectors, which are essentially
arrows, but functions, far more flexible, can be added, multiplied, scalar-multiplied,
and composed with other maps. Once one admits linear functions on a tangent space,
it is but a small step to consider functions of several arguments linear in each argu-
ment. These are the multilinear functions on a vector space.The determinant of a
matrix, viewed as a function of the column vectors of the matrix, is an example of
a multilinear function. Among the multilinear functions, certain ones such as the
determinant and the cross product have anantisymmetricor alternatingproperty:
they change sign if two arguments are switched. The alternating multilinear func-
tions with k arguments on a vector space are calledmulticovectors of degree k, or
k-covectorsfor short.

It took the genius of Hermann Grassmann (1809–1877), a German mathemati-
cian, linguist, and high-school teacher, to recognize the importance of multicovec-
tors. He constructed a vast edifice based on multicovectors,now called theexterior
algebra, that generalizes parts of vector calculus fromR3 to Rn. For example, the
wedge product of two multicovectors on ann-dimensional vector space is a gener-
alization of the cross product inR3 (see Problem 4.6). Grassmann’s work was little
appreciated in his lifetime. In fact, he was turned down for auniversity position
and his Ph. D. thesis rejected, because the leading mathematicians of his day such
as Möbius and Kummer failed to understand his work. It was only at the turn of
twentieth century, in the hands of the great differential geometerÉlie Cartan (1869–
1951), that Grassmann’s exterior algebra found its just recognition as the algebraic
basis of the theory of differential forms. This section is anexposition, using modern
terminology, of some of Grassmann’s ideas.
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3.1 Dual Space

If V andW are real vector spaces, we denote by Hom(V,W) the vector space of all
linear mapsf : V →W. Define thedual space V∨ of V to be the vector space of all
real-valued linear functions onV:

V∨ = Hom(V,R).

The elements ofV∨ are calledcovectorsor 1-covectorsonV.
In the rest of this section, assumeV to be afinite-dimensionalvector space. Let

e1, . . . ,en be a basis forV. Then everyv in V is uniquely a linear combination
v = ∑viei with vi ∈ R. Let α i : V → R be the linear function that picks out the
ith coordinate,α i(v) = vi . Note thatα i is characterized by

α i(ej) = δ i
j =

{
1 for i = j ,

0 for i 6= j .

Proposition 3.1.The functionsα1, . . . ,αn form a basis for V∨.

Proof. We first prove thatα1, . . . ,αn spanV∨. If f ∈V∨ andv= ∑viei ∈V, then

f (v) = ∑vi f (ei) = ∑ f (ei)α i(v).

Hence,
f = ∑ f (ei)α i ,

which shows thatα1, . . . ,αn spanV∨.
To show linear independence, suppose∑ciα i = 0 for someci ∈ R. Applying

both sides to the vectorej gives

0= ∑
i

ciα i(ej) = ∑
i

ciδ i
j = c j , j = 1, . . . ,n.

Hence,α1, . . . ,αn are linearly independent. ⊓⊔

This basisα1, . . . ,αn for V∨ is said to bedual to the basise1, . . . ,en for V.

Corollary 3.2. The dual space V∨ of a finite-dimensional vector space V has the
same dimension as V.

Example3.3 (Coordinate functions). With respect to a basise1, . . . ,en for a vector
spaceV, everyv∈V can be written uniquely as a linear combinationv= ∑bi(v)ei ,
wherebi(v) ∈ R. Let α1, . . . ,αn be the basis ofV∨ dual toe1, . . . ,en. Then

α i(v) = α i

(
∑

j
b j(v)ej

)
= ∑

j
b j(v)α i(ej) = ∑

j
b j(v)δ i

j = bi(v).

Thus, the dual basis toe1, . . . ,en is precisely the set of coordinate functionsb1, . . . ,bn

with respect to the basise1, . . . ,en.
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3.2 Permutations

Fix a positive integerk. A permutationof the setA= {1, . . . ,k} is a bijectionσ : A→
A. More concretely,σ may be thought of as a reordering of the list 1,2, . . . ,k from its
natural increasing order to a new orderσ(1),σ(2), . . . ,σ(k). Thecyclic permutation,
(a1 a2 · · · ar) where theai are distinct, is the permutationσ such thatσ(a1) = a2,
σ(a2) = a3, . . . , σ(ar−1) = (ar), σ(ar) = a1, andσ fixes all the other elements of
A. A cyclic permutation(a1 a2 · · · ar) is also called acycle of length ror anr-cycle.
A transpositionis a 2-cycle, that is, a cycle of the form(a b) that interchangesa and
b, leaving all other elements ofA fixed. Two cycles(a1 · · ·ar) and(b1 · · ·bs) are said
to bedisjoint if the sets{a1, . . . ,ar} and{b1, . . . ,bs} have no elements in common.
Theproductτσ of two permutationsτ andσ of A is the compositionτ ◦ σ : A→ A,
in that order; first applyσ , thenτ.

A simple way to describe a permutationσ : A→ A is by its matrix
[

1 2 · · · k
σ(1) σ(2) · · · σ(k)

]
.

Example3.4. Suppose the permutationσ : {1,2,3,4,5} → {1,2,3,4,5} maps 1,2,
3,4,5 to 2,4,5,1,3 in that order. As a matrix,

σ =

[
1 2 3 4 5
2 4 5 1 3

]
. (3.1)

To write σ as a product of disjoint cycles, start with any element in{1,2,3,4,5},
say 1, and applyσ to it repeatedly until we return to the initial element; thisgives a
cycle: 17→ 2 7→ 4→ 1. Next, repeat the procedure to any of the remaining elements,
say 3, to get a second cycle: 37→ 5 7→ 3. Thenσ = (1 2 4)(3 5).

1

4 2

3

5
From this example, it is easy to see that any permutation can be written as a product
of disjoint cycles(a1 · · · ar)(b1 · · · bs) · · · .

Let Sk be the group of all permutations of the set{1, . . . ,k}. A permutation is
evenor odddepending on whether it is the product of an even or an odd number of
transpositions. From the theory of permutations we know that this is a well-defined
concept: an even permutation can never be written as the product of an odd number
of transpositions and vice versa. Thesign of a permutationσ , denoted sgn(σ) or
sgnσ , is defined to be+1 or−1 depending on whether the permutation is even or
odd. Clearly, the sign of a permutation satisfies

sgn(στ) = sgn(σ)sgn(τ) (3.2)

for σ ,τ ∈ Sk.
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Example3.5. The decomposition

(1 2 3 4 5) = (1 5)(1 4)(1 3)(1 2)

shows that the 5-cycle(1 2 3 4 5) is an even permutation.

More generally, the decomposition

(a1 a2 · · · ar) = (a1 ar)(a1 ar−1) · · · (a1 a3)(a1 a2)

shows that anr-cycle is an even permutation if and only ifr is odd, and an odd per-
mutation if and only ifr is even. Thus one way to compute the sign of a permutation
is to decompose it into a product of cycles and to count the number of cycles of even
length. For example, the permutationσ =(1 2 4)(3 5) in Example 3.4 is odd because
(1 2 4) is even and(3 5) is odd.

An inversionin a permutationσ is an ordered pair(σ(i),σ( j)) such thati < j
but σ(i)> σ( j). To find all the inversions in a permutationσ , it suffices to scan the
second row of the matrix ofσ from left to right; the inversions are the pairs(a,b)
with a > b anda to the left ofb. For the permutationσ in Example 3.4, from its
matrix (3.1) we can read off its five inversions:(2,1), (4,1), (5,1), (4,3), and(5,3).

Exercise 3.6 (Inversions).*Find the inversions in the permutationτ = (1 2 3 4 5) of Exam-
ple 3.5.

A second way to compute the sign of a permutation is to count the number of
inversions, as we illustrate in the following example.

Example3.7. Let σ be the permutation of Example 3.4. Our goal is to turnσ into
the identity permutation1 by multiplying it on the left by transpositions.

(i) To move 1 to its natural position at the beginning of the second row of the matrix
of σ , we need to move it across the three elements 2,4,5. This can be accom-
plished by multiplyingσ on the left by three transpositions: first(5 1), then
(4 1), and finally(2 1):

σ =

[
1 2 3 4 5
2 4 5 1 3

]
(5 1)−−−→

[

2 4 1 5 3

]
(4 1)−−−→

[

2 1 4 5 3

]
(2 1)−−−→

[

1 2 4 5 3

]
.

The three transpositions(5 1), (4 1), and(2 1) correspond precisely to the three
inversions ofσ ending in 1.

(ii) The element 2 is already in its natural position in the second row of the matrix.
(iii) To move 3 to its natural position in the second row, we need to move it across

two elements 4, 5. This can be accomplished by
[
1 2 3 4 5
1 2 4 5 3

]
(5 3)−−−→

[

1 2 4 3 5

]
(4 3)−−−→

[

1 2 3 4 5

]
= 1.

Thus,
(4 3)(5 3)(2 1)(4 1)(5 1)σ = 1. (3.3)
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Note that the two transpositions(5 3) and(4 3) correspond to the two inversions
ending in 3. Multiplying both sides of (3.3) on the left by thetranspositions
(4 3), then(5 3), then(2 1), and so on eventually yields

σ = (5 1)(4 1)(2 1)(5 3)(4 3).

This shows thatσ can be written as a product of as many transpositions as the number
of inversions in it.

With this example in mind, we prove the following proposition.

Proposition 3.8.A permutation is even if and only if it has an even number of inver-
sions.

Proof. We will obtain the identity permutation1 by multiplying σ on the left by a
number of transpositions. This can be achieved ink steps.

(i) First, look for the number 1 amongσ(1),σ(2), . . . ,σ(k). Every number preced-
ing 1 in this list gives rise to an inversion, for if 1= σ(i), then(σ(1),1), . . . ,
(σ(i−1),1) are inversions ofσ . Now move 1 to the beginning of the list across
the i−1 elementsσ(1), . . . ,σ(i−1). This requires multiplyingσ on the left by
i−1 transpositions:

σ1 = (σ(1) 1) · · · (σ(i−1) 1)σ =

[

1 σ(1) · · · σ(i−1) σ(i +1) · · · σ(k)

]
.

Note that the number of transpositions is the number of inversions ending in 1.
(ii) Next look for the number 2 in the list: 1,σ(1), . . . ,σ(i−1),σ(i +1), . . . ,σ(k).

Every number other than 1 preceding 2 in this list gives rise to an inversion
(σ(m),2). Suppose there arei2 such numbers. Then there arei2 inversions
ending in 2. In moving 2 to its natural position 1,2,σ(1),σ(2), . . . , we need to
move it acrossi2 numbers. This can be accomplished by multiplyingσ1 on the
left by i2 transpositions.

Repeating this procedure, we see that for eachj = 1, . . . ,k, the number of trans-
positions required to movej to its natural position is the same as the number of in-
versions ending inj. In the end we achieve the identity permutation, i.e, the ordered
list 1,2, . . . ,k, fromσ(1),σ(2), . . . ,σ(k) by multiplyingσ by as many transpositions
as the total number of inversions inσ . Therefore, sgn(σ) = (−1)# inversions inσ . ⊓⊔

3.3 Multilinear Functions

Denote byVk =V×·· ·×V the Cartesian product ofk copies of a real vector space
V. A function f : Vk→ R is k-linear if it is linear in each of itsk arguments:

f (. . . ,av+bw, . . .) = a f(. . . ,v, . . . )+b f(. . . ,w, . . . )
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for all a,b∈ R andv,w∈ V. Instead of 2-linear and 3-linear, it is customary to say
“bilinear” and “trilinear.” A k-linear function onV is also called ak-tensoronV. We
will denote the vector space of allk-tensors onV by Lk(V). If f is ak-tensor onV,
we also callk thedegreeof f .

Example3.9 (Dot product onRn). With respect to the standard basise1, . . . ,en for
Rn, thedot product, defined by

f (v,w) = v • w= ∑
i

viwi , wherev= ∑viei , w= ∑wiei ,

is bilinear.

Example.The determinantf (v1, . . . ,vn) = det[v1 · · · vn], viewed as a function of the
n column vectorsv1, . . . ,vn in Rn, is n-linear.

Definition 3.10. A k-linear functionf : Vk→ R is symmetricif

f
(
vσ(1), . . . ,vσ(k)

)
= f (v1, . . . ,vk)

for all permutationsσ ∈ Sk; it is alternatingif

f
(
vσ(1), . . . ,vσ(k)

)
= (sgnσ) f (v1, . . . ,vk)

for all σ ∈ Sk.

Examples.

(i) The dot productf (v,w) = v • w onRn is symmetric.
(ii) The determinantf (v1, . . . ,vn) = det[v1 · · · vn] onRn is alternating.
(iii) The cross productv×w onR3 is alternating.
(iv) For any two linear functionsf , g: V → R on a vector spaceV, the function

f ∧g: V×V→R defined by

( f ∧g)(u,v) = f (u)g(v)− f (v)g(u)

is alternating. This is a special case of thewedge product, which we will soon
define.

We are especially interested in the spaceAk(V) of all alternatingk-linear func-
tions on a vector spaceV for k > 0. These are also calledalternating k-tensors,
k-covectors, ormulticovectors of degree konV. Fork= 0, we define a 0-covectorto
be a constant so thatA0(V) is the vector spaceR. A 1-covector is simply a covector.
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3.4 The Permutation Action on Multilinear Functions

If f is ak-linear function on a vector spaceV andσ is a permutation inSk, we define
a newk-linear functionσ f by

(σ f )(v1, . . . ,vk) = f
(
vσ(1), . . . ,vσ(k)

)
.

Thus, f is symmetric if and only ifσ f = f for all σ ∈ Sk and f is alternating if and
only if σ f = (sgnσ) f for all σ ∈ Sk.

When there is only one argument, the permutation groupS1 is the identity group
and a 1-linear function is both symmetric and alternating. In particular,

A1(V) = L1(V) =V∨.

Lemma 3.11.If σ ,τ ∈ Sk and f is a k-linear function on V, thenτ(σ f ) = (τσ) f .

Proof. Forv1, . . . ,vk ∈V,

τ(σ f )(v1, . . . ,vk) = (σ f )
(
vτ(1), . . . ,vτ(k)

)

= (σ f )(w1, . . . ,wk) (lettingwi = vτ(i))

= f
(
wσ(1), . . . ,wσ(k)

)

= f
(
vτ(σ(1)), . . . ,vτ(σ(k))

)
= f

(
v(τσ)(1), . . . ,v(τσ)(k)

)

= (τσ) f (v1, . . . ,vk). ⊓⊔

In general, ifG is a group andX is a set, a map

G×X→ X,

(σ ,x) 7→ σ ·x

is called aleft actionof G onX if

(i) e·x= x wheree is the identity element inG andx is any element inX, and
(ii) τ · (σ ·x) = (τσ) ·x for all τ,σ ∈G,x∈ X.

Theorbit of an elementx∈ X is defined to be the setGx := {σ ·x∈ X | σ ∈G}. In
this terminology, we have defined a left action of the permutation groupSk on the
spaceLk(V) of k-linear functions onV. Note that each permutation acts as a linear
function on the vector spaceLk(V) sinceσ f isR-linear in f .

A right actionof G onX is defined similarly; it is a mapX×G→ X such that

(i) x ·e= x, and
(ii) (x ·σ) · τ = x · (στ)

for all σ ,τ ∈G andx∈ X.

Remark.In some books the notation forσ f is f σ . In that notation,( f σ )τ = f τσ , not
f στ .
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3.5 The Symmetrizing and Alternating Operators

Given anyk-linear functionf on a vector spaceV, there is a way to make a symmetric
k-linear functionS f from it:

(S f)(v1, . . . ,vk) = ∑
σ∈Sk

f
(
vσ(1), . . . ,vσ(k)

)

or, in our new shorthand,

S f= ∑
σ∈Sk

σ f .

Similarly, there is a way to make an alternatingk-linear function fromf . Define

A f = ∑
σ∈Sk

(sgnσ)σ f .

Proposition 3.12.If f is a k-linear function on a vector space V, then

(i) the k-linear function S f is symmetric, and
(ii) the k-linear function A f is alternating.

Proof. We prove (ii) only, leaving (i) as an exercise. Forτ ∈ Sk,

τ(A f) = ∑
σ∈Sk

(sgnσ)τ(σ f )

= ∑
σ∈Sk

(sgnσ)(τσ) f (by Lemma 3.11)

= (sgnτ) ∑
σ∈Sk

(sgnτσ)(τσ) f (by (3.2))

= (sgnτ)A f,

since asσ runs through all permutations inSk, so doesτσ . ⊓⊔

Exercise 3.13 (Symmetrizing operator).*Show that thek-linear functionS f is symmetric.

Lemma 3.14.If f is an alternating k-linear function on a vector space V, then A f=
(k!) f .

Proof. Since for alternatingf we haveσ f = (sgnσ) f , and sgnσ =±1,

A f = ∑
σ∈Sk

(sgnσ)σ f = ∑
σ∈Sk

(sgnσ)(sgnσ) f = (k!) f . ⊓⊔

Exercise 3.15 (Alternating operator).* If f is a 3-linear function on a vector spaceV and
v1,v2,v3 ∈V, what is(A f)(v1,v2,v3)?
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3.6 The Tensor Product

Let f be ak-linear function andg an ℓ-linear function on a vector spaceV. Their
tensor productis the(k+ ℓ)-linear functionf ⊗g defined by

( f ⊗g)(v1, . . . ,vk+ℓ) = f (v1, . . . ,vk)g(vk+1, . . . ,vk+ℓ).

Example3.16 (Bilinear maps). Let e1, . . . ,en be a basis for a vector spaceV, α1, . . . ,
αn the dual basis inV∨, and〈 , 〉 : V×V→R a bilinear map onV. Setgi j = 〈ei ,ej〉 ∈
R. If v= ∑viei andw= ∑wiei , then as we observed in Example 3.3,vi = α i(v) and
wj = α j(w). By bilinearity, we can express〈 , 〉 in terms of the tensor product:

〈v,w〉 = ∑viwj〈ei ,ej〉= ∑α i(v)α j (w)gi j

= ∑gi j (α i⊗α j)(v,w).

Hence,〈 , 〉 = ∑gi j α i ⊗α j . This notation is often used in differential geometry to
describe an inner product on a vector space.

Exercise 3.17 (Associativity of the tensor product).Check that the tensor product of multi-
linear functions is associative: iff ,g, andh are multilinear functions onV, then

( f ⊗g)⊗h= f ⊗ (g⊗h).

3.7 The Wedge Product

If two multilinear functionsf andg on a vector spaceV are alternating, then we
would like to have a product that is alternating as well. Thismotivates the definition
of thewedge product, also called theexterior product: for f ∈ Ak(V) andg∈ Aℓ(V),

f ∧g=
1

k!ℓ!
A( f ⊗g); (3.4)

or explicitly,

( f ∧g)(v1, . . . ,vk+ℓ)

=
1

k!ℓ! ∑
σ∈Sk+ℓ

(sgnσ) f
(
vσ(1), . . . ,vσ(k)

)
g
(
vσ(k+1), . . . ,vσ(k+ℓ)

)
. (3.5)

By Proposition 3.12,f ∧g is alternating.
Whenk = 0, the elementf ∈ A0(V) is simply a constantc. In this case, the

wedge productc∧g is scalar multiplication, since the right-hand side of (3.5) is

1
ℓ! ∑

σ∈Sℓ

(sgnσ)cg
(
vσ(1), . . . ,vσ(ℓ)

)
= cg(v1, . . . ,vℓ) .

Thusc∧g= cg for c∈ R andg∈ Aℓ(V).
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The coefficient 1/k!ℓ! in the definition of the wedge product compensates for
repetitions in the sum: for every permutationσ ∈ Sk+ℓ, there arek! permutationsτ
in Sk that permute the firstk argumentsvσ(1), . . . ,vσ(k) and leave the arguments ofg
alone; for allτ in Sk, the resulting permutationsστ in Sk+ℓ contribute the same term
to the sum since

(sgnστ) f
(
vστ(1), . . . ,vστ(k)

)
= (sgnστ)(sgnτ) f

(
vσ(1), . . . ,vσ(k)

)

= (sgnσ) f
(
vσ(1), . . . ,vσ(k)

)
,

where the first equality follows from the fact that(τ(1), . . . ,τ(k)) is a permutation of
(1, . . . ,k). So we divide byk! to get rid of thek! repeating terms in the sum coming
from permutations of thek arguments off ; similarly, we divide byℓ! on account of
theℓ arguments ofg.

Example3.18. For f ∈ A2(V) andg∈ A1(V),

A( f ⊗g)(v1,v2,v3) = f (v1,v2)g(v3)− f (v1,v3)g(v2)+ f (v2,v3)g(v1)

− f (v2,v1)g(v3)+ f (v3,v1)g(v2)− f (v3,v2)g(v1).

Among these six terms, there are three pairs of equal terms, which we have lined up
vertically in the display above:

f (v1,v2)g(v3) =− f (v2,v1)g(v3), and so on.

Therefore, after dividing by 2,

( f ∧g)(v1,v2,v3) = f (v1,v2)g(v3)− f (v1,v3)g(v2)+ f (v2,v3)g(v1).

One way to avoid redundancies in the definition off ∧g is to stipulate that in the
sum (3.5),σ(1), . . . ,σ(k) be in ascending order andσ(k+1), . . . ,σ(k+ ℓ) also be in
ascending order. We call a permutationσ ∈ Sk+ℓ a (k, ℓ)-shuffleif

σ(1)< · · ·< σ(k) and σ(k+1)< · · ·< σ(k+ ℓ).

By the paragraph before Example 3.18, one may rewrite (3.5) as

( f ∧g)(v1, . . . ,vk+ℓ)

= ∑
(k,ℓ)-shuffles

σ

(sgnσ) f
(
vσ(1), . . . ,vσ(k)

)
g
(
vσ(k+1), . . . ,vσ(k+ℓ)

)
. (3.6)

Written this way, the definition of( f ∧g)(v1, . . . ,vk+ℓ) is a sum of
(k+ℓ

k

)
terms, in-

stead of(k+ ℓ)! terms.

Example3.19 (Wedge product of two covectors).* If f and g are covectors on a
vector spaceV andv1, v2 ∈V, then by (3.6)

( f ∧g)(v1,v2) = f (v1)g(v2)− f (v2)g(v1).

Exercise 3.20 (Wedge product of two2-covectors).For f ,g∈A2(V), write out the definition
of f ∧g using(2,2)-shuffles.
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3.8 Anticommutativity of the Wedge Product

It follows directly from the definition of the wedge product (3.5) thatf ∧g is bilinear
in f and ing.

Proposition 3.21.The wedge product isanticommutative: if f ∈ Ak(V) and g∈
Aℓ(V), then

f ∧g= (−1)kℓg∧ f .

Proof. Defineτ ∈ Sk+ℓ to be the permutation

τ =

[
1 · · · ℓ ℓ+1 · · · ℓ+ k

k+1 · · · k+ ℓ 1 · · · k

]
.

This means that

τ(1) = k+1, . . . ,τ(ℓ) = k+ ℓ,τ(ℓ+1) = 1, . . . ,τ(ℓ+ k) = k.

Then

σ(1) = στ(ℓ+1), . . . ,σ(k) = στ(ℓ+ k),

σ(k+1) = στ(1), . . . ,σ(k+ ℓ) = στ(ℓ).

For anyv1, . . . ,vk+ℓ ∈V,

A( f ⊗g)(v1, . . . ,vk+ℓ)

= ∑
σ∈Sk+ℓ

(sgnσ) f
(
vσ(1), . . . ,vσ(k)

)
g
(
vσ(k+1), . . . ,vσ(k+ℓ)

)

= ∑
σ∈Sk+ℓ

(sgnσ) f
(
vστ(ℓ+1), . . . ,vστ(ℓ+k)

)
g
(
vστ(1), . . . ,vστ(ℓ)

)

= (sgnτ) ∑
σ∈Sk+ℓ

(sgnστ)g
(
vστ(1), . . . ,vστ(ℓ)

)
f
(
vστ(ℓ+1), . . . ,vστ(ℓ+k)

)

= (sgnτ)A(g⊗ f )(v1, . . . ,vk+ℓ).

The last equality follows from the fact that asσ runs through all permutations in
Sk+ℓ, so doesστ.

We have proven
A( f ⊗g) = (sgnτ)A(g⊗ f ).

Dividing by k!ℓ! gives
f ∧g= (sgnτ)g∧ f .

Exercise 3.22 (Sign of a permutation).*Show that sgnτ = (−1)kℓ. ⊓⊔
Corollary 3.23. If f is a multicovector of odd degree on V, then f∧ f = 0.

Proof. Let k be the degree off . By anticommutativity,

f ∧ f = (−1)k2
f ∧ f

=− f ∧ f ,

sincek is odd. Hence, 2f ∧ f = 0. Dividing by 2 givesf ∧ f = 0. ⊓⊔
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3.9 Associativity of the Wedge Product

The wedge product of ak-covectorf and anℓ-covectorg on a vector spaceV is by
definition the(k+ ℓ)-covector

f ∧g=
1

k!ℓ!
A( f ⊗g).

To prove the associativity of the wedge product, we will follow Godbillon [14] by
first proving a lemma on the alternating operatorA.

Lemma 3.24.Suppose f is a k-linear function and g anℓ-linear function on a vector
space V. Then

(i) A(A( f )⊗g) = k!A( f ⊗g), and
(ii) A( f ⊗A(g)) = ℓ!A( f ⊗g).

Proof. (i) By definition,

A(A( f )⊗g) = ∑
σ∈Sk+ℓ

(sgnσ)σ

(
∑

τ∈Sk

(sgnτ)(τ f )⊗g

)
.

We can viewτ ∈ Sk also as a permutation inSk+ℓ fixing k+1, . . . ,k+ ℓ. Viewed this
way,τ satisfies

(τ f )⊗g= τ( f ⊗g).

Hence,
A(A( f )⊗g) = ∑

σ∈Sk+ℓ

∑
τ∈Sk

(sgnσ)(sgnτ)(στ)( f ⊗g). (3.7)

For eachµ ∈ Sk+ℓ and eachτ ∈ Sk, there is a unique elementσ = µτ−1 ∈ Sk+ℓ such
thatµ = στ, so eachµ ∈ Sk+ℓ appears once in the double sum (3.7) for eachτ ∈ Sk,
and hencek! times in total. So the double sum (3.7) can be rewritten as

A(A( f )⊗g) = k! ∑
µ∈Sk+ℓ

(sgnµ)µ( f ⊗g)

= k!A( f ⊗g).

The equality in (ii) is proved in the same way. ⊓⊔

Proposition 3.25 (Associativity of the wedge product). Let V be a real vector
space and f,g,h alternating multilinear functions on V of degrees k, ℓ,m, respec-
tively. Then

( f ∧g)∧h= f ∧ (g∧h).

Proof. By the definition of the wedge product,
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( f ∧g)∧h=
1

(k+ ℓ)!m!
A(( f ∧g)⊗h)

=
1

(k+ ℓ)!m!
1

k!ℓ!
A(A( f ⊗g)⊗h)

=
(k+ ℓ)!

(k+ ℓ)!m!k!ℓ!
A(( f ⊗g)⊗h) (by Lemma 3.24(i))

=
1

k!ℓ!m!
A(( f ⊗g)⊗h).

Similarly,

f ∧ (g∧h) =
1

k!(ℓ+m)!
A

(
f ⊗ 1

ℓ!m!
A(g⊗h)

)

=
1

k!ℓ!m!
A( f ⊗ (g⊗h)).

Since the tensor product is associative, we conclude that

( f ∧g)∧h= f ∧ (g∧h). ⊓⊔

By associativity, we can omit the parentheses in a multiple wedge product such
as( f ∧g)∧h and write simplyf ∧g∧h.

Corollary 3.26. Under the hypotheses of the proposition,

f ∧g∧h=
1

k!ℓ!m!
A( f ⊗g⊗h).

This corollary easily generalizes to an arbitrary number offactors: if fi ∈
Adi (V), then

f1∧·· ·∧ fr =
1

(d1)! · · · (dr)!
A( f1⊗·· ·⊗ fr). (3.8)

In particular, we have the following proposition. We use thenotation[bi
j ] to denote

the matrix whose(i, j)-entry isbi
j .

Proposition 3.27 (Wedge product of1-covectors).If α1, . . . ,αk are linear func-
tions on a vector space V and v1, . . . ,vk ∈V, then

(α1∧·· ·∧αk)(v1, . . . ,vk) = det[α i(v j)].

Proof. By (3.8),

(α1∧·· ·∧αk)(v1, . . . ,vk) = A(α1⊗·· ·⊗αk)(v1, . . . ,vk)

= ∑
σ∈Sk

(sgnσ)α1(vσ(1)
)
· · ·αk(vσ(k)

)

= det[α i(v j)]. ⊓⊔
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An algebraA over a fieldK is said to begradedif it can be written as a direct sum
A=

⊕∞
k=0 Ak of vector spaces overK so that the multiplication map sendsAk×Aℓ to

Ak+ℓ. The notationA=
⊕∞

k=0 Ak means that each nonzero element ofA is uniquely
a finitesum

a= ai1 + · · ·+aim,

whereai j 6= 0∈ Ai j . A graded algebraA= ⊕∞
k=0Ak is said to beanticommutativeor

graded commutativeif for all a∈ Ak andb∈ Aℓ,

ab= (−1)kℓba.

A homomorphism of graded algebrasis an algebra homomorphism that preserves
the degree.

Example.The polynomial algebraA= R[x,y] is graded by degree;Ak consists of all
homogeneous polynomials of total degreek in the variablesx andy.

For a finite-dimensional vector spaceV, say of dimensionn, define

A∗(V) =
∞⊕

k=0

Ak(V) =
n⊕

k=0

Ak(V).

With the wedge product of multicovectors as multiplication, A∗(V) becomes an an-
ticommutative graded algebra, called theexterior algebraor theGrassmann algebra
of multicovectors on the vector spaceV.

3.10 A Basis fork-Covectors

Let e1, . . . ,en be a basis for a real vector spaceV, and letα1, . . . ,αn be the dual basis
for V∨. Introduce the multi-index notation

I = (i1, . . . , ik)

and writeeI for (ei1, . . . ,eik) andα I for α i1 ∧·· ·∧α ik .
A k-linear functionf onV is completely determined by its values on allk-tuples

(ei1, . . . ,eik). If f is alternating, then it is completely determined by its values on
(ei1, . . . ,eik) with 1≤ i1 < · · · < ik ≤ n; that is, it suffices to considereI with I in
strictly ascendingorder.

Lemma 3.28.Let e1, . . . ,en be a basis for a vector space V and letα1, . . . ,αn be its
dual basis in V∨. If I = (1≤ i1 < · · ·< ik ≤ n) and J= (1≤ j1 < · · ·< jk ≤ n) are
strictly ascending multi-indices of length k, then

α I (eJ) = δ I
J =

{
1 for I = J,

0 for I 6= J.
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Proof. By Proposition 3.27,

α I (eJ) = det[α i(ej)]i∈I , j∈J.

If I = J, then[α i(ej)] is the identity matrix and its determinant is 1.
If I 6= J, we compare them term by term until the terms differ:

i1 = j1, . . . , iℓ−1 = jℓ−1, iℓ 6= jℓ, . . . .

Without loss of generality, we may assumeiℓ < jℓ. Then iℓ will be different from
j1, . . . , jℓ−1 (because these are the same asi1, . . . , iℓ, andI is strictly ascending), and
iℓ will also be different fromjℓ, jℓ+1, . . . , jk (becauseJ is strictly ascending). Thus,
iℓ will be different from j1, . . . , jk, and theℓth row of the matrix[ai(ej)] will be all
zero. Hence, det[ai(ej)] = 0. ⊓⊔

Proposition 3.29.The alternating k-linear functionsα I , I = (i1 < · · · < ik), form a
basis for the space Ak(V) of alternating k-linear functions on V.

Proof. First, we show linear independence. Suppose∑cI α I = 0, cI ∈ R, andI runs
over all strictly ascending multi-indices of lengthk. Applying both sides toeJ, J =
( j1 < · · ·< jk), we get by Lemma 3.28,

0= ∑
I

cI α I (eJ) = ∑
I

cI δ I
J = cJ,

since among all strictly ascending multi-indicesI of lengthk, there is only one equal
to J. This proves that theα I are linearly independent.

To show that theα I spanAk(V), let f ∈ Ak(V). We claim that

f = ∑ f (eI )α I ,

whereI runs over all strictly ascending multi-indices of lengthk. Let g= ∑ f (eI )α I .
By k-linearity and the alternating property, if twok-covectors agree on alleJ, where
J = ( j1 < · · ·< jk), then they are equal. But

g(eJ) = ∑ f (eI )α I (eJ) = ∑ f (eI )δ I
J = f (eJ).

Therefore,f = g= ∑ f (eI )α I . ⊓⊔

Corollary 3.30. If the vector space V has dimension n, then the vector space Ak(V)
of k-covectors on V has dimension

(n
k

)
.

Proof. A strictly ascending multi-indexI = (i1 < · · ·< ik) is obtained by choosing a
subset ofk numbers from 1, . . . ,n. This can be done in

(n
k

)
ways. ⊓⊔

Corollary 3.31. If k > dimV, then Ak(V) = 0.

Proof. In α i1 ∧·· ·∧α ik, at least two of the factors must be the same, sayα j = αℓ =
α. Becauseα is a 1-covector,α∧α = 0 by Corollary 3.23, soα i1∧·· ·∧α ik = 0. ⊓⊔
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Problems

3.1. Tensor product of covectors
Let e1, . . . ,en be a basis for a vector spaceV and letα1, . . . ,αn be its dual basis inV∨.
Suppose[gi j ] ∈Rn×n is ann×n matrix. Define a bilinear functionf : V×V→R by

f (v,w) = ∑
1≤i, j≤n

gi j v
iwj

for v= ∑viei andw= ∑wj ej in V. Describef in terms of the tensor products ofα i

andα j , 1≤ i, j ≤ n.

3.2. Hyperplanes

(a) LetV be a vector space of dimensionn and f : V→R a nonzero linear functional.
Show that dimkerf = n−1. A linear subspace ofV of dimensionn−1 is called
ahyperplanein V.

(b) Show that a nonzero linear functional on a vector spaceV is determined up to a
multiplicative constant by its kernel, a hyperplane inV. In other words, iff and
g: V→R are nonzero linear functionals and kerf = kerg, theng= c f for some
constantc∈R.

3.3. A basis fork-tensors
Let V be a vector space of dimensionn with basise1, . . . ,en. Let α1, . . . ,αn be the
dual basis forV∨. Show that a basis for the spaceLk(V) of k-linear functions on
V is {α i1⊗·· ·⊗α ik} for all multi-indices(i1, . . . , ik) (not just the strictly ascending
multi-indices as forAk(L)). In particular, this shows that dimLk(V) = nk. (This
problem generalizes Problem 3.1.)

3.4. A characterization of alternatingk-tensors
Let f be ak-tensor on a vector spaceV. Prove thatf is alternating if and only iff
changes sign whenever two successive arguments are interchanged:

f (. . . ,vi+1,vi , . . . ) =− f (. . . ,vi ,vi+1, . . . )

for i = 1, . . . ,k−1.

3.5. Another characterization of alternatingk-tensors
Let f be ak-tensor on a vector spaceV. Prove thatf is alternating if and only if
f (v1, . . . ,vk) = 0 whenever two of the vectorsv1, . . . ,vk are equal.

3.6. Wedge product and scalars
LetV be a vector space. Fora,b∈R, f ∈ Ak(V) andg∈ Aℓ(V), show thata f ∧bg=
(ab) f ∧g.

3.7. Transformation rule for a wedge product of covectors
Suppose two sets of covectors on a vector spaceV, β 1, . . . ,β k and γ1, . . . ,γk, are
related by
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β i =
k

∑
j=1

ai
jγ

j , i = 1, . . . ,k,

for ak× k matrixA= [ai
j ]. Show that

β 1∧·· ·∧β k = (detA)γ1∧·· ·∧ γk.

3.8. Transformation rule for k-covectors
Let f be ak-covector on a vector spaceV. Suppose two sets of vectorsu1, . . . ,uk and
v1, . . . ,vk in V are related by

u j =
k

∑
i=1

ai
jvi , j = 1, . . . ,k,

for ak× k matrixA= [ai
j ]. Show that

f (u1, . . . ,uk) = (detA) f (v1, . . . ,vk).

3.9. Vanishing of a covector of top degree
Let V be a vector space of dimensionn. Prove that if ann-covectorω vanishes on a
basise1, . . . ,en for V, thenω is the zero covector onV.

3.10.* Linear independence of covectors
Let α1, . . . ,αk be 1-covectors on a vector spaceV. Show thatα1∧ ·· · ∧αk 6= 0 if
and only ifα1, . . . ,αk are linearly independent in the dual spaceV∨.

3.11.* Exterior multiplication
Let α be a nonzero 1-covector andγ a k-covector on a finite-dimensional vector
spaceV. Show thatα ∧ γ = 0 if and only if γ = α ∧β for some(k−1)-covectorβ
onV.
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Differential Forms on Rn

Just as a vector field assigns a tangent vector to each point ofan open subsetU of Rn,
so dually a differentialk-form assigns ak-covector on the tangent space to each point
of U . The wedge product of differential forms is defined pointwise as the wedge
product of multicovectors. Since differential forms existon an open set, not just
at a single point, there is a notion of differentiation for differential forms. In fact,
there is a unique one, called theexterior derivative, characterized by three natural
properties. Although we define it using the standard coordinates ofRn, the exterior
derivative turns out to be independent of coordinates, as weshall see later, and is
therefore intrinsic to a manifold. It is the ultimate abstract extension to a manifold
of the gradient, curl, and divergence of vector calculus inR3. Differential forms
extend Grassmann’s exterior algebra from the tangent spaceat a point globally to an
entire manifold. Since its creation around the turn of the twentieth century, generally
credited toÉ. Cartan [5] and H. Poincaré [34], the calculus of differential forms has
had far-reaching consequences in geometry, topology, and physics. In fact, certain
physical concepts such as electricity and magnetism are best formulated in terms of
differential forms.

In this section we will study the simplest case, that of differential forms on an
open subset ofRn. Even in this setting, differential forms already provide away to
unify the main theorems of vector calculus inR3.

4.1 Differential 1-Forms and the Differential of a Function

The cotangent spaceto Rn at p, denoted byT∗p (R
n) or T∗pR

n, is defined to be the
dual space(TpR

n)∨ of the tangent spaceTp(R
n). Thus, an element of the cotangent

spaceT∗p (R
n) is a covector or a linear functional on the tangent spaceTp(R

n). In
parallel with the definition of a vector field, acovector fieldor adifferential1-form
on an open subsetU of Rn is a functionω that assigns to each pointp in U a covector
ωp ∈ T∗p (R

n),
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ω : U →
⊔

p∈U

T∗p (R
n),

p 7→ ωp ∈ T∗p (R
n).

Here the notation
⊔

stands for “disjoint union,” meaning that the setsT∗p (R
n) are all

disjoint. We call a differential 1-form a 1-form for short.
From anyC∞ function f : U → R, we can construct a 1-formdf , called thedif-

ferentialof f , as follows. Forp∈U andXp ∈ TpU , define

(df)p(Xp) = Xp f .

A few words may be in order about the definition of the differential. The directional
derivative of a function in the direction of a tangent vectorat a pointp sets up a
bilinear pairing

Tp(R
n)×C∞

p (R
n)→R,

(Xp, f ) 7→ 〈Xp, f 〉= Xp f .

One may think of a tangent vector as a function on the second argument of this
pairing: 〈Xp, · 〉. The differential(df)p at p is a function on the first argument of the
pairing:

(df)p = 〈 · , f 〉.
The value of the differentialdf at p is also writtendf |p.

Let x1, . . . ,xn be the standard coordinates onRn. We saw in Subsection 2.3 that
the set{∂/∂x1|p, . . . ,∂/∂xn|p} is a basis for the tangent spaceTp(R

n).

Proposition 4.1.If x1, . . . ,xn are the standard coordinates onRn, then at each point
p∈Rn, {(dx1)p, . . . ,(dxn)p} is the basis for the cotangent space T∗p (R

n) dual to the
basis{∂/∂x1|p, . . . ,∂/∂xn|p} for the tangent space Tp(R

n).

Proof. By definition,

(dxi)p

(
∂
∂x j

∣∣∣∣
p

)
=

∂
∂x j

∣∣∣∣
p
xi = δ i

j . ⊓⊔

If ω is a 1-form on an open subsetU of Rn, then by Proposition 4.1, at each point
p in U , ω can be written as a linear combination

ωp = ∑ai(p)(dxi)p,

for someai(p) ∈ R. As p varies overU , the coefficientsai become functions onU ,
and we may writeω = ∑ai dxi . The covector fieldω is said to beC∞ on U if the
coefficient functionsai are allC∞ onU .

If x,y, andzare the coordinates onR3, thendx, dy, anddzare 1-forms onR3. In
this way, we give meaning to what was merely a notation in elementary calculus.
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Proposition 4.2 (The differential in terms of coordinates). If f : U → R is a C∞

function on an open set U inRn, then

df =∑ ∂ f
∂xi dxi . (4.1)

Proof. By Proposition 4.1, at each pointp in U ,

(df)p = ∑ai(p)(dxi)p (4.2)

for some real numbersai(p) depending onp. Thus,df = ∑ai dxi for some real
functionsai on U . To find a j , apply both sides of (4.2) to the coordinate vector
field ∂/∂x j :

df

(
∂
∂x j

)
= ∑

i
ai dxi

(
∂
∂x j

)
= ∑

i
aiδ i

j = a j .

On the other hand, by the definition of the differential,

df

(
∂
∂x j

)
=

∂ f
∂x j . ⊓⊔

Equation (4.1) shows that iff is aC∞ function, then the 1-formdf is alsoC∞.

Example.Differential 1-forms arise naturally even if one is interested only in tangent
vectors. Every tangent vectorXp ∈ Tp(R

n) is a linear combination of the standard
basis vectors:

Xp = ∑
i

bi(Xp)
∂
∂xi

∣∣∣∣
p
.

In Example 3.3 we saw that at each pointp ∈ Rn, we havebi(Xp) = (dxi)p(Xp).
Hence, the coefficientbi of a vector atp with respect to the standard basis∂/∂x1|p,
. . . , ∂/∂xn|p is none other than the dual covectordxi |p onRn. As p varies,bi = dxi .

4.2 Differential k-Forms

More generally, adifferential formω of degree kor a k-formon an open subsetU
of Rn is a function that assigns to each pointp in U an alternatingk-linear function
on the tangent spaceTp(R

n), i.e., ωp ∈ Ak(TpR
n). SinceA1(TpR

n) = T∗p (R
n), the

definition of ak-form generalizes that of a 1-form in Subsection 4.1.
By Proposition 3.29, a basis forAk(TpR

n) is

dxI
p = dxi1

p ∧·· ·∧dxik
p , 1≤ i1 < · · ·< ik ≤ n.

Therefore, at each pointp in U , ωp is a linear combination

ωp = ∑aI (p)dxI
p, 1≤ i1 < · · ·< ik ≤ n,

and ak-form ω onU is a linear combination
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ω = ∑aI dxI ,

with function coefficientsaI : U → R. We say that ak-form ω is C∞ onU if all the
coefficientsaI areC∞ functions onU .

Denote byΩk(U) the vector space ofC∞ k-forms onU . A 0-form onU assigns
to each pointp in U an element ofA0(TpR

n) = R. Thus, a 0-form onU is simply a
function onU , andΩ0(U) =C∞(U).

There are no nonzero differential forms of degree> n on an open subset ofRn.
This is because if degdxI > n, then in the expressiondxI at least two of the 1-forms
dxiα must be the same, forcingdxI = 0.

Thewedge productof a k-form ω and anℓ-form τ on an open setU is defined
pointwise:

(ω ∧ τ)p = ωp∧ τp, p∈U.

In terms of coordinates, ifω = ∑I aI dxI andτ = ∑J bJ dxJ, then

ω ∧ τ = ∑
I ,J
(aIbJ)dxI ∧dxJ.

In this sum, if I andJ are not disjoint on the right-hand side, thendxI ∧dxJ = 0.
Hence, the sum is actually over disjoint multi-indices:

ω ∧ τ = ∑
I ,J disjoint

(aIbJ)dxI ∧dxJ,

which shows that the wedge product of twoC∞ forms isC∞. So the wedge product
is a bilinear map

∧ : Ωk(U)×Ωℓ(U)→Ωk+ℓ(U).

By Propositions 3.21 and 3.25, the wedge product of differential forms is anticom-
mutative and associative.

In case one of the factors has degree 0, sayk= 0, the wedge product

∧ : Ω0(U)×Ωℓ(U)→Ωℓ(U)

is the pointwise multiplication of aC∞ ℓ-form by aC∞ function:

( f ∧ω)p = f (p)∧ωp = f (p)ωp,

since as we noted in Subsection 3.7, the wedge product with a 0-covector is scalar
multiplication. Thus, iff ∈C∞(U) andω ∈Ωℓ(U), then f ∧ω = f ω .

Example.Let x, y, zbe the coordinates onR3. TheC∞ 1-forms onR3 are

f dx+gdy+hdz,

where f ,g,h range over allC∞ functions onR3. TheC∞ 2-forms are

f dy∧dz+gdx∧dz+hdx∧dy

and theC∞ 3-forms are
f dx∧dy∧dz.



4.3 Differential Forms as Multilinear Functions on Vector Fields 41

Exercise 4.3 (A basis for3-covectors).* Let x1, x2, x3, x4 be the coordinates onR4 andp a
point inR4. Write down a basis for the vector spaceA3(Tp(R

4)).

With the wedge product as multiplication and the degree of a form as the grading,
the direct sumΩ∗(U) =

⊕n
k=0 Ωk(U) becomes an anticommutative graded algebra

overR. Since one can multiplyC∞ k-forms byC∞ functions, the setΩk(U) of C∞ k-
forms onU is both a vector space overR and a module overC∞(U), and so the direct
sumΩ∗(U) =

⊕n
k=0 Ωk(U) is also a module over the ringC∞(U) of C∞ functions.

4.3 Differential Forms as Multilinear Functions on Vector Fields

If ω is aC∞ 1-form andX is aC∞ vector field on an open setU in Rn, we define a
functionω(X) onU by the formula

ω(X)p = ωp(Xp), p∈U.

Written out in coordinates,

ω = ∑ai dxi , X = ∑b j ∂
∂x j for someai ,b

j ∈C∞(U),

so

ω(X) =
(
∑ai dxi)

(
∑b j ∂

∂x j

)
= ∑aib

i ,

which shows thatω(X) is C∞ on U . Thus, aC∞ 1-form onU gives rise to a map
fromX(U) to C∞(U).

This function is actually linear over the ringC∞(U); i.e., if f ∈ C∞(U), then
ω( f X) = f ω(X). To show this, it suffices to evaluateω( f X) at an arbitrary point
p∈U :

(ω( f X))p = ωp( f (p)Xp) (definition ofω( f X))

= f (p)ωp(Xp) (ωp is R-linear)

= ( f ω(X))p (definitition of f ω(X)).

Let F(U) = C∞(U). In this notation, a 1-formω on U gives rise to anF(U)-
linear mapX(U)→ F(U), X 7→ ω(X). Similarly, ak-form ω on U gives rise to a
k-linear map overF(U)

X(U)×·· ·×X(U)︸ ︷︷ ︸
k times

→ F(U),

(X1, . . . ,Xk) 7→ ω(X1, . . . ,Xk).

Exercise 4.4 (Wedge product of a2-form with a 1-form).* Let ω be a 2-form andτ a 1-
form onR3. If X,Y,Z are vector fields onM, find an explicit formula for(ω ∧ τ)(X,Y,Z) in
terms of the values ofω andτ on the vector fieldsX,Y,Z.
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4.4 The Exterior Derivative

To define theexterior derivativeof aC∞ k-form on an open subsetU of Rn, we first
define it on 0-forms: the exterior derivative of aC∞ function f ∈C∞(U) is defined to
be its differentialdf ∈Ω1(U); in terms of coordinates, Proposition 4.2 gives

df =∑ ∂ f
∂xi dxi .

Definition 4.5. Fork≥ 1, if ω = ∑I aI dxI ∈Ωk(U), then

dω = ∑
I

daI ∧dxI = ∑
I

(
∑

j

∂aI

∂x j dxj

)
∧dxI ∈Ωk+1(U).

Example.Let ω be the 1-formf dx+gdyonR2, wheref andg areC∞ functions on
R2. To simplify the notation, writefx = ∂ f/∂x, fy = ∂ f/∂y. Then

dω = df ∧dx+dg∧dy

= ( fx dx+ fydy)∧dx+(gxdx+gydy)∧dy

= (gx− fy)dx∧dy.

In this computationdy∧dx= −dx∧dy anddx∧dx= dy∧dy= 0 by the anticom-
mutative property of the wedge product (Proposition 3.21 and Corollary 3.23).

Definition 4.6. Let A=⊕∞
k=0Ak be a graded algebra over a fieldK. An antideriva-

tion of the graded algebraA is a K-linear mapD : A→ A such that fora ∈ Ak and
b∈ Aℓ,

D(ab) = (Da)b+(−1)kaDb. (4.3)

If there is an integerm so that the antiderivationD sendsAk to Ak+m for all k, then
we say that it is an antiderivation ofdegree m. By definingAk = 0 for k< 0, we can
extend the grading of a graded algebraA to negative integers. With this extension,
the degreem of an antiderivation can be negative. (An example of an antiderivation
of degree−1 is interior multiplication, to be discussed in Subsection20.4.)

Proposition 4.7.
(i) The exterior differentiation d: Ω∗(U)→Ω∗(U) is an antiderivation of degree1:

d(ω ∧ τ) = (dω)∧ τ +(−1)degω ω ∧dτ.

(ii) d2 = 0.
(iii) If f ∈C∞(U) and X∈ X(U), then(df)(X) = X f .
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Proof.
(i) Since both sides of (4.3) are linear inω and inτ, it suffices to check the equality
for ω = f dxI andτ = gdxJ. Then

d(ω ∧ τ) = d( f gdxI ∧dxJ)

= ∑ ∂ ( f g)
∂xi dxi ∧dxI ∧dxJ

= ∑ ∂ f
∂xi gdxi ∧dxI ∧dxJ +∑ f

∂g
∂xi dxi ∧dxI ∧dxJ.

In the second sum, moving the 1-form(∂g/∂xi)dxi across thek-form dxI results in
the sign(−1)k by anticommutativity. Hence,

d(ω ∧ τ) = ∑ ∂ f
∂xi dxi ∧dxI ∧gdxJ+(−1)k∑ f dxI ∧ ∂g

∂xi dxi ∧dxJ

= dω ∧ τ +(−1)kω ∧dτ.

(ii) Again by theR-linearity ofd, it suffices to show thatd2ω = 0 for ω = f dxI . We
compute:

d2( f dxI ) = d

(
∑ ∂ f

∂xi dxi ∧dxI
)

= ∑ ∂ 2 f
∂x j∂xi dxj ∧dxi ∧dxI .

In this sum ifi = j, thendxj ∧dxi = 0; if i 6= j, then∂ 2 f/∂xi∂x j is symmetric ini
and j, butdxj ∧dxi is alternating ini and j, so the terms withi 6= j pair up and cancel
each other. For example,

∂ 2 f
∂x1∂x2 dx1∧dx2+

∂ 2 f
∂x2∂x1 dx2∧dx1

=
∂ 2 f

∂x1∂x2 dx1∧dx2+
∂ 2 f

∂x1∂x2 (−dx1∧dx2) = 0.

Therefore,d2( f dxI ) = 0.
(iii) This is simply the definition of the exterior derivative of a function as the differ-
ential of the function. ⊓⊔

Proposition 4.8 (Characterization of the exterior derivative). The three proper-
ties of Proposition 4.7 uniquely characterize exterior differentiation on an open set
U in Rn; that is, if D: Ω∗(U)→Ω∗(U) is (i) an antiderivation of degree1 such that
(ii) D2 = 0 and(iii) (D f )(X) = X f for f ∈C∞(U) and X∈ X(U), then D= d.

Proof. Since everyk-form on U is a sum of terms such asf dxi1 ∧ ·· · ∧ dxik , by
linearity it suffices to show thatD = d on ak-form of this type. By (iii),D f = df
onC∞ functions. It follows thatDdxi = DDxi = 0 by (ii). A simple induction onk,
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using the antiderivation property ofD, proves that for allk and all multi-indicesI of
lengthk,

D(dxI ) = D(dxi1∧·· ·∧dxik) = 0. (4.4)

Finally, for everyk-form f dxI ,

D( f dxI ) = (D f )∧dxI + f D(dxI ) (by (i))

= (d f)∧dxI (by (ii) and (4.4))

= d( f dxI ) (definition ofd).

Hence,D = d onΩ∗(U). ⊓⊔

4.5 Closed Forms and Exact Forms

A k-form ω onU is closedif dω = 0; it is exactif there is a(k−1)-form τ such that
ω = dτ onU . Sinced(dτ) = 0, every exact form is closed. In the next section we
will discuss the meaning of closed and exact forms in the context of vector calculus
onR3.

Exercise 4.9 (A closed1-form on the punctured plane).Define a 1-formω onR2−{0} by

ω =
1

x2+y2 (−ydx+xdy).

Show thatω is closed.

A collection of vector spaces{Vk}∞
k=0 with linear mapsdk : Vk→Vk+1 such that

dk+1 ◦ dk = 0 is called adifferential complexor a cochain complex. For any open
subsetU of Rn, the exterior derivatived makes the vector spaceΩ∗(U) of C∞ forms
onU into a cochain complex, called thede Rham complexof U :

0→Ω0(U)
d→Ω1(U)

d→Ω2(U)→ ··· .

The closed forms are precisely the elements of the kernel ofd and the exact forms
are the elements of the image ofd.

4.6 Applications to Vector Calculus

The theory of differential forms unifies many theorems in vector calculus onR3. We
summarize here some results from vector calculus and then show how they fit into
the framework of differential forms.

By a vector-valued functionon an open subsetU of R3, we mean a function
F = 〈P,Q,R〉 : U → R3. Such a function assigns to each pointp∈U a vectorFp ∈
R3≃ Tp(R

3). Hence, a vector-valued function onU is precisely a vector field onU .
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Recall the three operators gradient, curl, and divergence on scalar- and vector-valued
functions onU :

{scalar func.} grad→ {vector func.} curl→ {vector func.} div→ {scalar func.}

gradf =




∂/∂x
∂/∂y
∂/∂z


 f =




fx
fy
fz


 ,

curl




P
Q
R


=




∂/∂x
∂/∂y
∂/∂z


×




P
Q
R


=




Ry−Qz

−(Rx−Pz)
Qx−Py


 ,

div




P
Q
R


=




∂/∂x
∂/∂y
∂/∂z


 ·




P
Q
R


= Px+Qy+Rz.

Since every 1-form onU is a linear combination with function coefficients ofdx,
dy, anddz, we can identify 1-forms with vector fields onU via

Pdx+Qdy+Rdz←→




P
Q
R


 .

Similarly, 2-forms onU can also be identified with vector fields onU :

Pdy∧dz+Qdz∧dx+Rdx∧dy←→




P
Q
R


 ,

and 3-forms onU can be identified with functions onU :

f dx∧dy∧dz←→ f .

In terms of these identifications, the exterior derivative of a 0-form f is

df =
∂ f
∂x

dx+
∂ f
∂y

dy+
∂ f
∂z

dz←→




∂ f/∂x
∂ f/∂y
∂ f/∂x


= gradf ;

the exterior derivative of a 1-form is

d(Pdx+Qdy+Rdz)

= (Ry−Qz)dy∧dz− (Rx−Pz)dz∧dx+(Qx−Py)dx∧dy, (4.5)

which corresponds to

curl




P
Q
R


=




Ry−Qz

−(Rx−Pz)
Qx−Py


 ;



46 4 Differential Forms onRn

the exterior derivative of a 2-form is

d(Pdy∧dz+Qdz∧dx+Rdx∧dy)

= (Px+Qy+Rz)dx∧dy∧dz, (4.6)

which corresponds to

div




P
Q
R


= Px+Qy+Rz.

Thus, after appropriate identifications, the exterior derivativesd on 0-forms, 1-
forms, and 2-forms are simply the three operators grad, curl, and div. In summary,
on an open subsetU of R3, there are identifications

Ω0(U)
d−−−−→ Ω1(U)

d−−−−→ Ω2(U)
d−−−−→ Ω3(U)

≃
y ≃

y ≃
y ≃

y

C∞(U) −−−−→
grad

X(U) −−−−→
curl

X(U) −−−−→
div

C∞(U).

Under these identifications, a vector field〈P,Q,R〉 on R3 is the gradient of aC∞

function f if and only if the corresponding 1-formPdx+Qdy+Rdzis df .
Next we recall three basic facts from calculus concerning grad, curl, and div.

Proposition A. curl(gradf ) =




0
0
0


.

Proposition B. div


curl




P
Q
R




= 0.

Proposition C. On R3, a vector fieldF is the gradient of some scalar function f if
and only ifcurl F = 0.

Propositions A and B express the propertyd2 = 0 of the exterior derivative on
open subsets ofR3; these are easy computations. Proposition C expresses the fact
that a 1-form onR3 is exact if and only if it is closed. Proposition C need not be
true on a region other thanR3, as the following well-known example from calcu-
lus shows.

Example.If U = R3−{z-axis}, andF is the vector field

F =

〈 −y
x2+ y2 ,

x
x2+ y2 , 0

〉

onR3, then curlF = 0, butF is not the gradient of anyC∞ function onU . The reason
is that if F were the gradient of aC∞ function f on U , then by the fundamental
theorem for line integrals, the line integral
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∫

C
− y

x2+ y2 dx+
x

x2+ y2 dy

over any closed curveC would be zero. However, on the unit circleC in the(x,y)-
plane, withx= cost andy= sint for 0≤ t ≤ 2π , this integral is

∫

C
−ydx+ xdy=

∫ 2π

0
−(sint)dcost +(cost)dsint = 2π .

In terms of differential forms, the 1-form

ω =
−y

x2+ y2 dx+
x

x2+ y2 dy

is closed but not exact onU . (This 1-form is defined by the same formula as the
1-formω in Exercise 4.9, but is defined on a different space.)

It turns out that whether Proposition C is true for a regionU depends only on
the topology ofU . One measure of the failure of a closedk-form to be exact is the
quotient vector space

Hk(U) :=
{closedk-forms onU}
{exactk-forms onU} ,

called thekth de Rham cohomologyof U .
The generalization of Proposition C to any differential form onRn is called the

Poincaŕe lemma: for k≥ 1, every closedk-form onRn is exact. This is of course
equivalent to the vanishing of thekth de Rham cohomologyHk(Rn) for k≥ 1. We
will prove it in Section 27.

The theory of differential forms allows us to generalize vector calculus fromR3

toRn and indeed to a manifold of any dimension. The general Stokes’ theorem for a
manifold that we will prove in Subsection 23.5 subsumes and unifies the fundamental
theorem for line integrals, Green’s theorem in the plane, the classical Stokes’ theo-
rem for a surface inR3, and the divergence theorem. As a first step in this program,
we begin the next chapter with the definition of a manifold.

4.7 Convention on Subscripts and Superscripts

In differential geometry it is customary to index vector fields with subscriptse1, . . . ,
en, and differential forms with superscriptsω1, . . . ,ωn. Being 0-forms, coordinate
functions take superscripts:x1, . . . ,xn. Their differentials, being 1-forms, should
also have superscripts, and indeed they do:dx1, . . . ,dxn. Coordinate vector fields
∂/∂x1, . . . , ∂/∂xn are considered to have subscripts because thei in ∂/∂xi , although
a superscript forxi , is in the lower half of the fraction.

Coefficient functions can have superscripts or subscripts depending on whether
they are the coefficient functions of a vector field or of a differential form. For a
vector fieldX = ∑aiei , the coefficient functionsai have superscripts; the idea is



48 4 Differential Forms onRn

that the superscript inai “cancels out” the subscript inei . For the same reason, the
coefficient functionsb j in a differential formω = ∑b j dxj have subscripts.

The beauty of this convention is that there is a “conservation of indices” on the
two sides of an equality sign. For example, ifX = ∑ai ∂/∂xi , then

ai = (dxi)(X).

Here both sides have a net superscripti. As another example, ifω = ∑b j dxj , then

ω(X) =
(
∑b j dxj)

(
∑ai ∂

∂xi

)
= ∑bia

i ;

after cancellation of superscripts and subscripts, both sides of the equality sign have
zero net index. This convention is a useful mnemonic aid in some of the transforma-
tion formulas of differential geometry.

Problems

4.1. A 1-form on R3

Let ω be the 1-formzdx−dzand letX be the vector fieldy∂/∂x+ x∂/∂y onR3.
Computeω(X) anddω .

4.2. A 2-form on R3

At each pointp∈ R3, define a bilinear functionωp onTp(R
3) by

ωp(a,b) = ωp






a1

a2

a3


 ,




b1

b2

b3




= p3det

[
a1 b1

a2 b2

]
,

for tangent vectorsa,b∈Tp(R
3), wherep3 is the third component ofp=(p1, p2, p3).

Sinceωp is an alternating bilinear function onTp(R
3), ω is a 2-form onR3. Write

ω in terms of the standard basisdxi ∧dxj at each point.

4.3. Exterior calculus
Suppose the standard coordinates onR2 are calledr andθ (thisR2 is the(r,θ )-plane,
not the(x,y)-plane). Ifx = r cosθ andy = r sinθ , calculatedx, dy, anddx∧dy in
terms ofdr anddθ .

4.4. Exterior calculus
Suppose the standard coordinates onR3 are calledρ , φ , andθ . If x= ρ sinφ cosθ ,
y = ρ sinφ sinθ , andz= ρ cosφ , calculatedx, dy, dz, anddx∧dy∧dz in terms of
dρ , dφ , anddθ .

4.5. Wedge product
Let α be a 1-form andβ a 2-form onR3. Then

α = a1dx1+a2dx2+a3dx3,

β = b1dx2∧dx3+b2dx3∧dx1+b3dx1∧dx2.

Simplify the expressionα ∧β as much as possible.
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4.6. Wedge product and cross product
The correspondence between differential forms and vector fields on an open subset
of R3 in Subsection 4.6 also makes sense pointwise. LetV be a vector space of
dimension 3 with basise1,e2,e3, and dual basisα1,α2,α3. To a 1-covectorα =
a1 α1+a2 α2+a3 α3 onV, we associate the vectorvα = 〈a1,a2,a3〉 ∈ R3. To the
2-covector

γ = c1 α2∧α3+ c2α3∧α1+ c3α1∧α2

on V, we associate the vectorvγ = 〈c1,c2,c3〉 ∈ R3. Show that under this corre-
spondence, the wedge product of 1-covectors corresponds tothe cross product of
vectors inR3: if α = a1 α1 + a2α2 + a3α3 and β = b1α1 + b2α2 + b3α3, then
vα∧β = vα × vβ .

4.7. Commutator of derivations and antiderivations
Let A= ⊕∞

k=−∞Ak be a graded algebra over a fieldK with Ak = 0 for k < 0. Let m
be an integer. Asuperderivation of A of degree mis aK-linear mapD : A→ A such
that for allk, D(Ak)⊂ Ak+m and for alla∈ Ak andb∈ Aℓ,

D(ab) = (Da)b+(−1)kma(Db).

If D1 andD2 are two superderivations ofA of respective degreesm1 andm2, define
theircommutatorto be

[D1,D2] = D1 ◦ D2− (−1)m1m2D2 ◦ D1.

Show that[D1,D2] is a superderivation of degreem1+m2. (A superderivation is said
to beevenor odddepending on the parity of its degree. An even superderivation is a
derivation; an odd superderivation is an antiderivation.)



Solutions to Selected Exercises Within the Text

3.6 Inversions

As a matrix,τ =

[
1 2 3 4 5
2 3 4 5 1

]
. Scanning the second row, we see thatτ has four inversions:

(2,1), (3,1), (4,1), (5,1). ♦♦

3.13 Symmetrizing operator
A k-linear functionh: V→ R is symmetric if and only ifτh= h for all τ ∈ Sk. Now

τ(S f) = τ ∑
σ∈Sk

σ f = ∑
σ∈Sk

(τσ) f .

As σ runs over all elements of the permutation groupsSk, so doesτσ . Hence,

∑
σ∈Sk

(τσ) f = ∑
τσ∈Sk

(τσ) f = S f.

This proves thatτ(S f) = S f. ♦♦

3.15 Alternating operator
f (v1,v2,v3)− f (v1,v3,v2)+ f (v2,v3,v1)− f (v2,v1,v3)+ f (v3,v1,v2)− f (v3,v2,v1). ♦♦

3.20 Wedge product of two2-covectors

( f ∧g)(v1,v2,v3,v4)

= f (v1,v2)g(v3,v4)− f (v1,v3)g(v2,v4)+ f (v1,v4)g(v2,v3)

+ f (v2,v3)g(v1,v4)− f (v2,v4)g(v1,v3)+ f (v3,v4)g(v1,v2). ♦♦

3.22 Sign of a permutation
We can achieve the permutationτ from the initial configuration 1,2, . . . ,k+ ℓ in k steps.

(1) First, move the elementk to the very end across theℓ elementsk+ 1, . . . ,k+ ℓ. This
requiresℓ transpositions.

(2) Next, move the elementk−1 across theℓ elementsk+1, . . . ,k+ ℓ.
(3) Then move the elementk−2 across the sameℓ elements, and so on.

Each of thek steps requiresℓ transpositions. In the end we achieveτ from the identity using
ℓk transpositions.
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Alternatively, one can count the number of inversions in thepermutationτ. There arek
inversions starting withk+1, namely,(k+1,1), . . . ,(k+1,k). Indeed, for eachi = 1, . . . , ℓ,
there arek inversions starting withk+ i. Hence, the total number of inversions inτ is kℓ. By
Proposition 3.8, sgn(τ) = (−1)kℓ. ♦♦

4.3 A basis for3-covectors
By Proposition 3.29, a basis forA3(Tp(R

4)) is
(
dx1∧dx2∧dx3

)
p,
(
dx1∧dx2∧dx4

)
p,(

dx1∧dx3∧dx4
)

p,
(
dx2∧dx3∧dx4

)
p. ♦♦

4.4 Wedge product of a2-form with a 1-form
The (2,1)-shuffles are(1 < 2,3), (1 < 3,2), (2 < 3,1), with respective signs+, −, +. By
Equation (3.6),

(ω ∧ τ)(X,Y,Z) = ω(X,Y)τ(Z)−ω(X,Z)τ(Y)+ω(Y,Z)τ(X). ♦♦

6.14 Smoothness of a map to a circle
Without further justification, the fact that both cost and sint areC∞ proves only the smooth-
ness of(cost,sint) as a map fromR toR2. To show thatF : R→S1 isC∞, we need to coverS1

with charts(Ui ,φi) and examine in turn eachφi ◦ F : F−1(Ui)→R. Let{(Ui ,φi) | i = 1, . . . ,4}
be the atlas of Example 5.16. OnF−1(U1), φ1 ◦ F(t) = (x ◦ F)(t) = cost isC∞. OnF−1(U3),
φ3 ◦ F(t) = sint isC∞. Similar computations onF−1(U2) andF−1(U4) prove the smoothness
of F . ♦♦

6.18 Smoothness of a map to a Cartesian product
Fix p ∈ N, let (U,φ) be a chart aboutp, and let (V1 ×V2,ψ1 × ψ2) be a chart about
( f1(p), f2(p)). We will be assuming either( f1, f2) smooth or bothfi smooth. In either
case,( f1, f2) is continuous. Hence, by choosingU sufficiently small, we may assume
( f1, f2)(U)⊂V1×V2. Then

(ψ1×ψ2) ◦ ( f1, f2) ◦ φ−1 = (ψ1 ◦ f1 ◦ φ−1,ψ2 ◦ f2 ◦ φ−1)

maps an open subset ofRn to an open subset ofRm1+m2. It follows that( f1, f2) is C∞ at p if
and only if bothf1 and f2 areC∞ at p. ♦♦

7.11 Real projective space as a quotient of a sphere
Define f̄ : RPn→ Sn/∼ by f̄ ([x]) = [ x

‖x‖ ] ∈ Sn/∼. This map is well defined becausēf ([tx]) =

[ tx
|tx| ] = [± x

‖x‖ ] = [ x
‖x‖ ]. Note that ifπ1 : Rn+1−{0} → RPn and π2 : Sn → Sn/∼ are the

projection maps, then there is a commutative diagram

Rn−{0} f //

π1

��

Sn

π2

��
RPn

f̄
// Sn/∼ .

By Proposition 7.1,f̄ is continuous becauseπ2 ◦ f is continuous.
Next defineg: Sn→ Rn+1−{0} by g(x) = x. This map induces a map ¯g: Sn/∼→ RPn,

ḡ([x]) = [x]. By the same argument as above, ¯g is well defined and continuous. Moreover,

ḡ ◦ f̄ ([x]) =

[
x
‖x‖

]
= [x],

f̄ ◦ ḡ([x]) = [x],



Hints and Solutions to Selected End-of-Section
Problems

Problems with complete solutions are starred (*). Equations are numbered consecutively
within each problem.

1.2* A C∞ function very flat at 0
(a) Assumex> 0. Fork = 1, f ′(x) = (1/x2)e−1/x. With p2(y) = y2, this verifies the claim.
Now supposef (k)(x) = p2k(1/x)e−1/x. By the product rule and the chain rule,

f (k+1)(x) = p2k−1

(
1
x

)
·
(
− 1

x2

)
e−

1
x + p2k

(
1
x

)
· 1
x2 e−

1
x

=

(
q2k+1

(
1
x

)
+q2k+2

(
1
x

))
e−

1
x

= p2k+2

(
1
x

)
e−

1
x ,

whereqn(y) andpn(y) are polynomials of degreen in y. By induction, the claim is true for all
k≥ 1. It is trivially true fork= 0 also.

(b) Forx> 0, the formula in (a) shows thatf (x) is C∞. Forx< 0, f (x)≡ 0, which is trivially
C∞. It remains to show thatf (k)(x) is defined and continuous atx= 0 for all k.

Supposef (k)(0) = 0. By the definition of the derivative,

f (k+1)(0) = lim
x→0

f (k)(x)− f (k)(0)
x

= lim
x→0

f (k)(x)
x

.

The limit from the left is clearly 0. So it suffices to compute the limit from the right:

lim
x→0+

f (k)(x)
x

= lim
x→0+

p2k
( 1

x

)
e−

1
x

x
= lim

x→0+
p2k+1

(
1
x

)
e−

1
x (1.2.1)

= lim
y→∞

p2k+1(y)
ey

(
replacing

1
x

by y

)
.

Applying l’Hôpital’s rule 2k+1 times, we reduce this limit to 0. Hence,f (k+1)(0) = 0. By
induction, f (k)(0) = 0 for all k≥ 0.

A similar computation as (1.2.1) for limx→0 f (k)(x) = 0 proves thatf (k)(x) is continuous
at x= 0. ♦♦
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1.3 (b) h(t) = (π/(b−a))(t−a)− (π/2).

1.5
(a) The line passing through(0,0,1) and(a,b,c) has a parametrization

x= at, y= bt, z= (c−1)t +1.

This line intersects thexy-plane when

z= 0⇔ t =
1

1−c
⇔ (x,y) =

(
a

1−c
,

b
1−c

)
.

To find the inverse ofg, write down a parametrization of the line through(u,v,0) and
(0,0,1) and solve for the intersection of this line withS.

1.6* Taylor’s theorem with remainder to order 2
To simplify the notation, we write0 for (0,0). By Taylor’s theorem with remainder, there exist
C∞ functionsg1,g2 such that

f (x,y) = f (0)+xg1(x,y)+yg2(x,y). (1.6.1)

Applying the theorem again, but tog1 andg2, we obtain

g1(x,y) = g1(0)+xg11(x,y)+yg12(x,y), (1.6.2)

g2(x,y) = g2(0)+xg21(x,y)+yg22(x,y). (1.6.3)

Sinceg1(0) = ∂ f /∂x(0) andg2(0) = ∂ f /∂y(0), substituting (1.6.2) and (1.6.3) into (1.6.1)
gives the result. ♦♦

1.7* A function with a removable singularity
In Problem 1.6, setx= t andy= tu. We obtain

f (t, tu)= f (0)+ t
∂ f
∂x

(0)+ tu
∂ f
∂y

(0)+ t2(· · ·),

where
(· · ·) = g11(t, tu)+ug12(t, tu)+u2g22(t, tu)

is aC∞ function oft andu. Sincef (0) = ∂ f /∂x(0) = ∂ f /∂y(0) = 0,

f (t, tu)
t

= t(· · ·),

which is clearlyC∞ in t,u and agrees withg whent = 0. ♦♦

1.8 See Example 1.2(ii).

3.1 f = ∑gi j α i ⊗α j .

3.2
(a) Use the formula dimkerf +dimim f = dimV.
(b) Choose a basise1, . . . ,en−1 for ker f , and extend it to a basise1, . . . ,en−1,en for V. Let

α1, . . . ,αn be the dual basis forV∨. Write both f andg in terms of this dual basis.

3.3 We write temporarilyα I for α i1⊗·· ·⊗α ik andeJ for (ej1 , . . . ,ejk).
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(a) Prove thatf = ∑ f (eI )α I by showing that both sides agree on all(eJ). This proves that
the set{α I } spans.

(b) Suppose∑cI α I = 0. Applying both sides toeJ givescJ = ∑cI α I (eJ) = 0. This proves
that the set{α I} is linearly independent.

3.9 To computeω(v1, . . . ,vn) for anyv1, . . . ,vn ∈V, write v j = ∑i eiai
j and use the fact that

ω is multilinear and alternating.

3.10* Linear independence of covectors
(⇒) If α1, . . . ,αk are linearly dependent, then one of them is a linear combination of the
others. Without loss of generality, we may assume that

αk =
k−1

∑
i=1

ciα i .

In the wedge productα1∧ ·· · ∧αk−1∧ (∑k−1
i=1 ciα i), every term has a repeatedα i . Hence,

α1∧·· ·∧αk = 0.

(⇐) Supposeα1, . . . ,αk are linearly independent. Then they can be extended to a basis
α1, . . . ,αk, . . . ,αn for V∨. Let v1, . . . ,vn be the dual basis forV. By Proposition 3.27,

(α1∧·· ·∧αk)(v1, . . . ,vk) = det[α i(v j)] = det[δ i
j ] = 1.

Hence,α1∧·· ·∧αk 6= 0. ♦♦

3.11* Exterior multiplication
(⇐) Clear becauseα ∧α = 0.

(⇒) Supposeα ∧ω = 0. Extendα to a basisα1, . . . ,αn for V∨, with α1 = α. Write ω =

∑cJαJ. In the sumα∧ω =∑cJα∧αJ, all the termsα∧αJ with j1 = 1 vanish sinceα =α1.
Hence,

0= α ∧ω = ∑
j1 6=1

cJα ∧αJ.

Since{α ∧αJ} j1 6=1 is a subset of a basis forAk+1(V), it is linearly independent and so all
cJ = 0 if j1 6= 1. Thus,

ω = ∑
j1=1

cJαJ = α ∧
(

∑
j1=1

cJα j2 ∧·· ·∧α jk

)
. ♦♦

4.1 ω(X) = yz, dω =−dx∧dz.

4.2 Write ω = ∑i< j ci j dxi ∧ dxj . Thenci j (p) = ωp(ei ,ej), whereei = ∂/∂xi . Calculate
c12(p), c13(p), andc23(p). The answer isωp = p3 dx1∧dx2.

4.3 dx= cosθ dr− r sinθ dθ , dy= sinθ ,dr+ r cosθ dθ , dx∧dy= rdr ∧dθ .

4.4 dx∧dy∧dz= ρ2 sinφ dρ ∧dφ ∧dθ .

4.5 α ∧β = (a1b1+a2b2+a3b3)dx1∧dx2∧dx3.

5.3 The imageφ4(U14) = {(x,z) | −1< z< 1, 0< x<
√

1−z2}.
The transition functionφ1 ◦ φ−1

4 (x,z) = φ1(x,y,z) = (y,z) = (−
√

1−x2−z2,z) is aC∞ func-
tion of x,z.
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A

Point-Set Topology

Point-set topology, also called “general topology,” is concerned with properties that
remain invariant under homeomorphisms (continuous maps having continuous in-
verses). The basic development in the subject took place in the late nineteenth and
early twentieth centuries. This appendix is a collection ofbasic results from point-set
topology that are used throughout the book.

A.1 Topological Spaces

The prototype of a topological space is the Euclidean spaceRn. However, Euclidean
space comes with many additional structures, such as a metric, coordinates, an inner
product, and an orientation, that are extraneous to its topology. The idea behind the
definition of a topological space is to discard all those properties ofRn that have
nothing to do with continuous maps, thereby distilling the notion of continuity to its
very essence.

In advanced calculus one learns several characterizationsof a continuous map,
among which is the following: a mapf from an open subset ofRn to Rm is contin-
uous if and only if the inverse imagef−1(V) of any open setV in Rm is open inRn.
This shows that continuity can be defined solely in terms of open sets.

To define open sets axiomatically, we look at properties of open sets inRn. Recall
that inRn thedistancebetween two pointsp andq is given by

d(p,q) =

[
n

∑
i=1

(pi−qi)2

]1/2

,

and theopen ball B(p, r) with centerp∈ Rn and radiusr > 0 is the set

B(p, r) = {x∈Rn | d(x, p)< r}.

A setU in Rn is said to beopenif for every p in U , there is an open ballB(p, r) with
centerp and radiusr such thatB(p, r)⊂U (Figure A.1). It is clear that the union of
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b

p
U

B(p, r)

Fig. A.1. An open set inRn.

an arbitrary collection{Uα} of open sets is open, but the same need not be true of
the intersection of infinitely many open sets.

Example. The intervals]− 1/n,1/n[, n = 1,2,3, . . . , are all open inR1, but their
intersection

⋂∞
n=1 ]−1/n,1/n[ is the singleton set{0}, which is not open.

What is true is that the intersection of afinite collection of open sets inRn is
open. This leads to the definition of a topology on a set.

Definition A.1. A topologyon a setS is a collectionT of subsets containing both
the empty set∅ and the setSsuch thatT is closed under arbitrary unions and finite
intersections; i.e., ifUα ∈ T for all α in an index set A, then

⋃
α∈A Uα ∈ T and if

U1, . . . ,Un ∈ T, then
⋂n

i=1Ui ∈ T.

The elements ofT are calledopen setsand the pair(S,T) is called atopological
space. To simplify the notation, we sometimes simply refer to a pair (S,T) as “the
topological spaceS” when there is no chance of confusion. Aneighborhoodof a
point p in S is an open setU containingp. If T1 andT2 are two topologies on a set
S andT1 ⊂ T2, then we say thatT1 is coarserthanT1, or thatT2 is finer thanT1.
A coarser topology has fewer open sets; conversely, a finer topology has more open
sets.

Example.The open subsets ofRn as we understand them in advanced calculus form
a topology onRn, thestandard topologyof Rn. In this topology a setU is open inRn

if and only if for everyp∈U , there is an open ballB(p,ε) with centerp and radiusε
contained inU . Unless stated otherwise,Rn will always have its standard topology.

The criterion for openness inRn has a useful generalization to a topological
space.

Lemma A.2 (Local criterion for openness).Let S be a topological space. A subset
A is open in S if and only if for every p∈A, there is an open set V such that p∈V ⊂A.

Proof.
(⇒) If A is open, we can takeV = A.
(⇐) Suppose for everyp∈ A there is an open setVp such thatp∈Vp⊂ A. Then
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A⊂
⋃

p∈A

Vp⊂ A,

so that equalityA=
⋃

p∈AVp holds. As a union of open sets,A is open. ⊓⊔

Example.For any setS, the collectionT = {∅,S} consisting of the empty set∅ and
the entire setSis a topology onS, sometimes called thetrivial or indiscrete topology.
It is the coarsest topology on a set.

Example. For any setS, let T be the collection of all subsets ofS. ThenT is a
topology onS, called thediscrete topology. A singleton setis a set with a single
element. The discrete topology can also be characterized asthe topology in which
every singleton subset{p} is open. A topological space having the discrete topology
is called adiscrete space. The discrete topology is the finest topology on a set.

The complement of an open set is called aclosed set. By de Morgan’s laws
from set theory, arbitrary intersections and finite unions of closed sets are closed
(Problem A.3). One may also specify a topology by describingall the closed sets.

Remark. When we say that a topology isclosedunder arbitrary union and finite
intersection, the word “closed” has a different meaning from that of a “closed subset.”

ExampleA.3 (Finite-complement topology onR1). LetT be the collection of subsets
of R1 consisting of the empty set∅, the lineR1 itself, and the complements of finite
sets. SupposeFα and Fi are finite subsets ofR1 for α ∈ some index set A and
i = 1, . . . ,n. By de Morgan’s laws,

⋃

α

(
R1−Fα

)
= R1−

⋂

α
Fα and

n⋂

i=1

(
R1−Fi

)
= R1−

n⋃

i=1

Fi .

Since the arbitrary intersection
⋂

α∈A Fα and the finite union
⋃n

i=1Fi are both finite,
T is closed under arbitrary unions and finite intersections. Thus,T defines a topology
onR1, called thefinite-complement topology.

For the sake of definiteness, we have defined the finite-complement topology on
R1, but of course, there is nothing specific aboutR1 here. One can define in exactly
the same way the finite-complement topology on any set.

ExampleA.4 (Zariski topology). One well-known topology is theZariski topology
from algebraic geometry. LetK be a field and letSbe the vector spaceKn. Define
a subset ofKn to beZariski closedif it is the zero setZ( f1, . . . , fr ) of finitely many
polynomials f1, . . . , fr on Kn. To show that these are indeed the closed subsets of
a topology, we need to check that they are closed under arbitrary intersections and
finite unions.

Let I = ( f1, . . . , fr) be the ideal generated byf1, . . . , fr in the polynomial ring
K[x1, . . . ,xn]. ThenZ( f1, . . . , fr) = Z(I), the zero set ofall the polynomials in the
ideal I . Conversely, by the Hilbert basis theorem [11,§9.6, Th. 21], any ideal in
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K[x1, . . . ,xn] has a finite set of generators. Hence, the zero set of finitely many poly-
nomials is the same as the zero set of an ideal inK[x1, . . . ,xn]. If I = ( f1, . . . , fr) and
J = (g1, . . . ,gs) are two ideals, then theproduct ideal IJis the ideal inK[x1, . . . ,xn]
generated by all productsfig j , 1≤ i ≤ r, 1≤ j ≤ s. If {Iα}α∈A is a family of ideals
in K[x1, . . . ,xn], then theirsum∑α Iα is the smallest ideal inK[x1, . . . ,xn] containing
all the idealsIα .

Exercise A.5 (Intersection and union of zero sets).Let Iα , I , andJ be ideals in the polyno-
mial ringK[x1, . . . ,xn]. Show that

(i)
⋂

α
Z(Iα) = Z

(
∑
α

Iα

)

and

(ii) Z(I)∪Z(J) = Z(IJ).

The complement of a Zariski closed subset ofKn is said to beZariski open. If
I = (0) is the zero ideal, thenZ(I) = Kn, and if I = (1) = K[x1, . . . ,xn] is the entire
ring, thenZ(I) is the empty set∅. Hence, both the empty set andKn are Zariski
open. It now follows from Exercise A.5 that the Zariski open subsets ofKn form a
topology onKn, called theZariski topologyonKn. Since the zero set of a polynomial
on R1 is a finite set, the Zariski topology onR1 is precisely the finite-complement
topology of Example A.3.

A.2 Subspace Topology

Let (S,T) be a topological space andA a subset ofS. DefineTA to be the collection
of subsets

TA = {U ∩A |U ∈ T}.
By the distributive property of union and intersection,

⋃

α
(Uα ∩A) =

(
⋃

α
Uα

)
∩A

and

⋂

i

(Ui ∩A) =

(
⋂

i

Ui

)
∩A,

which shows thatTA is closed under arbitrary unions and finite intersections. More-
over,∅,A ∈ TA. So TA is a topology onA, called thesubspace topologyor the
relative topologyof A in S, and elements ofTA are said to beopen in A. To empha-
size the fact that an open setU in A need not be open inS, we also say thatU is open
relative to Aor relatively open in A. The subsetA of Swith the subspace topology
TA is called asubspaceof S.
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Example.Consider the subsetA= [0,1] of R1. In the subspace topology, the half-
open interval[0,1/2[ is open relative toA, because

[
0, 1

2

[
=
]
− 1

2,
1
2

[
∩A.

(See Figure A.2.)

( [ ) ]

0 1
2- 1

2
1

Fig. A.2. A relatively open subset of[0,1].

A.3 Bases

It is generally difficult to describe directly all the open sets in a topologyT. What one
can usually do is to describe a subcollectionB of T so that any open set is expressible
as a union of open sets inB.

Definition A.6. A subcollectionB of a topologyT on a topological spaceS is a
basis for the topologyT if given an open setU and pointp in U , there is an open set
B∈ B such thatp∈ B⊂U . We also sayB generatesthe topologyT or thatB is a
basis for the topological space S.

Example.The collection of all open ballsB(p, r) in Rn, with p∈ Rn andr a positive
real number, is a basis for the standard topology ofRn.

Proposition A.7. A collectionB of open sets of S is a basis if and only if every open
set in S is a union of sets inB.

Proof.
(⇒) SupposeB is a basis andU is an open set inS. For everyp∈U , there is a basic
open setBp ∈B such thatp∈ Bp⊂U . Therefore,U =

⋃
p∈U Bp.

(⇐) Suppose every open set inS is a union of open sets inB. Given an open setU
and a pointp in U , sinceU =

⋃
Bα∈BBα , there is aBα ∈ B such thatp∈ Bα ⊂U .

Hence,B is a basis. ⊓⊔

The following proposition gives a useful criterion for deciding if a collectionB
of subsets is a basis for some topology.

Proposition A.8. A collectionB of subsets of a set S is a basis for some topologyT

on S if and only if
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(i) S is the union of all the sets inB, and
(ii) given any two sets B1 and B2 ∈ B and a point p∈ B1∩B2, there is a set B∈B

such that p∈ B⊂ B1∩B2 (Figure A.3).

b

pB

B1 B2

Fig. A.3. Criterion for a basis.

Proof.
(⇒) (i) follows from Proposition A.7.

(ii) If B is a basis, thenB1 andB2 are open sets and hence so isB1∩B2. By the
definition of a basis, there is aB∈B such thatp∈ B⊂ B1∩B2.

(⇐) DefineT to be the collection consisting of all sets that are unions ofsets inB.
Then the empty set∅ and the setS are inT andT is clearly closed under arbitrary
union. To show thatT is closed under finite intersection, letU =

⋃
µ Bµ andV =⋃

ν Bν be inT, whereBµ ,Bν ∈B. Then

U ∩V =

(
⋃

µ
Bµ

)
∩
(
⋃

ν
Bν

)

=
⋃

µ,ν
(Bµ ∩Bν).

Thus, anyp in U ∩V is in Bµ ∩Bν for someµ ,ν. By (ii) there is a setBp in B

such thatp∈ Bp⊂ Bµ ∩Bν . Therefore,

U ∩V =
⋃

p∈U∩V

Bp ∈ T. ⊓⊔

Proposition A.9. LetB = {Bα} be a basis for a topological space S, and A a sub-
space of S. Then{Bα ∩A} is a basis for A.

Proof. Let U ′ be any open set inA andp∈U ′. By the definition of subspace topol-
ogy,U ′ =U ∩A for some open setU in S. Sincep∈U ∩A⊂U , there is a basic open
setBα such thatp∈ Bα ⊂U . Then

p∈ Bα ∩A⊂U ∩A=U ′,

which proves that the collection{Bα ∩A | Bα ∈B} is a basis forA. ⊓⊔
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A.4 First and Second Countability

First and second countability of a topological space have todo with the countability
of a basis. Before taking up these notions, we begin with an example. We say that a
point inRn is rational if all of its coordinates are rational numbers. LetQ be the set
of rational numbers andQ+ the set of positive rational numbers. From real analysis,
it is well known that every open interval inR contains a rational number.

Lemma A.10.Every open set inRn contains a rational point.

Proof. An open setU in Rn contains an open ballB(p, r), which in turn contains
an open cube∏n

i=1 Ii , whereIi is the open interval]pi − (r/
√

n), pi +(r/
√

n)[ (see
Problem A.4). For eachi, let qi be a rational number inIi . Then(q1, . . . ,qn) is a
rational point in∏n

i=1 Ii ⊂ B(p, r)⊂U . ⊓⊔

Proposition A.11.The collectionBrat of all open balls inRn with rational centers
and rational radii is a basis forRn.

b b

p qr

Fig. A.4. A ball with rational centerq and rational radiusr/2.

Proof. Given an open setU in Rn and pointp in U , there is an open ballB(p, r ′) with
positive real radiusr ′ such thatp∈ B(p, r ′)⊂U . Take a rational numberr in ]0, r ′[.
Thenp∈ B(p, r)⊂U . By Lemma A.10, there is a rational pointq in the smaller ball
B(p, r/2). We claim that

p∈ B
(

q,
r
2

)
⊂ B(p, r). (A.1)

(See Figure A.4.) Sinced(p,q)< r/2, we havep∈ B(q, r/2). Next, if x∈ B(q, r/2),
then by the triangle inequality,

d(x, p)≤ d(x,q)+d(q, p)<
r
2
+

r
2
= r.

Sox∈ B(p, r). This proves the claim (A.1). Becausep∈ B(q, r/2)⊂U , the collec-
tionBrat of open balls with rational centers and rational radii is a basis forRn. ⊓⊔
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Both of the setsQ andQ+ are countable. Since the centers of the balls inBrat

are indexed byQn, a countable set, and the radii are indexed byQ+, also a countable
set, the collectionBrat is countable.

Definition A.12. A topological space is said to besecond countableif it has a
countable basis.

ExampleA.13. Proposition A.11 shows thatRn with its standard topology is second
countable. With the discrete topology,Rn would not be second countable. More
generally, any uncountable set with the discrete topology is not second countable.

Proposition A.14.A subspace A of a second countable space S is second countable.

Proof. By Proposition A.9, ifB= {Bi} is a countable basis forS, thenBA := {Bi ∩
A} is a countable basis forA. ⊓⊔

Definition A.15. LetSbe a topological space andp a point inS. A basis of neighbor-
hoods at por aneighborhood basis at pis a collectionB= {Bα} of neighborhoods
of p such that for any neighborhoodU of p, there is aBα ∈B such thatp∈ Bα ⊂U .
A topological spaceS is first countableif it has a countable basis of neighborhoods
at every pointp∈ S.

Example.For p ∈ Rn, let B(p,1/n) be the open ball of centerp and radius 1/n in
Rn. Then{B(p,1/n)}∞

n=1 is a neighborhood basis atp. Thus,Rn is first countable.

Example.An uncountable discrete space is first countable but not second countable.
Every second countable space is first countable (the proof isleft to Problem A.18).

Supposep is a point in a first countable topological space and{Vi}∞
i=1 is a count-

able neighborhood basis atp. By takingUi = V1∩ ·· · ∩Vi , we obtain a countable
descending sequence

U1⊃U2⊃U3⊃ ·· ·
that is also a neighborhood basis atp. Thus, in the definition of first countability,
we may assume that at every point the countable neighborhoodbasis at the point is a
descending sequence of open sets.

A.5 Separation Axioms

There are various separation axioms for a topological space. The only ones we will
need are the Hausdorff condition and normality.

Definition A.16. A topological spaceSis Hausdorff if, given any two distinct points
x,y in S, there exist disjoint open setsU,V such thatx∈U andy∈V. A Hausdorff
space isnormal if given any two disjoint closed setsF,G in S, there exist disjoint
open setsU,V such thatF ⊂U andG⊂V (Figure A.5).
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b b

x y
U V F

G

U V

Fig. A.5. The Hausdorff condition and normality.

Proposition A.17.Every singleton set(a one-point set) in a Hausdorff space S is
closed.

Proof. Let x∈S. For anyy∈S−{x}, by the Hausdorff condition there exist an open
setU ∋ x and an open setV ∋ y such thatU andV are disjoint. In particular,

y∈V ⊂ S−U ⊂ S−{x}.

By the local criterion for openness (Lemma A.2),S−{x} is open. Therefore,{x} is
closed. ⊓⊔

Example.The Euclidean spaceRn is Hausdorff, for given distinct pointsx,y in Rn,
if ε = 1

2d(x,y), then the open ballsB(x,ε) andB(y,ε) will be disjoint (Figure A.6).

b

b

x

y

Fig. A.6. Two disjoint neighborhoods inRn.

ExampleA.18 (Zariski topology). Let S= Kn be a vector space of dimensionn over
a fieldK, endowed with the Zariski topology. Every open setU in S is of the form
S−Z(I), whereI is an ideal inK[x1, . . . ,xn]. The open setU is nonempty if and
only if I is not the zero ideal. In the Zariski topology any two nonempty open sets
intersect: ifU = S−Z(I) andV = S−Z(J) are nonempty, thenI andJ are nonzero
ideals and

U ∩V = (S−Z(I))∩ (S−Z(J))

= S− (Z(I)∪Z(J)) (de Morgan’s law)

= S−Z(IJ), (Exercise A.5)
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which is nonempty becauseIJ is not the zero ideal. Therefore,Kn with the Zariski
topology is not Hausdorff.

Proposition A.19.Any subspace A of a Hausdorff space S is Hausdorff.

Proof. Let x andy be distinct points inA. SinceS is Hausdorff, there exist disjoint
neighborhoodsU andV of x and y respectively inS. ThenU ∩A andV ∩A are
disjoint neighborhoods ofx andy respectively inA. ⊓⊔

A.6 Product Topology

TheCartesian productof two setsA andB is the setA×B of all ordered pairs(a,b)
with a∈ A andb∈ B. Given two topological spacesX andY, consider the collection
B of subsets ofX×Y of the formU×V, with U open inX andV open inY. We will
call elements ofB basic open setsin X×Y. If U1×V1 andU2×V2 are inB, then

(U1×V1)∩ (U2×V2) = (U1∩U2)× (V1∩V2),

which is also inB (Figure A.7). From this, it follows easily thatB satisfies the
conditions of Proposition A.8 for a basis and generates a topology onX×Y, called
theproduct topology. Unless noted otherwise, this will always be the topology we
assign to the product of two topological spaces.

U1

U2

V1

V2

| |
| |

−

−

−

−

X

Y

Fig. A.7. Intersection of two basic open subsets inX×Y.

Proposition A.20.Let {Ui} and{Vj} be bases for the topological spaces X and Y,
respectively. Then{Ui×Vj} is a basis for X×Y.
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Proof. Given an open setW in X×Y and point(x,y) ∈W, we can find a basic open
setU×V in X×Y such that(x,y) ∈U×V ⊂W. SinceU is open inX and{Ui} is a
basis forX,

x∈Ui ⊂U

for someUi . Similarly,
y∈Vj ⊂V

for someVj . Therefore,

(x,y) ∈Ui×Vj ⊂U×V ⊂W.

By the definition of a basis,{Ui×Vj} is a basis forX×Y. ⊓⊔

Corollary A.21. The product of two second countable spaces is second countable.

Proposition A.22.The product of two Hausdorff spaces X and Y is Hausdorff.

Proof. Given two distinct points(x1,y1),(x2,y2) in X×Y, without loss of generality
we may assume thatx1 6= x2. SinceX is Hausdorff, there exist disjoint open sets
U1,U2 in X such thatx1 ∈ U1 andx2 ∈ U2. ThenU1×Y andU2×Y are disjoint
neighborhoods of(x1,y1) and(x2,y2) (Figure A.8), soX×Y is Hausdorff. ⊓⊔

(x1, y1)

(x2, y2)

x1 x2 X

Y

U1 U2| | | |

Fig. A.8. Two disjoint neighborhoods inX×Y.

The product topology can be generalized to the product of an arbitrary collection
{Xα}α∈A of topological spaces. Whatever the definition of the product topology, the
projection mapsπαi : ∏α Xα →Xαi , παi (∏xα) = xαi should all be continuous. Thus,
for each open setUαi in Xαi , the inverse imageπ−1

αi
(Uαi ) should be open in∏α Xα .

By the properties of open sets, afinite intersection
⋂r

i=1 π−1
αi

(Uαi ) should also be
open. Such a finite intersection is a set of the form∏α∈AUα , whereUα is open in
Xα andUα = Xα for all but finitely manyα ∈ A. We define theproduct topology
on the Cartesian product∏α∈A Xα to be the topology with basis consisting of sets of
this form. The product topology is the coarsest topology on∏α Xα such that all the
projection mapsπαi : ∏α Xα → Xαi are continuous.
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A.7 Continuity

Let f : X→ Y be a function of topological spaces. Mimicking the definition from
advanced calculus, we say thatf is continuous at a point pin X if for every neigh-
borhoodV of f (p) in Y, there is a neighborhoodU of p in X such thatf (U) ⊂ V.
We say thatf is continuous on Xif it is continuous at every point ofX.

Proposition A.23 (Continuity in terms of open sets).A function f: X→Y is con-
tinuous if and only if the inverse image of any open set is open.

Proof.
(⇒) SupposeV is open inY. To show thatf−1(V) is open inX, let p ∈ f−1(V).
Then f (p) ∈ V. Since f is assumed to be continuous atp, there is a neighborhood
U of p such thatf (U) ⊂V. Therefore,p∈U ⊂ f−1(V). By the local criterion for
openness (Lemma A.2),f−1(V) is open inX.

(⇐) Let p be a point inX, andV a neighborhood off (p) in Y. By hypothesis,
f−1(V) is open inX. Sincef (p) ∈V, p∈ f−1(V). ThenU = f−1(V) is a neighbor-
hood ofp such thatf (U) = f ( f−1(V))⊂V, so f is continuous atp. ⊓⊔

ExampleA.24 (Continuity of an inclusion map). If A is a subspace ofX, then the
inclusion mapi : A→ X, i(a) = a is continuous.

Proof. If U is open inX, theni−1(U) =U ∩A, which is open in the subspace topol-
ogy ofA. ⊓⊔

ExampleA.25 (Continuity of a projection map). The projectionπ : X ×Y → X,
π(x,y) = x is continuous.

Proof. Let U be open inX. Thenπ−1(U) = U ×Y, which is open in the product
topology onX×Y. ⊓⊔

Proposition A.26.The composition of continuous maps is continuous: if f: X→Y
and g: Y→ Z are continuous, then g◦ f : X→ Z is continuous.

Proof. Let V be an open subset ofZ. Then

(g ◦ f )−1(V) = f−1(g−1(V)),

because for anyx∈ X,

x∈ (g ◦ f )−1(V) iff g( f (x)) ∈V iff f (x) ∈ g−1(V) iff x∈ f−1(g−1(V)).

By Proposition A.23, sinceg is continuous,g−1(V) is open inY. Similarly, sincef
is continuous,f−1(g−1(V)) is open inX. By Proposition A.23 again,g ◦ f : X→ Z
is continuous. ⊓⊔
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If A is a subspace ofX and f : X→Y is a function, therestrictionof f to A,

f |A : A→Y,

is defined by
( f |A)(a) = f (a).

With i : A→ X being the inclusion map, the restrictionf |A is the compositef ◦ i.
Since bothf andi are continuous (Example A.24) and the composition of continuous
functions is continuous (Proposition A.26), we have the following corollary.

Corollary A.27. The restriction f|A of a continuous function f: X → Y to a sub-
space A is continuous.

Continuity may also be phrased in terms of closed sets.

Proposition A.28 (Continuity in terms of closed sets).A function f: X → Y is
continuous if and only if the inverse image of any closed set is closed.

Proof. Problem A.9. ⊓⊔

A map f : X→Y is said to beopenif the image of every open set inX is open
in Y; similarly, f : X→Y is said to beclosedif the image of every closed set inX is
closed inY.

If f : X→Y is a bijection, then its inverse mapf−1 : Y→ X is defined. In this
context, for any subsetV ⊂Y, the notationf−1(V) a priori has two meanings. It can
mean either the inverse image ofV under the mapf ,

f−1(V) = {x∈ X | f (x) ∈V},

or the image ofV under the mapf−1,

f−1(V) = { f−1(y) ∈ X | y∈V}.

Fortunately, becausey= f (x) iff x= f−1(y), these two meanings coincide.

A.8 Compactness

While its definition may not be intuitive, the notion of compactness is of central
importance in topology. LetS be a topological space. A collection{Uα} of open
subsets ofS is said tocover Sor to beopen coverof S if S⊂ ⋃α Uα . Of course,
becauseSis the ambient space, this condition is equivalent toS=

⋃
α Uα . A subcover

of an open cover is a subcollection whose union still contains S. The topological
spaceS is said to becompactif every open cover ofShas a finite subcover.

With the subspace topology, a subsetA of a topological spaceS is a topological
space in its own right. The subspaceA can be covered by open sets inA or by open
sets inS. An open cover of A in Sis a collection{Uα} of open sets inS that covers
A. In this terminology,A is compact if and only if every open cover ofA in A has a
finite subcover.
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A

Fig. A.9. An open cover ofA in S.

Proposition A.29.A subspace A of a topological space S is compact if and only if
every open cover of A in S has a finite subcover.

Proof.
(⇒) AssumeA compact and let{Uα} be an open cover ofA in S. This means
A⊂⋃α Uα . Hence,

A⊂
(
⋃

α
Uα

)
∩A=

⋃

α
(Uα ∩A).

SinceA is compact, the open cover{Uα ∩A} has a finite subcover{Uαi ∩A}ri=1.
Thus,

A⊂
r⋃

i=1

(Uαi ∩A)⊂
r⋃

i=1

Uαi ,

which means{Uαi}ri=1 is a finite subcover of{Uα}.
(⇐) Suppose every open cover ofA in S has a finite subcover and let{Vα} be an
open cover ofA by in A. Then eachVα =Uα ∩A for some open setUα in S. Since

A⊂
⋃

α
Vα ⊂

⋃

α
Uα ,

by hypothesis, there are finitely many sets{Uαi} such thatA⊂⋃i Uαi . Hence,

A⊂
(
⋃

i

Uαi

)
∩A=

⋃

i

(Uαi ∩A) =
⋃

i

Vαi ,

So{Vαi} is a finite subcover of{Vα} that coversA. Therefore,A is compact. ⊓⊔

Proposition A.30.A closed subset F of a compact topological space S is compact.

Proof. Let {Uα} be an open cover ofF in S. The collection{Uα ,S−F} is then an
open cover ofS. By the compactness ofS, there is a finite subcover{Uαi ,S−F} that
coversS, soF ⊂⋃i Uαi . This proves thatF is compact. ⊓⊔

Proposition A.31. In a Hausdorff space S, it is possible to separate a compact subset
K and a point p not in K by disjoint open sets; i.e., there existan open set U⊃ K
and an open set V∋ p such that U∩V =∅.



A.8 Compactness 359

Proof. By the Hausdorff property, for everyx∈K, there are disjoint open setsUx∋ x
andVx ∋ p. The collection{Ux}x∈K is a cover ofK by open subsets ofS. SinceK is
compact, it has a finite subcover{Uxi}.

Let U =
⋃

i Uxi andV =
⋂

i Vxi . ThenU is an open set ofScontainingK. Being
the intersection of finitely many open sets containingp, V is an open set containing
p. Moreover, the set

U ∩V =
⋃

i

(Uxi ∩V)

is empty since eachUxi ∩V ⊂Uxi ∩Vxi , which is empty. ⊓⊔

Proposition A.32.Every compact subset K of a Hausdorff space S is closed.

Proof. By the preceding proposition, for every pointp in S−K, there is an open set
V such thatp∈V ⊂ S−K. This proves thatS−K is open. Hence,K is closed. ⊓⊔

Exercise A.33 (Compact Hausdorff space).*Prove that a compact Hausdorff space is nor-
mal. (Normality was defined in Definition A.16.)

Proposition A.34.The image of a compact set under a continuous map is compact.

Proof. Let f : X→Y be a continuous map andK a compact subset ofX. Suppose
{Uα} is a cover off (K) by open subsets ofY. Since f is continuous, the inverse
imagesf−1(Uα) are all open. Moreover,

K ⊂ f−1( f (K)) ⊂ f−1

(
⋃

α
Uα

)
=
⋃

α
f−1(Uα).

So{ f−1(Uα)} is an open cover ofK in X. By the compactness ofK, there is a finite
subcollection{ f−1(Uαi )} such that

K ⊂
⋃

i

f−1(Uαi ) = f−1

(
⋃

i

Uαi

)
.

Then f (K) ⊂⋃i Uαi . Thus, f (K) is compact. ⊓⊔

Proposition A.35.A continuous map f: X→Y from a compact space X to a Haus-
dorff space Y is a closed map.

Proof. Let F be a closed subset of the compact spaceX. By Proposition A.30,F is
compact. As the image of a compact set under a continuous map,f (F) is compact in
Y (Proposition A.34). As a compact subset of the Hausdorff spaceY, f (F) is closed
(Proposition A.32). ⊓⊔

A continuous bijectionf : X → Y whose inverse is also continuous is called a
homeomorphism.

Corollary A.36. A continuous bijection f: X → Y from a compact space X to a
Hausdorff space Y is a homeomorphism.
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Proof. By Proposition A.28, to show thatf−1 : Y→ X is continuous, it suffices to
prove that for every closed setF in X, the set( f−1)−1(F) = f (F) is closed inY, i.e.,
that f is a closed map. The corollary then follows from PropositionA.35. ⊓⊔

Exercise A.37 (Finite union of compact sets).Prove that a finite union of compact subsets
of a topological space is compact.

We mention without proof an important result. For a proof, see [29, Theo-
rem 26.7, p. 167, and Theorem 37.3, p. 234].

Theorem A.38 (The Tychonoff theorem).The product of any collection of compact
spaces is compact in the product topology.

A.9 Boundedness inRn

A subsetA of Rn is said to beboundedif it is contained in some open ballB(p, r);
otherwise, it isunbounded.

Proposition A.39.A compact subset ofRn is bounded.

Proof. If A were an unbounded subset ofRn, then the collection{B(0, i)}∞
i=1 of open

balls with radius increasing to infinity would be an open cover of A in Rn that does
not have a finite subcover. ⊓⊔

By Propositions A.39 and A.32, a compact subset ofRn is closed and bounded.
The converse is also true.

Theorem A.40 (The Heine–Borel theorem).A subset ofRn is compact if and only
if it is closed and bounded.

For a proof, see for example [29].

A.10 Connectedness

Definition A.41. A topological spaceS is disconnectedif it is the unionS=U ∪V
of two disjoint nonempty open subsetsU andV (Figure A.10). It isconnectedif
it is not disconnected. A subsetA of S is disconnectedif it is disconnected in the
subspace topology.

Proposition A.42.A subset A of a topological space S is disconnected if and onlyif
there are open sets U and V in S such that

(i) U ∩A 6=∅, V∩A 6=∅,
(ii) U ∩V ∩A=∅,
(iii) A⊂U ∪V.



A.10 Connectedness 361

U V

Fig. A.10.A disconnected space.

U V

A

Fig. A.11.A separation ofA.

A pair of open sets in S with these properties is called aseparationof A(FigureA.11).

Proof. Problem A.15. ⊓⊔

Proposition A.43.The image of a connected space X under a continuous map
f : X→Y is connected.

Proof. Supposef (X) is not connected. Then there is a separation{U,V} of f (X) in
Y. By the continuity of f , both f−1(U) and f−1(V) are open inX. We claim that
{ f−1(U), f−1(V)} is a separation ofX.

(i) SinceU ∩ f (X) 6=∅, the open setf−1(U) 6=∅.
(ii) If x∈ f−1(U)∩ f−1(V), then f (x) ∈U∩V∩ f (X) =∅, a contradiction. Hence,

f−1(U)∩ f−1(V) =∅.
(iii) Since f (X)⊂U ∪V, we haveX ⊂ f−1(U ∪V) = f−1(U)∪ f−1(V).

The existence of a separation ofX contradicts the connectedness ofX. This contra-
diction proves thatf (X) is connected. ⊓⊔

Proposition A.44. In a topological space S, the union of a collection of connected
subsets Aα having a point p in common is connected.

Proof. Suppose
⋃

α Aα =U ∪V, whereU andV are disjoint open subsets of
⋃

α Aα .
The pointp ∈ ⋃α Aα belongs toU or V. Assume without loss of generality that
p∈U .

For eachα,

Aα = Aα ∩ (U ∪V) = (Aα ∩U)∪ (Aα ∩V).
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The two open setsAα ∩U andAα ∩V of Aα are clearly disjoint. Sincep∈ Aα ∩U ,
Aα ∩U is nonempty. By the connectedness ofAα , Aα ∩V must be empty for allα.
Hence,

V =

(
⋃

α
Aα

)
∩V =

⋃

α
(Aα ∩V)

is empty. So
⋃

α Aα must be connected. ⊓⊔

A.11 Connected Components

Let x be a point in a topological spaceS. By Proposition A.44, the unionCx of all
connected subsets ofScontainingx is connected. It is called theconnected compo-
nentof Scontainingx.

Proposition A.45.Let Cx be a connected component of a topological space S. Then
a connected subset A of S is either disjoint from Cx or is contained entirely in Cx.

Proof. If A andCx have a point in common, then by Proposition A.44,A∪Cx is a
connected set containingx. Hence,A∪Cx⊂Cx, which implies thatA⊂Cx. ⊓⊔

Accordingly, the connected componentCx is the largest connected subset ofS
containingx in the sense that it contains every connected subset ofScontainingx.

Corollary A.46. For any two points x,y in a topological space S, the connected com-
ponents Cx and Cy either are disjoint or coincide.

Proof. If Cx andCy are not disjoint, then by Proposition A.45, they are contained in
each other. In this case,Cx =Cy. ⊓⊔

As a consequence of Corollary A.46, the connected components of SpartitionS
into disjoint subsets.

A.12 Closure

Let Sbe a topological space andA a subset ofS.

Definition A.47. Theclosureof A in S, denotedA, cl(A), or clS(A), is defined to be
the intersection of all the closed sets containingA.

The advantage of the bar notationA is its simplicity, while the advantage of the
clS(A) notation is its indication of the ambient space. IfA⊂ B⊂ S, then the closure
of A in B and the closure ofA in Sneed not be the same. In this case, it is useful to
have the notations clB(A) and clM(A) for the two closures.

As an intersection of closed sets,A is a closed set. It is the smallest closed set
containingA in the sense that any closed set containingA containsA.
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Proposition A.48 (Local characterization of closure).Let A be a subset of a topo-
logical space S. A point p∈S is in the closurecl(A) if and only if every neighborhood
of p contains a point of A(Figure A.12).

Here by “local,” we mean a property satisfied by a basis of neighborhoods at a
point.

Proof. We will prove the proposition in the form of its contrapositive:

p /∈ cl(A) ⇐⇒ there is a neighborhood ofp disjoint fromA.

(⇒) Suppose
p /∈ cl(A) =

⋂
{F closed inS| F ⊃ A}.

Then p /∈ some closed setF containingA. It follows that p ∈ S−F , an open set
disjoint fromA.

(⇐) Supposep∈ an open setU disjoint fromA. Then the complementF := S−U
is a closed set containingA and not containingp. Therefore,p /∈ cl(A). ⊓⊔

b

p
A

Fig. A.12.Every neighborhood ofp contains a point ofA.

Example.The closure of the open diskB(0, r) in R2 is the closed disk

B(0, r) = {p∈R2 | d(p,0)≤ r}.

Definition A.49. A point p in Sis anaccumulation pointof A if every neighborhood
of p in Scontains a point ofA other thanp. The set of all accumulation points ofA
is denoted ac(A).

If U is a neighborhood ofp in S, we callU−{p} a deleted neighborhoodof p.
An equivalent condition forp to be an accumulation point ofA is to require that every
deleted neighborhood ofp in Scontain a point ofA. In some books an accumulation
point is called alimit point.

Example.If A= [0,1[ ∪ {2} in R1, then the closure ofA is [0,1]∪{2}, but the set of
accumulation points ofA is only the closed interval[0,1].
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Proposition A.50.Let A be a subset of a topological space S. Then

cl(A) = A∪ac(A).

Proof.
(⊃) By definition,A⊂ cl(A). By the local characterization of closure (Proposition
A.48), ac(A)⊂ cl(A). Hence,A∪ac(A)⊂ cl(A).

(⊂) Supposep∈ cl(A). Eitherp∈ A or p /∈A. If p∈ A, thenp∈ A∪ac(A). Suppose
p /∈ A. By Proposition A.48, every neighborhood ofp contains a point ofA, which
cannot bep, sincep /∈ A. Therefore, every deleted neighborhood ofp contains a
point ofA. In this case,

p∈ ac(A)⊂ A∪ac(A).

So cl(A)⊂ A∪ac(A). ⊓⊔

Proposition A.51.A set A is closed if and only if A= A.

Proof.
(⇐) If A= A, thenA is closed becauseA is closed.

(⇒) SupposeA is closed. ThenA is a closed set containingA, so thatA⊂A. Because
A⊂ A, equality holds. ⊓⊔

Proposition A.52. If A⊂ B in a topological space S, thenA⊂ B.

Proof. SinceB containsB, it also containsA. As a closed subset ofScontainingA,
it containsA by definition. ⊓⊔

Exercise A.53 (Closure of a finite union or finite intersection). Let A andB be subsets of
a topological spaceS. Prove the following:

(a) A∪B= A∪B,
(b) A∩B⊂ A∩B.

The example ofA=]a,0[ andB=]0,b[ in the real line shows that, in general,A∩B 6= A∩B.

A.13 Convergence

Let Sbe a topological space. Asequencein S is a map from the setZ+ of positive
integers toS. We write a sequence as

〈xi〉 or x1,x2,x3, . . . .

Definition A.54. The sequence〈xi〉 convergesto p if for every neighborhoodU of
p, there is a positive integerN such that for alli ≥N, xi ∈U . In this case we say that
p is a limit of the sequence〈xi〉 and writexi → p or limi→∞ xi = p.

Proposition A.55 (Uniqueness of the limit). In a Hausdorff space S, if a sequence
〈xi〉 converges to p and to q, then p= q.
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Proof. Problem A.19. ⊓⊔

Thus, in a Hausdorff space we may speak ofthe limit of a convergent sequence.

Proposition A.56 (The sequence lemma).Let S be a topological space and A a
subset of S. If there is a sequence〈ai〉 in A that converges to p, then p∈ cl(A). The
converse is true if S is first countable.

Proof.
(⇒) Supposeai → p, whereai ∈ A for all i. By the definition of convergence, every
neighborhoodU of p contains all but finitely many of the pointsai . In particular,U
contains a point inA. By the local characterization of closure (Proposition A.48),
p∈ cl(A).

(⇐) Supposep∈ cl(A). SinceS is first countable, we can find a countable basis of
neighborhoods{Un} at p such that

U1⊃U2⊃ ·· · .

By the local characterization of closure, in eachUi there is a pointai ∈ A. We claim
that the sequence〈ai〉 converges top. If U is any neighborhood ofp, then by the
definition of a basis of neighborhoods atp, there is aUN such thatp∈UN ⊂U . For
all i ≥ N, we then have

Ui ⊂UN ⊂U,

Therefore, for alli ≥ N,
ai ∈Ui ⊂U.

This proves that〈ai〉 converges top. ⊓⊔

Problems

A.1. Set theory
If U1 andU2 are subsets of a setX, andV1 andV2 are subsets of a setY, prove that

(U1×V1)∩ (U2×V2) = (U1∩U2)× (V1∩V2).

A.2. Union and intersection
SupposeU1∩V1 =U2∩V2 = ∅ in a topological spaceS. Show that the intersection
U1∩U2 is disjoint from the unionV1∪V2. (Hint: Use the distributive property of an
intersection over a union.)

A.3. Closed sets
Let Sbe a topological space. Prove the following two statements.

(a) If {Fi}ni=1 is a finite collection of closed sets inS, then
⋃n

i=1Fi is closed.
(b) If {Fα}α∈A is an arbitrary collection of closed sets inS, then

⋂
α Fα is closed.
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A.4. Cubes versus balls
Prove that the open cube]− a,a[n is contained in the open ballB(0,

√
na), which

in turn is contained in the open cube]−√na,
√

na[n. Therefore, open cubes with
arbitrary centers inRn form a basis for the standard topology onRn.

A.5. Product of closed sets
Prove that ifA is closed inX andB is closed inY, thenA×B is closed inX×Y.

A.6. Characterization of a Hausdorff space by its diagonal
Let Sbe a topological space. The diagonal∆ in S×S is the set

∆ = {(x,x) ∈ S×S}.

Prove thatS is Hausdorff if and only if the diagonal∆ is closed inS×S. (Hint: Prove
thatS is Hausdorff if and only ifS×S−∆ is open inS×S.)

A.7. Projection
Prove that ifX andY are topological spaces, then the projectionπ : X×Y→ X,
π(x,y) = x is an open map.

A.8. The ε-δ criterion for continuity
Prove that a functionf : A→ Rm is continuous atp ∈ A if and only if for every
ε > 0, there exists aδ > 0 such that for allx ∈ A satisfyingd(x, p) < δ , one has
d( f (x), f (p)) < ε.

A.9. Continuity in terms of closed sets
Prove Proposition A.28.

A.10. Continuity of a map into a product
Let X, Y1, andY2 be topological spaces. Prove that a mapf = ( f1, f2) : X→Y1×Y2

is continuous if and only if both componentsfi : X→Yi are continuous.

A.11. Continuity of the product map
Given two mapsf : X→ X′ andg: Y→ Y′ of topological spaces, we define their
productto be

f ×g: X×Y→ X′×Y′, ( f ×g)(x,y) = ( f (x),g(y)).

Note that if π1 : X ×Y → X and π2 : X ×Y → Y are the two projections, then
f × g = ( f ◦ π1, f ◦ π2). Prove thatf × g is continuous if and only if bothf and
g are continuous.

A.12. Homeomorphism
Prove that if a continuous bijectionf : X→ Y is a closed map, then it is a homeo-
morphism (cf. Corollary A.36).

A.13.* The Lindelöf condition
Show that if a topological space is second countable, then itis Lindelöf; i.e., every
open cover has a countable subcover.
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A.14. Compactness
Prove that a finite union of compact sets in a topological spaceS is compact.

A.15.* Disconnected subset in terms of a separation
Prove Proposition A.42.

A.16. Local connectedness
A topological spaceS is said to belocally connected at p∈ S if for every neighbor-
hoodU of p, there is a connected neighborhoodV of p such thatV ⊂U . The spaceS
is locally connectedif it is locally connected at every point. Prove that ifS is locally
connected, then the connected components ofSare open.

A.17. Closure
Let U be an open subset andA an arbitrary subset of a topological spaceS. Prove
thatU ∩ Ā 6=∅ if and only if U ∩A 6=∅.

A.18. Countability
Prove that every second countable space is first countable.

A.19.* Uniqueness of the limit
Prove Proposition A.55.

A.20.* Closure in a product
Let SandY be topological spaces andA⊂ S. Prove that

clS×Y(A×Y) = clS(A)×Y

in the product spaceS×Y.

A.21. Dense subsets
A subsetA of a topological spaceS is said to bedensein S if its closure cl(A) = S.

(a) Prove thatA is dense inS if and only if for everyp∈ S, every neighborhoodU
of p contains a point ofA.

(b) LetK be a field. Prove that a Zariski open subsetU of Kn is dense inKn. (Hint:
Example A.18.)



B

The Inverse Function Theorem onRn and Related
Results

This appendix reviews three logically equivalent theoremsfrom real analysis, the
inverse function theorem, the implicit function theorem, and the constant rank theo-
rem, which describe the local behavior of aC∞ map fromRn toRm. We will assume
the inverse function theorem and deduce the other two, in thesimplest cases, from
the inverse function theorem. In Section 11 these theorems are applied to manifolds
in order to clarify the local behavior of aC∞ map when the map has maximal rank at
a point or constant rank in a neighborhood.

B.1 The Inverse Function Theorem

A C∞ map f : U → Rn defined on an open subsetU of Rn is locally invertibleor a
local diffeomorphismat a pointp in U if f has aC∞ inverse in some neighborhood of
p. The inverse function theorem gives a criterion for a map to be locally invertible.
We call the matrixJ f = [∂ f i/∂x j ] of partial derivatives off theJacobian matrixof
f and its determinant det[∂ f i/∂x j ] theJacobian determinantof f .

Theorem B.1 (Inverse function theorem).Let f : U→Rn be a C∞ map defined on
an open subset U ofRn. At any point p in U, the map f is invertible in some neigh-
borhood of p if and only if the Jacobian determinantdet[∂ f i/∂x j (p)] is not zero.

For a proof, see for example [35, Theorem 9.24, p. 221]. Although it appar-
ently reduces the invertibility off on an open set to a single number atp, because
the Jacobian determinant is a continuous function, the nonvanishing of the Jacobian
determinant atp is equivalent to its nonvanishing in a neighborhood ofp.

Since the linear map represented by the Jacobian matrixJ f(p) is the best linear
approximation tof at p, it is plausible thatf is invertible in a neighborhood ofp if
and only ifJ f(p) is also, i.e., if and only if det(J f(p)) 6= 0.
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B.2 The Implicit Function Theorem

In an equation such asf (x,y) = 0, it is often impossible to solve explicitly for one
of the variables in terms of the other. If we can show the existence of a function
y = h(x), which we may or may not be able to write down explicitly, suchthat
f (x,h(x)) = 0, then we say thatf (x,y) = 0 can be solvedimplicitly for y in terms
of x. The implicit function theorem provides a sufficient condition on a system of
equationsf i(x1, . . . ,xn) = 0, i = 1, . . . ,m under whichlocally a set of variables can
be solved implicitly asC∞ functions of the other variables.

Example.Consider the equation

f (x,y) = x2+ y2−1= 0.

The solution set is the unit circle in thexy-plane.

x

y

1−1

Fig. B.1.The unit circle.

From the picture we see that in a neighborhood of any point other than(±1,0),
y is a function ofx. Indeed,

y=±
√

1− x2,

and either function isC∞ as long asx 6=±1. At (±1,0), there is no neighborhood on
whichy is a function ofx.

On a smooth curvef (x,y) = 0 in R2,

y can be expressed as a function ofx in a neighborhood of a point(a,b)
⇐⇒ the tangent line tof (x,y) = 0 at(a,b) is not vertical
⇐⇒ the normal vector gradf := 〈 fx, fy〉 to f (x,y) = 0 at(a,b) is not horizontal
⇐⇒ fy(a,b) 6= 0.

The implicit function theorem generalizes this condition to higher dimensions. We
will deduce the implicit function theorem from the inverse function theorem.

Theorem B.2 (Implicit function theorem). Let U be an open subset inRn×Rm

and f : U → Rm a C∞ map. Write(x,y) = (x1, . . . ,xn,y1, . . . ,ym) for a point in U.
At a point(a,b) ∈U where f(a,b) = 0 and the determinantdet[∂ f i/∂y j(a,b)] 6= 0,
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there exist a neighborhood A×B of(a,b) in U and a unique function h: A→ B such
that in A×B⊂U ⊂ Rn×Rm,

f (x,y) = 0 ⇐⇒ y= h(x).

Moreover, h is C∞.

x

y

b

(a,b)

U1

f (x,y) = 0

F = (x, f )

u

v

V1

b

(a,0)

Fig. B.2.F−1 maps theu-axis to the zero set off .

Proof. To solve f (x,y) = 0 for y in terms ofx using the inverse function theorem,
we first turn it into an inverse problem. For this, we need a mapbetween two open
sets of the same dimension. Sincef (x,y) is a map from an open setU in Rn+m to
Rm, it is natural to extendf to a mapF : U →Rn+m by adjoiningx to it as the firstn
components:

F(x,y) = (u,v) = (x, f (x,y)).

To simplify the exposition, we will assume in the rest of the proof thatn= m= 1.
Then the Jacobian matrix ofF is

JF =

[
1 0

∂ f/∂x ∂ f/∂y

]
.

At the point(a,b),

detJF(a,b) =
∂ f
∂y

(a,b) 6= 0.

By the inverse function theorem, there are neighborhoodsU1 of (a,b) andV1 of
F(a,b) = (a,0) in R2 such thatF : U1→ V1 is a diffeomorphism withC∞ inverse
F−1 (Figure B.2). SinceF : U1→V1 is defined by

u= x,

v= f (x,y),

the inverse mapF−1 : V1→U1 must be of the form



B.2 The Implicit Function Theorem 371

x= u,

y= g(u,v)

for someC∞ functiong: V1→ R. Thus,F−1(u,v) = (u,g(u,v)).
The two compositionsF−1 ◦ F andF ◦ F−1 give

(x,y) = (F−1 ◦ F)(x,y) = F−1(x, f (x,y)) = (x,g(x, f (x,y))) ,

(u,v) = (F ◦ F−1)(u,v) = F(u,g(u,v)) = (u, f (u,g(u,v))) .

Hence,

y= g(x, f (x,y)) for all (x,y) ∈U1, (B.1)

v= f (u,g(u,v)) for all (u,v) ∈V1. (B.2)

If f (x,y) = 0, then (B.1) givesy= g(x,0). This suggests that we defineh(x) =
g(x,0) for all x∈ R1 for which (x,0) ∈V1. The set of all suchx is homeomorphic to
V1∩ (R1×{0}) and is an open subset ofR1. Sinceg is C∞ by the inverse function
theorem,h is alsoC∞.

Claim. For (x,y) ∈U1 such that(x,0) ∈V1,

f (x,y) = 0 ⇐⇒ y= h(x).

Proof (of Claim).
(⇒) As we saw already, from (B.1), iff (x,y) = 0, then

y= g(x, f (x,y)) = g(x,0) = h(x). (B.3)

(⇐) If y= h(x) and in (B.2) we set(u,v) = (x,0), then

0= f (x,g(x,0)) = f (x,h(x)) = f (x,y). ⊓⊔

By the claim, in some neighborhood of(a,b) ∈ U1, the zero set off (x,y) is
precisely the graph ofh. To find a product neighborhood of(a,b) as in the statement
of the theorem, letA1×B be a neighborhood of(a,b) contained inU1 and letA=
h−1(B)∩A1. Sinceh is continuous,A is open in the domain ofh and hence inR1.
Thenh(A)⊂ B,

A×B⊂ A1×B⊂U1, and A×{0}⊂V1.

By the claim, for(x,y) ∈ A×B,

f (x,y) = 0 ⇐⇒ y= h(x).

Equation (B.3) proves the uniqueness ofh. ⊓⊔

Replacing a partial derivative such as∂ f/∂y with a Jacobian matrix[∂ f i/∂y j ],
we can prove the general case of the implicit function theorem in exactly the same
way. Of course, in the theoremy1, . . . ,ym need not be the lastmcoordinates inRn+m;
they can be any set ofm coordinates inRn+m.
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Theorem B.3.The implicit function theorem is equivalent to the inverse function
theorem.

Proof. We have already shown, at least for one typical case, that theinverse function
theorem implies the implicit function theorem. We now provethe reverse implica-
tion.

So assume the implicit function theorem, and letf : U→Rn be aC∞ map defined
on an open subsetU of Rn such that at some pointp∈U , the Jacobian determinant
det[∂ f i/∂x j(p)] is nonzero. Finding a local inverse fory= f (x) nearp amounts to
solving the equation

g(x,y) = f (x)− y= 0

for x in terms ofy near(p, f (p)). Note that∂gi/∂x j = ∂ f i/∂x j . Hence,

det

[
∂gi

∂x j (p, f (p))

]
= det

[
∂ f i

∂x j (p)

]
6= 0.

By the implicit function theorem,x can be expressed in terms ofy locally near
(p, f (p)); i.e., there is aC∞ function x = h(y) defined in a neighborhood off (p)
in Rn such that

g(x,y) = f (x)− y= f (h(y))− y= 0.

Thus,y= f (h(y)). Sincey= f (x),

x= h(y) = h( f (x)).

Therefore,f andh are inverse functions defined nearp and f (p) respectively. ⊓⊔

B.3 Constant Rank Theorem

EveryC∞ map f : U → Rm on an open setU of Rn has arank at each pointp in U ,
namely the rank of its Jacobian matrix[∂ f i/∂x j (p)].

Theorem B.4 (Constant rank theorem). If f : Rn ⊃U → Rm has constant rank k
in a neighborhood of a point p∈U, then after a suitable change of coordinates near
p in U and f(p) in Rm, the map f assumes the form

(x1, . . . ,xn) 7→ (x1, . . . ,xk,0, . . . ,0).

More precisely, there are a diffeomorphism G of a neighborhood of p in U sending p
to the origin inRn and a diffeomorphism F of a neighborhood of f(p) in Rm sending
f (p) to the origin inRm such that

(F ◦ f ◦G)−1(x1, . . . ,xn) = (x1, . . . ,xk,0, . . . ,0).
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Proof (for n=m= 2, k= 1). Supposef =( f 1, f 2) : R2⊃U→R2 has constant rank
1 in a neighborhood ofp∈U . By reordering the functionsf 1, f 2 or the variablesx,
y, we may assume that∂ f 1/∂x(p) 6= 0. (Here we are using the fact thatf has rank
≥ 1 at p.) DefineG: U →R2 by

G(x,y) = (u,v) = ( f 1(x,y),y).

The Jacobian matrix ofG is

JG=

[
∂ f 1/∂x ∂ f 1/∂y

0 1

]
.

Since detJG(p) = ∂ f 1/∂x(p) 6= 0, by the inverse function theorem there are neigh-
borhoodsU1 of p∈ R2 andV1 of G(p) ∈ R2 such thatG: U1→ V1 is a diffeomor-
phism. By makingU1 a sufficiently small neighborhood ofp, we may assume thatf
has constant rank 1 onU1.

OnV1,
(u,v) = (G ◦G−1)(u,v) = ( f 1 ◦G−1,y ◦G−1)(u,v).

Comparing the first components givesu= ( f 1 ◦G−1)(u,v). Hence,

( f ◦G−1)(u,v) = ( f 1 ◦G−1, f 2 ◦G−1)(u,v)

= (u, f 2 ◦G−1(u,v))

= (u,h(u,v)),

where we seth= f 2 ◦G−1.
BecauseG−1 : V1→U1 is a diffeomorphism andf has constant rank 1 onU1, the

compositef ◦G−1 has constant rank 1 onV1. Its Jacobian matrix is

J( f ◦G−1) =

[
1 0

∂h/∂u ∂h/∂v

]
.

For this matrix to have constant rank 1,∂h/∂v must be identically zero onV1. (Here
we are using the fact thatf has rank≤ 1 in a neighborhood ofp). Thus,h is a
function ofu alone and we may write

( f ◦G−1)(u,v) = (u,h(u)).

Finally, let F : R2→ R2 be the change of coordinatesF(x,y) = (x,y− h(x)).
Then

(F ◦ f ◦G−1)(u,v) = F(u,h(u)) = (u,h(u)−h(u)) = (u,0). ⊓⊔

ExampleB.5. If a C∞ map f : Rn ⊃U → Rn defined on an open subsetU of Rn has
nonzero Jacobian determinant det(J f(p)) 6= 0 at a pointp∈U , then by continuity it
has nonzero Jacobian determinant in a neighborhood ofp. Therefore, it has constant
rankn in a neighborhood ofp.



374 B The Inverse Function Theorem onRn and Related Results

Problems

B.1.* The rank of a matrix
Therankof a matrixA, denoted rkA, is defined to be the number of linearly indepen-
dent columns ofA. By a theorem in linear algebra, it is also the number of linearly
independent rows ofA. Prove the following lemma.

Lemma. Let A be an m×n matrix(not necessarily square), and k a positive integer.
Then rkA ≥ k if and only if A has a nonsingular k× k submatrix. Equivalently,
rkA≤ k−1 if and only if all k× k minors of A vanish.(A k× k minorof a matrix A
is the determinant of a k× k submatrix of A.)

B.2.* Matrices of rank at most r
For an integerr ≥ 0, defineDr to be the subset ofRm×n consisting of allm×n real
matrices of rank at mostr. Show thatDr is a closed subset ofRm×n. (Hint: Use
Problem B.1.)

B.3.* Maximal rank
We say that the rank of anm× n matrix A is maximalif rk A = min(m,n). Define
Dmax to be the subset ofRm×n consisting of allm×n matrices of maximal rankr.
Show thatDmax is an open subset ofRm×n. (Hint: Supposen≤ m. ThenDmax =
Rm×n−Dn−1. Apply Problem B.2.)

B.4.* Degeneracy loci and maximal rank locus of a map
Let F : S→Rm×n be a continuous map from a topological spaceSto the spaceRm×n.
Thedegeneracy locus of rank rof F is defined to be

Dr(F) := {x∈ S| rkF(x)≤ r}.
(a) Show that the degeneracy locusDr(F) is a closed subset ofS. (Hint: Dr(F) =

F−1(Dr), whereDr was defined in Problem B.2.)
(b) Show that themaximal rank locusof F ,

Dmax(F) := {x∈ S| rkF(x) is maximal},
is an open subset ofS.

B.5. Rank of a composition of linear maps
SupposeV, W, V ′, W′ are finite-dimensional vector spaces.

(a) Prove that if the linear mapL : V →W is surjective, then for any linear map
f : W→W′, rk( f ◦ L) = rk f .

(b) Prove that if the linear mapL : V →W is injective, then for any linear map
g: V ′→V, rk(L ◦ g) = rkg.

B.6. Constant rank theorem
Generalize the proof of the constant rank theorem (Theorem B.4) in the text to arbi-
traryn, m, andk.

B.7. Equivalence of the constant rank theorem and the inverse function theorem
Use the constant rank theorem (Theorem B.4) to prove the inverse function theorem
(Theorem B.1). Hence, the two theorems are equivalent.
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Supposeb,b′ ∈ Bk both map toc under j . Then j(b− b′) = jb− jb′ = c− c = 0. By the
exactness atBk, b−b′ = i(a′′) for somea′′ ∈ Ak.

With the choice ofb as preimage, the elementd∗[c] is represented by a cocyclea∈ Ak+1

such thati(a) = db. Similarly, with the choice ofb′ as preimage, the elementd∗[c] is repre-
sented by a cocyclea′ ∈ Ak+1 such thati(a′) = db′. Theni(a−a′) = d(b−b′) = di(a′′) =
id(a′′). Sincei is injective,a−a′ = da′′, and thus[a] = [a′]. This proves thatd∗[c] is indepen-
dent of the choice ofb.

The proof that the cohomology class ofa is independent of the choice ofc in the coho-
mology class[c] can be summarized by the commutative diagram

= 0a−a′ db−db′// i //

b−b′ c−c′
� j // //

b′′ c′′.
�

j
// //

_
d

OO

_

d

OO

_

d

OO

Suppose[c] = [c′] ∈ Hk(C). Thenc− c′ = dc′′ for somec′′ ∈Ck−1. By the surjectivity of
j : Bk−1→Ck−1, there is ab′′ ∈Bk−1 that maps toc′′ under j . Chooseb∈Bk such thatj(b)= c
and letb′ = b−db′′ ∈ Bk. Then j(b′) = j(b)− jdb′′ = c−d j(b′′) = c−dc′′ = c′. With the
choice ofb as preimage,d∗[c] is represented by a cocyclea∈ Ak+1 such thati(a) = db. With
the choice ofb′ as preimage,d∗[c] is represented by a cocyclea′ ∈ Ak+1 such thati(a′) = db′.
Then

i(a−a′) = d(b−b′) = ddb′′ = 0.

By the injectivity of i, a= a′, so[a] = [a′]. This shows thatd∗[c] is independent of the choice
of c in the cohomology class[c]. ♦♦

A.33 Compact Hausdorff space
Let Sbe a compact Hausdorff space, andA, B two closed subsets ofS. By Proposition A.30,A
andB are compact. By Proposition A.31, for anya∈ A there are disjoint open setsUa ∋ a and
Va⊃ B. SinceA is compact, the open cover{Ua}a∈A for A has a finite subcover{Uai }ni=1. Let
U =

⋃n
i=1Uai andV =

⋂n
i=1Vai . ThenA⊂U andB⊂V. The open setsU andV are disjoint

because ifx∈U ∩V, thenx∈Uai for somei andx∈Vai for the samei, contradicting the fact
thatUai ∩Vai =∅. ♦♦
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∫

Hn
dω = (−1)n

∫

Rn−1
f (x1, . . . ,xn−1,0)dx1 · · ·dxn−1 =

∫

∂Hn
ω

because(−1)nRn−1 is precisely∂Hn with its boundary orientation. So Stokes’ theorem also
holds in this case. ♦♦

23.5 Take the exterior derivative ofx2+ y2+ z2 = 1 to obtain a relation among the 1-forms
dx, dy, anddzon S2. Then show for example that forx 6= 0, one hasdx∧dy= (z/x)dy∧dz.

24.1 Assumeω = d f . Derive a contradiction using Problem 8.10(b) and Proposition 17.2.

25.4* The snake lemma
If we view each column of the given commutative diagram as a cochain complex, then the
diagram is a short exact sequence of cochain complexes

0→A→B→C→ 0.

By the zig-zag lemma, it gives rise to a long exact sequence incohomology. In the long exact
sequence,H0(A) = kerα, H1(A) = A1/ imα = cokerα, and similarly forB andC. ♦♦

26.2 Defined−1 = 0. Then the given exact sequence is equivalent to a collection of short
exact sequences

0→ imdk−1→ Ak dk−→ imdk→ 0, k= 0, . . . ,m−1

By the rank-nullity theorem,

dimAk = dim(imdk−1)+dim(imdk).

When we compute the alternating sum of the left-hand side, the right-hand side will can-
cel to 0. ♦♦

28.1 Let U be the punctured projective planeRP2−{p} andV a small disk containingp.
BecauseU can be deformation retracted to the boundary circle, which after identification is
in factRP1, U has the homotopy type ofRP1. SinceRP1 is homeomorphic toS1, H∗(U) ≃
H∗(S1). Apply the Mayer–Vietoris sequence. The answer isH0(RP2) = R, Hk(RP2) = 0 for
k> 0.

28.2 Hk(Sn) = R for k= 0,n, andHk(Sn) = 0 otherwise.

28.3 One way is to apply the Mayer–Vietoris sequence toU =R2−{p}, V = R2−{q}.

A.13* The Lindelöf condition
Let {Bi}i∈I be a countable basis and{Uα}α∈A an open cover of the topological spaceS. For
everyp∈Uα , there exists aBi such that

p∈ Bi ⊂Uα .

Since thisBi depends onp andα, we writei = i(p,α). Thus,

p∈ Bi(p,α) ⊂Uα .

Now let J be the set of all indicesj ∈ I such thatj = i(p,α) for somep and someα. Then⋃
j∈J B j = Sbecause everyp in S is contained in someBi(p,α) = B j .

For eachj ∈ J, choose anα( j) such thatB j ⊂Uα( j). ThenS=
⋃

j B j ⊂
⋃

j Uα( j). So
{Uα( j)} j∈J is a countable subcover of{Uα}α∈A . ♦♦
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A.15* Disconnected subset in terms of a separation
(⇒) By (iii),

A= (U ∩V)∩A= (U ∩A)∪ (V ∩A).

By (i) and (ii),U ∩A andV ∩A are disjoint nonempty open subsets ofA. Hence,A is discon-
nected.

(⇐) SupposeA is disconnected in the subspace topology. ThenA = U ′ ∪V ′, whereU ′ and
V ′ are two disjoint nonempty open subsets ofA. By the definition of the subspace topology,
U ′ =U ∩A andV ′ =V ∩A for some open setsU,V in S.

(i) holds becauseU ′ andV ′ are nonempty.
(ii) holds becauseU ′ andV ′ are disjoint.

(iii) holds becauseA=U ′ ∪V ′ ⊂U ∪V. ♦♦

A.19* Uniqueness of the limit
Supposep 6= q. SinceSis Hausdorff, there exist disjoint open setsUp andUq such thatp∈Up

andq∈Uq. By the definition of convergence, there are integersNp andNq such that for all
i ≥ Np, xi ∈ Up and for all i ≥ Nq, xi ∈ Uq. This is a contradiction sinceUp∩Uq is the
empty set. ♦♦

A.20* Closure in a product
(⊂) By Problem A.5, cl(A)×Y is a closed set containingA×Y. By the definition of closure,
cl(A×Y)⊂ cl(A)×Y.

(⊃) Conversely, suppose(p,y)∈ cl(A)×Y. If p∈A, then(p,y)∈A×Y⊂ cl(A×Y). Suppose
p /∈ A. By Proposition A.50,p is an accumulation ofA. Let U ×V be any basis open set in
S×Y containing(p,y). Becausep∈ ac(A), the open setU contains a pointa∈ A with a 6= p.
SoU ×V contains the point(a,y) ∈ A×Y with (a,y) 6= (p,y). This proves that(p,y) is an
accumulation point ofA×Y. By Proposition A.50 again,(p,y) ∈ ac(A×Y)⊂ cl(A×Y). This
proves that cl(A)×Y ⊂ cl(A×Y). ♦♦

B.1* The rank of a matrix
(⇒) Suppose rkA≥ k. Then one can findk linearly independent columns, which we calla1,
. . . , ak. Since them× k matrix [a1 · · · ak] has rankk, it hask linearly independent rowsb1,
. . . , bk. The matrixB whose rows areb1, . . . , bk is ak× k submatrix ofA, and rkB = k. In
other words,B is nonsingulark×k submatrix ofA.

(⇐) SupposeA has a nonsingulark×k submatrixB. Let a1, . . . , ak be the columns ofA such
that the submatrix[a1 · · · ak] containsB. Since[a1 · · · ak] hask linearly independent rows, it
also hask linearly independent columns. Thus, rkA≥ k. ♦♦

B.2* Matrices of rank at most r
Let A be anm×n matrix. By Problem B.1, rkA≤ r if and only if all (r +1)× (r +1) minors
m1(A), . . . ,ms(A) of A vanish. As the common zero set of a collection of continuous functions,
Dr is closed inRm×n. ♦♦

B.3* Maximal rank
For definiteness, supposen≤m. Then the maximal rank isn and every matrixA∈ Rm×n has
rank≤ n. Thus,

Dmax= {A∈ Rm×n | rkA= n}= Rm×n−Dn−1.

SinceDn−1 is a closed subset ofRm×n (Problem B.2),Dmax is open inRm×n. ♦♦

B.4* Degeneracy loci and maximal rank locus of a map
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(a) LetDr be the subset ofRm×n consisting of matrices of rank at mostr. The degeneracy
locus of rankr of the mapF : S→ Rm×n may be described as

Dr(F) = {x∈ S| F(x) ∈ Dr}= F−1(Dr).

SinceDr is a closed subset ofRm×n (Problem B.2) andF is continuous,F−1(Dr) is a
closed subset ofS.

(b) Let Dmax be the subset ofRm×n consisting of all matrices of maximal rank. Then
Dmax(F) = F−1(Dmax). SinceDmax is open inRm×n (Problem B.3) andF is continu-
ous,F−1(Dmax) is open inS. ♦♦

B.7 Use Example B.5.


