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Introduction to Algebraic Geometry

by Lê Dũng Tráng

All the rings considered unless specified are commutative rings with unit and the homomorphisms
of rings send the unit on the unit.

Most of the text in algebraic is extracted from [2]. Notions of commutative algebra can be learnt
in [1] or [3]. The last section can be read in [4].

1 Ringed spaces and Schemes

1.1 Sheaves of abelian groups

Let X be a topological space. A pre-sheaf of abelian groups on X is a contravariant functor of the
category of open sets of X into the category of Abelian groups.

Example Let X be a topological space. For any open subset U of X, consider the abelian group
T (U) of the continuous functions on U . The correspondence U �→ T (U) defines an abelian group
pre-sheaf on X.

Definition Let F be a pre-sheaf of abelian groups on X. One says that the pre-sheaf F is a sheaf
of abelian groups on X if:

1. if U is an open subset of X, if (Ui)i∈I is an open covering of U , and if s ∈ F(U) is an element
such that its restriction s|Ui = 0, then s = 0.

2. if U is an open subset of X, if (Vi)i∈I is an open covering of U , and if, for each i ∈ I, we have
an element si ∈ F(Vi) such that for each i, j ∈ I, we have the restrictions si|Vi∩Vj = sj |Vj∩Vi,
then there is an element s ∈ F(U) such that s|Vi = si for any i ∈ I.

Let F be a pre-sheaf of abelian groups on X. The stalk of F at a point x ∈ X is the lim−→x∈U F(U).

To any pre-sheaf F of abelian groups on X one can associate a sheaf F̃ of abelian groups on X and
a morphism i : F → F̃ of pre-sheaves of abelian groups, such that for any morphism of pre-sheaves
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of abelian groups ϕ : F → G into a sheaf G, there is a unique morphism of sheaves ϕ̃ : F̃ → G, such
that:

F → F̃
ϕ ↘ ↓ ϕ̃

G
is commutative.

Let X be a topological space. The pre-sheaves (resp. sheaves) of abelian groups on X make a
category P(X) (resp. S(X) where the morphisms are the morphisms of pre-sheaves (resp. sheaves).
Let f : X → Y be a continuous map. Let F be a sheaf of abelian groups on X. The direct image
of F by f is the sheaf f∗(F) on Y defined for an open subset V of Y by:

f∗(F)(V ) := F(f−1(V ).

In this way f∗ defines a functor from the category S(X) of sheaves on X to the category of sheaves
on Y .

For any sheaf G on Y , we define the sheaf f−1(G) by:

f−1(G)(U) := lim−→
V⊃f(U)

G(V )

for any open subset of X. Again f−1 defines a functor of the category A(Y ) of sheaves on Y to the
category of sheaves A(X).
If X is a subset of Y endow with the induced topology and i is the inclusion of X in Y , then, the
sheaf i−1(G) is called the restriction of G to X. We often denote i−1(G) by G|X. The stalk of G|X
at x ∈ X is the stalk Gx of G at x.

1.2 Ringed spaces

Definition The pair (X,OX) of a topological space and a sheaf OX with value in the category of
commutative rings is called a ringed space. It is called a locally ringed space, if, for x ∈ X, the stalk
OX,x of OX at x is a local ring.

Examples

1. Let X be an complex analytic manifold. Let OX be the sheaf of complex analytic functions
on X. Since for any open subset U of X the space O(U) is a ring, the pair (X,OX) is a
ringed space. The stalk OX,x for any x ∈ X is a local ring isomorphic to the local ring of
convergent complex power series in n variables, where n is equal to the dimension dimx(X)
of X at x.
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2. Let U be an open subset of the complex affine space C
n. Let OU the sheaf of complex analytic

functions on U . Since U is a complex analytic manifold, the pair (U,OU ) is a locally ringed
space.

Let fi, i ∈ I, be a family of complex analytic functions defined on U . Let I the sheaf of ideals
generated by the family fi, i ∈ I, in OU . Let X be the set of zeroes of the family fi, i ∈ I, in
U . The pair (X,OU/I|X) is a locally ringed space called a local analytic space.

3. Let A be a commutative ring. Let Spec(A) be the space of prime ideals of A. Endow Spec(A)
with the Zariski topology in which U ⊂ Spec(A) is open if, there is an ideal I such that
P ∈ U if and only if I 	⊂ P. The complement is V (I) = Spec(A) \ U is a closed set:

V (I) = {P ∈ Spec(A) | I ⊂ P}

For instance, if a ∈ A, the principal ideal (a) generated by a defines a closed set V ((a)) and
an open set D(a) := Spec(A) \ V ((a)). The open sets D(a), for a ∈ A, form a base for the
Zariski topology of Spec(A).

Now, let us define a sheaf OA on Spec(A). Let U be an open subset of Spec(A). For any
prime ideal P ∈ U , we have the localization AP of the ring A at the prime ideal P. An
element s belongs to OA(U) if it is a map U →

∐
P∈U AP such that

• for P ∈ U , s(P) belongs to AP;

• for P ∈ U , there are a neighbourhood V of P in U and elements a, b of the ring A, such
that for Q ∈ V , b /∈ Q and s(Q) = a/b ∈ AQ.

The pair (Spec(A),OA) is a locally ringed space.

Definition Let (X,OX) and (Y,OY ) be ringed spaces (resp. locally ringed spaces). A morphism
of ringed spaces (resp. locally ringed spaces) from (X,OX) to (Y,OY ) is a pair (f, f̃) where f is a
continuous map from X to Y and f̃ is a morphism of sheaves of rings from OY to f∗OX (resp. a
morphism of sheaves of rings from OY to f∗OX which induces, for each point x ∈ X a local ring
homomorphism from OY,f(x) to OX,x).
An isomorphism of ringed space (resp. locally ringed spaces) from (X,OX) to (Y,OY ) is a pair
(f, f̃) where f is a homeomorphism from X on Y and f̃ is an isomorphism of sheaves of rings from
OY to f∗OX (resp. an isomorphism of sheaves of rings from OY to f∗OX which induces, for each
point x ∈ X a local ring isomorphism from OY,f(x) onto OX,x).
Thus, one can define the category of ringed spaces (resp. locally ringed spaces).

1.3 Schemes

Let (X,OX) be locally ringed space. Let x be a point of X and U be a neighbourhood of x in X.
One can define the pair (U,OX |U), where OX |U is the restriction of the sheaf OX to U . The pair
(U,OX |U) is also a locally ringed space.
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Definition We say that the pair (X,OX) is a scheme if for any x ∈ X, there is a neighbourhood
U(x) of x in X and a ring A, such that the locally ringed space (U(x),OX |U(x)) is isomorphic to
(Spec(A),OA) defined in the example above.
The category of schemes is the full subcategory of locally ringed spaces having this property. The
objects of this category are schemes and the morphisms are morphisms of schemes considered as
locally ringed spaces.

Examples

1. Affine schemes Let A be a ring. Let OA be the sheaf defined on Spec(A) defined above.
The pair (Spec(A),OA) is a scheme. Any scheme (X,OX) isomorphic to (Spec(A),OA) for
some ring A is called an affine scheme.

A morphism of affine schemes ϕ : (Spec(A),OA) → (Spec(B),OB) is given by a ring homo-
morphism B → A.

2. Open subschemes Let (X,OX) be a scheme. Let U be an open subset of X, endowed with
the induced topology. The pair (U,OX |U), where OX |U is the restriction of OX to U , is a
scheme.

3. Glueing of schemes Let (Xi,OXi), i ∈ I, be a family of schemes. Suppose for i 	= j, we are
given an open subset Uij of Xi. Consider the open subschemes (Uij ,OUij ). Suppose given for
i 	= j an isomorphism of schemes ϕij : (Uij ,OUij )→ (Uji,OUji) such that

• for each i, j: ϕji = ϕ−1
ij ;

• for each i, j, k: ϕij(Uij ∩ Uik) = Uji ∩ Ujk;
• for each i, j, k: ϕik = ϕjk ◦ ϕij on Uij ∩ Uik.

There is a scheme (X,OX) and morphisms Φi : (Xi,OXi) → (X,OX) such that Φi is an
isomorphism of (Xi,OXi) onto an open subscheme of (X,OX), these open subschemes give a
covering of X, for all i, j, Φi((Uij ,OUij )) = Φ((Xi,OXi)) ∩ Φj((Xj ,OXj )) and Φi = Φj ◦ ϕij
on (Uij ,OUij ).

The scheme (X,OX) is said to be obtained by glueing the schemes (Xi,OXi), i ∈ I, along
the isomorphisms ϕij .

In the case, for all i, j, Uij are empty, the scheme (X,OX) is the disjoint union of the (Xi,OXi),
i ∈ I.

4. Projective schemes Let R := ⊕n∈ZRn be a graded ring and let R+ := ⊕n>0Rn which is
an ideal of R. Consider Proj(R) be the set of homogeneous prime ideals of R which do not
contain R+. Remember that P is a prime ideal of R if and only if for any homogeneous
element a and b of R, ab ∈ P if a ∈ P or b ∈ P. We endow Proj(R) with the Zariski
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topology where a closed subset V (I), defined by a homogeneous ideal I, is the set of all the
homogeneous prime ideals of R which contain I:

V (I) := {P ∈ Proj(R) | I ⊂ P}
When the sheaf I is the homogeneous ideal generated by a homogeneous element a ∈ R, we
denote:

D+(a) := {P ∈ Proj(R) | a /∈ P}
the open set defined by a. Notice that these open sets of Proj(R) cover Proj(R).

The sheaf OR on Proj(R) is defined in the following way. For P ∈ Proj(R) consider the
ring R(P) of elements of degree zero in the localization S−1R with denominators in the
multiplicative system S of all homogeneous elements which are not in P. Let U be an open
subset of Proj(R). We define O(U) as the set of functions s : U → ∐

P∈U R(P) such that,
for P ∈ U , the image s(P) is in R(P) and, for each P ∈ U , there is a neighbourhood V of P

in U and homogeneous elements a and b of the same degree in R, such that, for all Q ∈ V ,
b /∈ Q and s(Q) = a/b in R(Q). One can prove that OR is a sheaf.

One can show that (Proj(R),OR) is a scheme that we call the projective scheme defined by
the graded ring R. Furthermore (D+(a),OR|D+(a)) are subschemes of (Proj(R),OR) which
are isomorphic to (Spec(R(a)),OR(a)), where R(a) is the subring of elements of degree 0 in
the localized ring Ra.

If A is a ring and A[x0, . . . , xn] is the ring of n + 1 variables over R, the projective scheme
(Proj(A[x0, . . . , xn]),OA[x0,...,xn]) is the projective n-space P

n
A over A. In particular, if A = k

is an algebraically closed field, it is a scheme whose closed points is a set homeomorphic to
the usual projective n-space over k.

A scheme over the scheme (S,OS) is a scheme morphism ϕ : (X,OX) → (S,OS). A morphism
of schemes over (S,OS), ϕ : (X,OX) → (S,OS) and ψ : (Y,OY ) → (S,OS), is a morphism
φ : (X,OX)→ (Y,OY ) such that ψ ◦ φ = ϕ.

When S = Spec(k) where k is a field and OS := Ok, a scheme over (S,OS) is also called a k-scheme.

2 Varieties and Schemes

2.1 Algebraic sets

Let k be a field. Consider the k-algebra of polynomials k[X1, . . . , Xn] of n variables with coefficients
in k. Let P be an element of k[X1, . . . , Xn]. A zero of P is a point (a1, . . . , an) of the affine space
kn such that P (a1, . . . , an) = 0.

Hilbert Nullstellensatz asserts that if k is algebraically closed and P is not a constant polynomial,
P has always a zero. This is why we shall assume in all these lectures that the field is algebraically
closed.
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Definition An algebraic set E of the affine space kn is the set of all the zeroes of a family (Pi)i∈I
of polynomials in k[X1, . . . , Xn]. Classically the Pi are the equations of E. It is easy to see that
any polynomial of the ideal I of k[X1, . . . , Xn] generated by the family (Pi)i∈I is an equation of E.
In fact, Hilbert Nullstellensatz shows that any polynomial of the root I(E) =

√
(I) of the ideal I

generated by the family (Pi)i∈I is an equation and it gives all the equations of E.

An algebraic function on E is by definition the restriction to E of a polynomial function on an
affine space which contains E. The algebra of all algebraic functions on E is isomorphic to the
quotient algebra:

A(E) :=
k[X1, . . . , Xn]

I(E)
.

Definition A function ϕ is regular at a point x ∈ E if there is an open neighbourhood U(x) of x
in E and polynomials f and g, such that g does not vanish on U(x), and for any y ∈ U(x), we have
ϕ(y) = f(y)/g(y). We say that the function ϕ is regular on E if it is regular at any x ∈ E.
Regular functions on E make a ring isomorphic to A(E).

The points of E correspond to the maximal ideals of A(E). Therefore one can embed E into
Spec(A(E)). But one can see that Spec(A(E)) contains many other points, which are the prime
ideals of A(E)) which are not maximal.

The sheaf OA(E)) induces the sheaf of algebraic functions on E and the topology of E is the usual
Zariski topology of algebraic sets.

An algebraic set is irreducible, if it is not the union of two proper algebraic subsets.

By definition an irreducible algebraic set is an affine variety.

Hilbert finiteness theorem says that any algebraic set is the finite union of affine varieties.

2.2 Projective varieties

Consider the graduated ring R := k[X0, . . . , Xn]. Consider a homogeneous polynomial f of R. One
can speak of zeros of f in the projective space P

n as lines m ∈ P
n, so that f vanishes at any point

x ∈ m.
One can define projective algebraic sets of P

n as sets of zeros of a set of homogeneous polynomials.

Let X be a projective algebraic set. A function ϕ is regular at x ∈ X if there is an open neigh-
bourhood of x in X and homogeneous polynomial f and g of the same degree, such that g does
not vanish on U(x) and ϕ(y) = f(y)/g(y).

If X is a projective algebraic function, regular functions on X are constant.

The projective subsets of P
n define a family of closed subsets of a Topology in P

n called the Zariski
topology of P

n.
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A projective set is irreducible if it is not the union of two proper projective sets. If the base field k
is algebraically closed, homogeneous prime ideals of R are in bijection with irreducible projective
subsets of P

n.

An irreducible projective set is called a projective variety.

2.3 Varieties

Definition A variety is a Zariski open subset of an affine variety or of a projective variety.

Notice that a projective space is covered by affine spaces. Let Xi ∈ R be i-th coordinate. It is
a linear form. It defines in the projective space P

n a hyperplane Hi. Let Ui be the open subset
P
n \Hi. There is a map ϕi from Ui to the affine space kn given by (a0, . . . , an) �→ (a0/ai, . . . , an/ai)
where we omit ai/ai.

This map is a homeomorphism of Ui onto kn endowed with the Zariski topology.

Then we obtain that if X is a projective variety (resp. quasi-projective variety) in P
n, X is covered

by the open sets X ∩ Ui which are homeomorphic with affine (resp. quasi-affine) varieties via the
mapping ϕi defined before.

In fact any variety V is covered by affine varieties. For any point x of V , we want to show that
there is an open affine subset which contains x. We have seen that V is covered by quasi-affine
varieties, so we assume that V is quasi-affine in kn. Let W := V \ V . We may assume W 	= ∅. It
is a closed set in kn. Let I be the ideal of k[X1, . . . , Xn] which defines W . Since x /∈ W , there is
a polynomial f in I, such that f(x) 	= 0. Let H be the hypersurface of kn defined by f = 0. The
space Y \Y ∩H is an open subspace of Y . Also, since Z ⊂ H, Y \Y ∩H is closed in kn \H. Now,
kn \H is an affine variety isomorphic to the hypersurface of kn+1 given by Xn+1f = 0.

2.4 Morphisms

Let X be a quasi-affine variety in kn. A function ϕ : X → k is regular at a point x ∈ X if there
is an open neighbourhood U of x in X and polynomials f ang g in k[X1, . . . , Xn] such that g is
nowhere 0 in U and ϕ = f/g in U . We say ϕ is regular if it is regular at each point of X.

Now, suppose that X is a quasi-projective variety in P
n. A function ϕ : X → k is regular at the

point x ∈ X, if there is an open neighbourhood U of x in X and homogeneous polynomials f and
g of the same degree such that g is nowhere 0 in U and ϕ = f/g on U . We say that ϕ is regular on
X if it is regular at any point of X.

One can define the category of varieties.

Let k be an algebraically closed field. A variety over k is any affine quasi-affine, projective, quasi-
projective variety as defined before. A morphism φ : X → Y of two varieties is a continuous map
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such that for any open set U of Y and any regular function ϕ : U → k, the function

ϕ ◦ φ : φ−1(U)→ k

is regular.

The composition of two morphisms is a morphism. The identity is a morphism. In particular
a morphism φ is an isomorphism, if there a morphism ψ : Y → X such that φ ◦ ψ = IdY and
ψ ◦ φ = IdX .

k-Varieties define a category that we call V(k).

On a variety X, one has the sheaf of regular functions OX , where for U open subset of X, OX(U)
is the ring of regular functions on X. For any x in X, the stalk OX,x is the local ring of germs of
regular function at x.

2.5 Rational maps

Definition Let X and Y be varieties over k. A rational map ψ : X → Y is an equivalence class
of pairs (U,ψU ), where U is a non-empty open subset of X and ψU is a morphism from U to Y ,
and where (U,ψU ) and (V, ψV ) are equivalent if ψU and ψV coincide on U ∩ V . The rational map
is dominant if for some (U,ψU ), the image ψU is dense in Y .

If for some pair (U,ψU ) of a rational map ψ : X → Y , the image of ψU is dense in Y , this is true
for any pair (V, ψV ) of ψ. One can define the category of varieties and dominant rational maps,
since one can “compose” rational dominant maps. Notice that a rational map is not a map of X
into Y .

Let ψ : X → Y be a dominant rational map. Let f ∈ K(Y ) be a rational function represented by a
regular function fW defined on the open set W . Since for some pair (U,ψU ) representing ψ, ψ(U)
is dense and non-empty in Y , the set ψ−1

U (W ) is a non-empty open set on which f ◦ ψU induces
a regular function. The pair (ψ−1

U (W ), (f ◦ ψU |ψ−1
U (W )) represents a rational function in K(X).

Therefore, we have define a map from the set of dominant rational maps of X into Y into the k-
algebras homomorphisms of K(Y ) into K(X). For any two varieties X and Y this gives a bijection
between the set of dominant rational maps of X into Y and the k-algebras homomorphisms of
K(Y ) into K(X).

In fact, we have a contravariant equivalence of category between the category of varieties and
dominant rational maps and the category of finitely generated field extensions of k.

Using the theorem of the primitive element, one can show that any variety X of dimension r is
birational to a hypersurface Y of P

r+1.
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2.6 Schemes over k

One can also define the category S(k) of Schemes over the field k.

Then, there is a functor F : V(k)→ S(k) from V(k) into S(k) which is fully faithful. Namely, let
V be a k-variety. Let us define the scheme F (V ). The topological space |F (V )| underlying F (V )
is made of the set of non-empty irreducible closed subsets of V . Since |F (W )| ⊂ |F (V )| if W is a
closed subset of V , the set of closed subsets of W1 ∪W2 is the union of the sets of closed subsets of
W1 and W2 and the set of closed subsets of ∩i∈IWi is the intersection of all the sets of subsets of
Wi, |F (V )| is endowed with a topology.
There is a natural map ξ : V → |F (V )| so that ξ(x) := {x}. One can check that this map gives a
bijection between the open subsets of V and the open subsets of |F (V )|.
The k-variety V is endowed with a sheaf OV of regular functions. So |F (V )| is endowed with the
sheaf ξ∗(OV ).
The pair (|F (V ), ξ∗(OV )) is a scheme over k. Since every variety can be covered by affine varieties,
it will be sufficient to prove our assertion when V is an affine variety.

Let suppose that V is an affine variety. Let A := k[X1, . . . , Xn]/I(V ) be the ring of regular functions
defined on V . We have a morphism of ringed spaces:

α : (V,OV )→ (SpecA,OA)

defined as follows. If x ∈ V , α(x) = Mx where Mx is the maximal ideal of A defined by x. We
have seen that α is a bijection of V with the set of maximal ideals of A and a homeomorphism with
its image. For any open subset U of SpecA, we define a homomorphism

σ(U) : OA(U)→ α∗(OV )(U) = OV (α−1(U)).

Let s ∈ OA(U). Let x ∈ α−1(U). The value σ(U)(s)(x) is the image of s(α(x)) ∈ OA,α(x) in the
quotient OA,α(x)/Mα(x) � k. The function (in x) σ(U)(s)(x) is a regular function on α−1(U), and
one can prove that σ(U) is an isomorphism. Now, the prime ideals of A are in 1-1 correspondence
with the irreducible closed subsets of V , therefore it can be shown that the scheme (Spec(A),OA)
is isomorphic with (|F (V ), ξ∗(OV )).
To give the morphism of (|F (V ), ξ∗(OV )) to (Spec(k),Ok) we have to define a homomorphism from
the field k into Γ(|F (V ), ξ∗(OV )) = Γ(V,OV ). We send λ ∈ k to the constant function λ on V .
Therefore, (|F (V ), ξ∗(OV )) is a scheme over k.
To show that the functor is fully faithful it remains to prove that, if V and W are varieties, the
natural map:

HomV(k)(V,W )→ HomS(k)((|F (V ), ξ∗(OV )), (|F (W ), ξ∗(OW )))

is an isomorphism.
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3 Properties of schemes and their morphisms

3.1 First properties

A scheme is connected if its topological space is connected. A scheme is irreducible if its topological
space is irreducible.

Definition A scheme (X,OX) is reduced if, for any open subset U of X, the ring O(U) is reduced,
i.e. has no nilpotent element.

One can show that a scheme (X,OX) is reduced if and only if for any point x ∈ X, the local ring
OX,x is reduced.
A scheme X is integral if , for any open subset U of X, the ring O(U) is an integral domain.
For example, an affine scheme (Spec(A),OA) is irreducible if and only if the nilradical of A is
prime. It is reduced if and only if its nilradical is {0} and it is integral if and only if A is an integral
domain.

A scheme is locally noetherian if it can be covered by open affine schemes (Spec(Ai),OAi) where
the rings Ai are noetherian. A scheme is noetherian, if it is locally noetherian and quasi-compact.

One can prove that a an affine scheme (Spec(A),OA) is noetherian if and only if the ring A is
noetherian.

The dimension of a scheme (X,OX) is the dimension of the topological space X. It can be proved
that the dimension of an affine scheme (Spec(A),OA) is the Krull dimension of A.
An open subscheme of a scheme (X,OX) is a scheme (U,OU ) whose topological space U is an open
subset of the topological space X and the structure sheaf OU is isomorphic to the restriction OX |U .
A morphism of schemes f : (X,OX)→ (Y,OY ) is locally of finite type if there exists a covering of
(Y,OY ) by open affine subschemes (Spec(Ai),OAi)i∈I such that, for each i, f−1(Spec(Ai),OAi) is
covered by affine subschemes (Spec(Aij),OAij ), where Aij is a finitely generated Ai-algebra.

The morphism f is of finite type if, furthermore, each f−1(Spec(Ai),OAi) can be covered by a finite
number of (Spec(Aij),OAij ).

An open immersion f : (X,OX)→ (Y,OY ) is a morphism which induces an isomorphism of (X,OX)
with an open subscheme of (Y,OY ).
A closed immersion f : (X,OX) → (Y,OY ) is a morphism which induces a homeomorphism of X
onto a closed subset of Y and a surjective map OY → f∗(OX) of sheaves on Y .
A closed subscheme is an equivalence class of closed immersion, where f : (X,OX)→ (Y,OY ) and
g : (Z,OZ) → (Y,OY ) are equivalent if there is an isomorphism i : (Z,OZ) → (X,OX) such that
g = f ◦ i.
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Examples

1. Let (Y,OY ) be the affine scheme defined by the ring A. Let X be the closed subspace of
Spec(A) defined by the ideal I(X) of A. Every closed subscheme structure on X is defined
by an ideal A whose zeros are X.

If V is an affine variety. It correspond to the scheme (Spec(A(V )),OA(V )). A subvariety W
of V is defined by the prime ideal P of A(V ). The zeros of Pn, n ≥ 1, are W , but each Pn

define a different closed subscheme. For n = 1, it is the subscheme which corresponds to the
subvariety W . For n ≥ 2, it corresponds to the n-infinitesimal neighbourhoods of the closed
subscheme associated to W .

2. Let (Y,OY ) be a scheme. We can see that if X is a closed subset of Y , there are many closed
subschemes whose topological space is X. There is one which is “smaller” than any other
one, called the reduced induced closed subscheme structure.

Suppose that (Y,OY ) is an affine scheme (Spec(A),OA). Let X be a closed subset. Let
the ideal I := ∩P∈XP is the largest ideal which defines X. The reduced induced closed
subscheme structure on X is the one defined by this ideal.

In general the reduced induced closed subscheme structure whose topological space is X is
defined by glueing the schemes defined in the affine schemes of a covering of the scheme
(Y,OY ).

3.2 Properties of morphisms

Let (S,OS) be a scheme and f : (X,OX) → (S,OS), g : (Y,OY ) → (S,OS) be schemes over
(S,OS). We can define the fibered product of (X,OX) and (Y,OY ) over (S,OS) (in fact the fibered
product of f and g). It is a scheme (X ×S Y,OX×SY ) together with morphisms

π1 : (X ×S Y,OX×SY )→ (X,OX)

π2 : (X ×S Y,OX×SY )→ (Y,OY )
such that f ◦ π1 = g ◦ π2 and for any pair of morphisms

p1 : (Z,OZ)→ (X,OX)

p2 : (Z,OZ)→ (Y,OY )
such that f ◦ p1 = g ◦ p2, there is a unique morphism σ : (Z,OZ) → (X ×S Y,OX×SY ) such that
π1 ◦ σ = p1 and π2 ◦ σ = p2.

The fibered product is unique up to isomorphism.

Let f : (X,OX) → (S,OS) and g : (S′,OS′) → (S,OS). The projection (X ×S S′,OX×SS′) →
(S′,OS′) is called the morphism obtained from f by base change g.
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In the case (X,OX), (Y,OY ) and (S,OS) are affine schemes given by the rings A, B and C, the
morphisms f and g are given by the ring homomorphisms f̃ : C → A and g̃ : C → B. Therefore, A
and B can be considered through respectively f̃ and g̃ as C-algebras. The fibered product in this
case is an affine scheme (Spec(A⊗CB),OA⊗CB) given by tensor product A⊗CB. The construction
of the fibered product proceeds by glueing schemes.

When f : (X,OX)→ (Y,OY ) is a morphism of schemes and y ∈ Y . Let k(y) the residue field of y,
i.e. the quotient OY,y/mY,y. We have a natural morphism i : (Spec(k(y)),Ok(y))→ (Y,OY ) which
gives the point y ∈ Y . The fibered product of f and i is the fiber of f over y:

(Xy,OXy) = (X,OX)×(Y,OY ) (Spec(k(y)),Ok(y))

Let (X,OX) → (Y,OY ) be a morphism of schemes. The diagonal morphism of f is the unique
morphism (X,OX)→ (X ×Y X,OX×Y X) such that the composition with the morphisms π1 or π2

from (X ×Y X,OX×Y X) to (X,OX) is IdX .
We say that the morphism f is separated if its diagonal morphism is a closed immersion. We say
that the scheme (X,OX) is separated if its natural morphism to (Spec(Z),OZ) is separated.

Any morphism of affine schemes is separated. An arbitrary morphism is separated if and only if
the image of the diagonal morphism is a closed subset of X ×Y X.

In the case all the schemes are noetherian:

1. Open and closed immersions are separated.

2. A composition of two separated morphisms is separated.

3. Separated morphisms are stable under base change.

4. If f : (X,OX) → (Y,OY ) and f ′ : (X ′,OX′) → (Y ′,OY ′) are morphisms over a scheme
(S,OS) and are separated, the product

f × f ′ : (X ×S X ′,OX×SX′)→ (Y ×S Y ′,OY×SY ′)

is separated.

5. If f : (X,OX) → (Y,OY ) and g : (Y,OY ) → (Z,OZ) are morphisms of schemes and g ◦ f is
separated, then f is separated.

6. A morphism f : (X,OX)→ (Y,OY ) is separated if Y can be covered by open subsets Vi, i ∈ I,
such that the morphisms (f−1(Vi),OX |f−1(Vi))→ (Vi,OY |Vi) induced by f are separated for
each i ∈ I.

A morphism is proper if it is separated, of finite type, and universally closed.
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A morphism f : (X,OX) → (Y,OY ) is universally closed if it is closed and, for any morphism
g : (Y ′,OY ′)→ (Y,OY ), the morphism f ′ : (X ′,OX′)→ (Y ′,OY ′) obtained from f by base change
g is closed.

As above, if we only deal with noetherian schemes, we have:

1. Closed immersions are proper.

2. A composition of two proper morphisms is proper.

3. Proper morphisms are stable under base change.

4. If f : (X,OX) → (Y,OY ) and f ′ : (X ′,OX′) → (Y ′,OY ′) are morphisms over a scheme
(S,OS) and are proper, the product

f × f ′ : (X ×S X ′,OX×SX′)→ (Y ×S Y ′,OY×SY ′)

is proper.

5. If f : (X,OX) → (Y,OY ) and g : (Y,OY ) → (Z,OZ) are morphisms of schemes and g ◦ f is
proper, then , if g is separated, f is proper.

6. A morphism f : (X,OX) → (Y,OY ) is proper if Y can be covered by open subsets Vi, such
that the morphisms (f−1(Vi),OX |f−1(Vi)) → (Vi,OY |Vi) induced by f are proper for each
index i.

4 Projective schemes and morphisms

4.1 Projective space over a ring

We have defined for any graded ring R the scheme (Proj(R),OR) which is the projective scheme
defined by the graded ring R.

When R := A[X0, . . . , Xn], the corresponding scheme is the projective scheme P
n
A which has a

natural morphism to the affine scheme defined by the ring A. It is the n-projective space over the
ring A. If A→ B is a ring homomorphism, we have an affine scheme morphism:

(Spec(B),OB)→ (Spec(A),OA),

and one can check that P
n
B � P

n
A ×Spec(A) Spec(B). In particular, P

n
A � P

n
Z
×Spec(Z) Spec(A).

For any scheme (Y,OY ), we define the scheme P
n
Y to be the fiber product P

n
Z
×Spec(Z) Y .
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4.2 Projective morphisms and schemes

Let f : (X,OX) → (Y,OY ) be a morphism of schemes. We say that it is projective if it factors
through a closed immersion (X,OX)→ P

n
Y composed with the projection P

n
Y → Y .

The morphism f is quasi-projective if it factors through an open immersion (X,OX) → (X ′,OX′)
composed with a projective morphism (X ′,OX′)→ (Y,OY ).
One can prove that a projective morphism of noetherian schemes is proper.

A quasi-projective of morphism of noetherian schemes is of finite type and separated.

A scheme (Y,OY ) over the affine scheme defined by A is projective if it is isomorphic to a closed
subscheme of the A-projective space P

r
A. A scheme (Y,OY ) over the affine scheme defined by A is

projective if and only if (Y,OY ) is isomorphic to the projective scheme defined by the graded ring
R, where R0 = A and R is finitely generated by R1 as R0-algebra.

4.3 Varieties and projective schemes

We have given a fully faithful functor F from the category V(k) of k-varieties into the category of
k-schemes S(k).

The schemes in the image of the functor F are integral, separated schemes of finite type over k.
The image of the set of projective varieties is the set of projective integral schemes.

We define an abstract variety as an integral separated scheme of finite type over an algebraically
closed field k. If it is proper over k we say that the abstract variety is complete.

An abstract variety of dimension one is called a curve, an abstract variety of dimension two is called
a surface.

One can prove:

1. Every complete curve is projective.

2. There exists non-projective complete surfaces.

5 Sheaves of Modules

5.1 Ringed spaces

Let (X,OX) be a ringed space. A sheaf of OX -modules is a sheafM of abelian groups on X, such
that, for every open subset U ⊂ X, the abelian groupM(U) is a module over the ring O(U) and,
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for each inclusion of open sets V ⊂ U , the restriction homorphism M(U) →M(V ) is compatible
with the modules structures and the restriction ring homomorphism OX(U)→ OX(V ).
A morphism M→ N of OX -modules is a morphism of sheaves such that, for any open subset U
of X,M(U)→ N (U) is a homomorphism of OX(U)-modules.
The OX -modules over the ringed space (X,OX) is an abelian category.
The tensor product M⊗OX

N is the sheaf associated to the pre-sheaf given, for any open subset
U of X by:

U �→ M(U)⊗OX(U) N (U)

A sheaf of OX -modules is free if it is isomorphic to a direct sum of copies of OX . It is locally free, if
the space X can be covered by open subsets U , such that the restriction of the sheaf of OX -modules
to each U is free on (U,OX |U). The rank of a locally free module on a open set where it is free is
the number of copies of the structure sheaf needed. If X is connected, the rank of a locally free
module is the same everywhere. A locally sheaf of rank one is also called an invertible sheaf.

A sheaf of ideals on (X,OX) is a sheaf of OX -modules which is a subsheaf I of OX , i.e. for any
open subset U , I(U) is an ideal of O(U).
Let f : (X,OX) → (Y,OY ) be a morphism of ringed space. Let M be a OX -module. We have
defined the direct image f∗(M) of the sheaf M. It is a f∗(OX)-module. Since f defines a ring
homomorphism OY → f∗(OX), the sheaf f∗(M) is also a OY -module called the direct image ofM
by f .

Similarly if N is a sheaf of OY -modules, we have defined f−1N . It is a f−1OY -module. We have
a morphism of sheaves of rings f−1OY → OX . The inverse image f∗N of N by f is:

f−1N ⊗f−1OY
OX

which is naturally a OX -module.
One can show that f∗ and f∗ define adjoint functors between the category of OX -modules and the
category of OY -modules, i.e. for any OX -module M and any OY -module N , we have a natural
isomorphism:

HomOX
(f∗N ,M) � HomOY

(N , f∗M)

5.2 Affine schemes

In the case of schemes let us consider first affine schemes (Spec(A),OA).
Any A-moduleM defines a OA-module M̃ . For each prime ideal P of A, letMP be the localization
of M at P. For any open subset U of Spec(A), the O(U)-module M̃(U) is the set of functions

s : U →
∐

P∈U
MP
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such that, for each P ∈ U , s(P) befongs to MP and for each Q ∈ U there is a neighbourhood V of
Q in U and elements m ∈M and a ∈ A such that for each R ∈ V , a /∈ R and s(R) = m/a. Using
the obvious restriction maps, M̃ is a sheaf of OA-modules.
We can prove:

1. For each P ∈ Spec(A), the stalk of M̃ at P is isomorphic to the localization MP.

2. For any a ∈ A, Aa-module M̃(D(a)) over the open set D(a) of prime ideals P which do not
contain a is isomorphic to the module Ma. In particular Γ(Spec(A), M̃) =M .

3. The map M �→ M̃ is a faithfull functor from the category of A-module into the category of
OA-modules which is exact, i.e. the natural homomorphism:

HomA(M,N)→ HomOA
(M̃, Ñ)

is an isomorphism and any exact sequence:

0→M ′ →M →M ′′ → 0

gives an exact sequence of OA-modules:

0→ M̃ ′ → M̃ → M̃ ′′ → 0.

4. If M and N are A-modules, (M ⊗A N )̃ = M̃ ⊗OA
Ñ .

5. For any family of A-modules (Mi)i∈I , we have (⊕i∈IMi)̃ = ⊕i∈IM̃i.

6. Let f : (Spec(B),OB)→ (Spec(A),OA) be a morphism of affine schemes, for any B-module
N , we have f∗Ñ = Ñ(A), where N(A) is the module N considered as A-module through the
homomorphism A→ B defined by f .

7. For any A-module M, f∗M̃ = (M ⊗A B)̃.

These sheaves of the form M̃ on an affine scheme will be the model for quasi-coherent sheaves.

We say that a sheaf M of OX -modules is a quasi-coherent sheaf on the scheme (X,OX) if X is
covered by open affine subsets Ui, such that (Ui,OX |Ui) is affine and isomorphic to (Spec(Ai),OAi)
andM|Ui is isomorphic to M̃i for some Ai-module Mi. We say thatM is coherent if each Mi is a
finitely generated Ai-module.

We have:

1. On any scheme (X,OX), the structure sheaf OX is coherent.

2. If (X,OX) is an affine scheme defined by a ring A, if (Y,OY ) is the closed subscheme defined
by the ideal I of A, and i : Y → X is the inclusion, then i∗OY is a coherent OX -module,
isomorphic to (A/I )̃.
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3. Let A be a ring. The correspondence M �→ M̃ gives an equivalence of category between the
category of A-modules and the category of quasi-coherent OA-modules. If, furthermore A is a
noetherian ring, it gives an equivalence of category between the category of finitely generated
A-modules and the category of coherent OA-modules.

4. Let (X,OX) be a scheme. The category of quasi-coherent OX -modules on X is an abelian
category. If (X,OX) is a noetherian scheme, the category of coherent OX -modules on X is
abelian.

5. Let f : (X,OX) → (Y,OY ) be a morphism of schemes. If G is a quasi-coherent OY -module,
then the inverse image f∗G is a quasi-coherent OX -module. If both (X,OX) and (Y,OY ), if
G is a coherent OY -module, then the inverse image f∗G is a coherent OX -module.

5.3 Projective schemes

Let R be a graded ring andM a graded R-module. We define the sheaf associated toM , denoted by
M̃ on the projective scheme (Proj(R),OR). For each homogeneous prime P in Proj(R), M(P) is
the the abelian group of elements of degree 0 in the localization S−1M of M with denominators in
the multiplicative set S of elements of R not contained in P. Let U be an open subset of Proj(R).
The group M̃(U) is given by the set of functions s : U → ∐

P∈U M(P) such that, for any Q ∈ U ,
there exist an open neighbourhood V of Q in U and homogeneous elements m ∈ M and a ∈ R of
the same degree, such that, for every Q in V , a /∈ Q, and s(Q) = m/a. With the obvious restriction
maps, M̃ is a sheaf on Proj(R). It is also an OR-module.
One can prove:

1. The stalk M̃P of M̃ at P ∈ Proj(R) is M(P).

2. For any a ∈ R of degree ≥ 1, the restriction M̃ |D+(a) is isomorphic to (M(a))̃, considering
D+(a) isomorphic to the affine scheme defined by R(a), where M(a) is the group of elements
of degree 0 in Ma.

3. M̃ is a quasi-coherent OR-module. If R is noetherian and M finitely generated over R, M̃ is
a coherent OR-module.

Let R be a graded module. Let (X,OX) = (Proj(R),OR). For any n ∈ Z, we define OX(n) as
(R(n))̃.

The sheaf OX(1) is called the twisting sheaf of Serre.
For any sheafM of OX -modules, we denote byM(n) the twisted sheafM⊗OX

OX(n).
Then, if we assume that R is generated by R1 as R0-algebra:

1. The sheaf OX(n) is invertible.
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2. OX(n)⊗OX
OX(m) � O(n+m)

Let R be a graduated ring. Let (X,OX) = (Proj(R),OR). Let M a sheaf of OX -modules. We
have an abelian group Γ∗(M) := ⊕n∈ZΓ(X,M(n)). We endow Γ∗(M) with a strucure of graded
R-module as follows: any s ∈ Rd determines naturally a global section s ∈ Γ(X,O(d)), then, for
any element m ∈ Γ(X,M(n)), we define s.m ∈ Γ(X,M(n+d), by taking the tensor product m⊗ s
and by using the isomorphismM(n)⊗OX

O(d) �M(n+ d).

If R := A[X0, . . . , Xn] is the polynomial ring with coefficients in the ring A (for n ≥ 1), with
X = Proj(R), then, Γ∗(OX) � R.

Let R be a graded ring finitely generated by R1 as R0-algebra. Let X = Proj(R) and M a
quasi-coherent OX -module. Then we have a natural isomorphism:

(Γ∗(M))˜�M

Let A be a ring. Let (Y,OY ) be a closed subscheme of P
n
A. Then there is a homogeneous ideal

I ⊂ R = A[X0, . . . , Xn], such that (Y,OY ) is the closed subscheme defined by I.
For any scheme (Y,OY ), we define the twisting sheaf O(1) on P

n
Y := P

n
Z
×Z Y as f∗O(1), where

f : P
n
Y → P

n
Z
is the natural map.

For any scheme (X,OX) over (Y,OY ), an invertible sheaf L is very ample if there is a morphism
i : (X,OX) → P

n
Y for some n which induces an isomorphism on an open subscheme of a closed

scheme of P
n
Y such that L is isomorphic to i∗O(1).

6 Differential forms

6.1 Kähler Differentials

Let A be a ring and B be an A-algebra. Let M be a B-module.

An A-derivation of B into M is a map d : B →M , such that:

1. the map d is additive;

2. for b, b′ ∈ B, d(bb′) = bd(b′) + b′d(b);

3. for all a ∈ A, d(a.1B) = 0.

The module of relative differential forms of B over A is a B-module ΩB|A, together with a A-
derivation d : B → ΩB|A satisfying the following universal property: for any B-module M and any
A-derivation d′ : B → M , there is a unique B-module homomorphism h : ΩB|A → M such that
h ◦ d = d′.

18



Such a module of relative differential forms of B over A is unique up to isomorphism. In fact:

Let δ : B⊗AB → B be the diagonal homomorphism defined by δ(b⊗ b′) = bb′. Let I be the kernel
of δ. Consider B ⊗A B as a B-module by multiplication on the right. Then , the quotient I/I2 is
also a B-module. We have a map d : B → I/I2 given by d(b) = [1⊗ b− b⊗ 1], where [1⊗ b− b⊗ 1]
is the class of 1⊗ b− b⊗ 1 in I/I2. Then the pair (I/I2, d) is a module of relative differential forms
of B over A.

We have: if A′ and B are A-algebras, define B′ := B⊗AA′; then, ΩB′|A′ � ΩB|A⊗BB′. Furthermore
if T is a multiplicative system of B, then ΩT−1B|A � T−1ΩB|A.

If B := A[X1, . . . , Xn] is the polynomial ring with coefficients in A, the module ΩB|A of relative
differential forms of B over A is the free B-module of rank n generated by dX1, . . . , dXn.

(First exact sequence) Let A → B → C be homomorphisms of rings. There is a natural exact
sequence of C-modules:

ΩB|A ⊗B C → ΩC|A → ΩB|A → 0.

(Second exact sequence) Let B be an A-algebra. Let I be an ideal of B and C be the quotient
B/I. We have a natural exact sequence:

I/I2 → ΩB|A ⊗B C → ΩC|A → 0

6.2 Sheaves of Differentials

Let f : (X,O) → (Y,OY ) be a separated morphism of schemes. Consider the diagonal morphism
Δ : (X,OX) → (X ×Y X,OX×Y X). The image of Δ is a closed subscheme. Let I the ideal sheaf
which defines the image of Δ. The sheaf of relative differentials of (X,O) over (Y,OY ) is the sheaf
ΩX|Y := Δ∗(I/I2).

In the case (X,O) and (Y,OY ) are affine schemes defined by the rings B and A and the morphism
is given by a ring homomorphism A→ B, it is easy to see that ΩX|Y = (ΩB|A)̃.

The module of differentials behaves well by base change. Namely, let f : (X,O) → (Y,OY ) be a
separated morphism of schemes. Let g : (Y ′,OY ′) → (Y,OY ) be another morphism. Consider the
base extension of f by g:

f ′ : (X ′,OX′) = (X ×Y Y ′,OX×Y Y ′)→ (Y ′,OY ′)

Then the relative differentials ΩX′|Y ′ � (g′)∗ΩX|Y , where g′ : (X×Y Y ′,OX×Y Y ′)→ (X,OX) is the
other projection.

Notice that if the schemes are affine schemes with X = Spec(A), Y = Spec(B), Y ′ = Spec(B′),
this is the consequence of the algebraic result ΩB′|A′ � ΩB|A ⊗B B′ given above.
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Let f : (X,OX) → (Y,OY ) and g : (Y,OY ) → (Z,OZ) are morphisms of schemes. There is an
exact sequence of sheaves on X:

f∗ΩY |Z → ΩX|Z → ΩX|Y → 0.

It is consequence of the first exact sequence considered above.

Let f : (X,OX)→ (Y,OY ) be a morphism of schemes and let Z be a closed subscheme of (X,OX)
defined by the ideal sheaf I. There is an exact sequence of sheaves:

I/I2 → ΩX|Y ⊗OX
OZ → ΩX|Z → 0.

This is consequence of the second exact sequence above.

As consequence of the algebraic settings we also have that, if (X,OX) is the relative affine space
knY , the sheaf ΩX|Y is a free OX -module of rank n generated by the global sections dX1, . . . , dXn,
where X1, . . . , Xn are coordinates of kn.

Let A be a ring. Let (Y,OY ) be the affine scheme defined by A. Let (X,OX) be the relative
projective space P

n
Y . Then, we have the exact sequence of sheaves:

0→ ΩX|Y → OX(−1)n+1 → OX → 0.

7 Non-singular varieties

7.1 Definition

Let Y ⊂ kn be an affine variety. Let f1, . . . , fs be generators of the ideal I(Y ) of Y in k[X1, . . . , Xn].
The affine variety Y of dimension r is non-singular at the point x if the rank of the matrix
(∂fi/∂Xj)1≤i≤s,1≤j≤n is n− r. The variety Y is non-singular if it is non-singular at every point of
Y .

It can be proved that the affine variety Y is non-singular at the point x ∈ Y if and only if the local
ring OY,x is a regular local ring.
In general, for any variety Y , Y is non-singular at the point x if the local ring OY,x is a regular local
ring. The variety Y is non-singular if it is non-singular at every point. The variety Y is singular if
it is not non-singular.

Let Y be a variety. The set Sing(Y ) of singular points of Y is a proper closed subset.

Since we have defined an abstract variety to be an integral separated scheme of finite type over an
algebraically closed field, we shall say that an abstract variety is non-singular if all its local rings
are regular local rings. Considering the functor F : V(k) → S(k) of the category of “classical k-
varieties” into the category of schemes over k, the image of a non-singular variety in the “classical”
sense is a non-singular abstract variety, because any local ring at a point of the abstract variety
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is the localization of a local ring at a prime ideal and the localization of a regular local ring at a
prime ideal is a regular local ring.

7.2 Basic properties of non-singular points

Then, if (X,OX) is an irreducible separated scheme of finite type over an algebraically closed field
k, the sheaf of differentials ΩX|k is a locally free sheaf of rank n = dimX if and only if (X,OX) is
a non-singular variety.

As a consequence, if (X,OX) is a variety over k, then there is a open dense subset U of X which is
non-singular. To prove this fact it is enough to prove that the fiber of ΩX|k over the generic point
{0} is ΩK|k. One shows that it is a K-vector space of dimension n. Then in a neighbourhood U of
the generic point ΩX|k is locally free of rank n. So, the open set U must be non-singular.

(Bertini theorem) Let (X,OX) be a non-singular closed subvariety of the projective space P
n
k over

an algebraically closed filed. Then, there exists a hyperplane H not containing X, such that H ∩X
is non-singular. Furthermore the set of hyperplane having this property forms an open dense subset
of the space of all hyperplanes.

7.3 Some invariants

The tangent sheaf of a non-singular variety (X,OX) is the sheaf Hom(ΩX|k,OX). It is a locally
free sheaf of rank n = dim(X). The canonical sheaf is the sheaf ωX := ∧nΩX|k, the nth exterior
power of the sheaf of differentials. It is an invertible sheaf on (X,OX).
If the variety (X,OX) is projective and non-singular, the geometric genus of (X,OX) is

pg(X) := dimk Γ(X,ωX).

Then if X and X ′ are birationally equivalent non-singular projective varieties over k, then they
have equal geometric genus.

Let (Y,OY ) be a non-singular closed subvariety of the non-singular variety (X,OX) defined by
the sheaf of ideals I. The local free sheaf I/I2 is called the conormal sheaf NY |X of Y . Its dual
HomOY

(NY |X ,OY ) is the normal sheaf of Y in X. It is locally free of rank r = codim(Y,X).

Let (Y,OY ) be a non-singular closed subvariety of codimension r in the non-singular variety
(X,OX). Then:

ωY � ωX ⊗OX
∧rNY |X .

In the case r = 1, Y can be considered as a divisor. Let L be the associated invertible sheaf on
(X,OX). Then, ωY � ωX ⊗OX

L ⊗OX
⊗OX

OY . This last assertion comes from the fact I � L−1.
Since I/I2 � L−1 ⊗OX

OY , we have NY |X � L⊗OX
OY .
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8 Complex case

8.1 Analytic spaces

Above we have defined local analytic spaces. As we have defined schemes, we may define complex
analytic spaces.

We say that the locally ringed space (X,OX) is a complex analytic space if X is Hausdorff and,
for any point x ∈ X, there is an open neighbourhood U(x), such that (U(x),OX |U(x)) is a local
analytic space. We say that the complex analytic space (X,OX) is reduced if, for any x ∈ X, the
local ring OX,x is a reduced ring.
A morphism of complex analytic spaces is a morphism of the corresponding locally ringed spaces.
Therefore, we can define the category of complex analytic spaces A.

We say that the complex analytic space (X,OX) is non-singular if, for any point x ∈ X the local
ring OX,x is regular. A non-singular complex analytic space is a complex analytic manifold.

8.2 Complex algebraic varieties

One can associate a reduced complex analytic space to any complex algebraic variety. We have
a functor Φ from the category of complex algebraic varieties V(C) into the category of complex
analytic spaces A. We shall write Φ(X) = (Xan,OanX ). Let OX be the sheaf of regular functions
on X.

The properties of this correspondence are the following:

1. The completion of the local rings OX,x and O(an)
X,x are equal.

2. We have an inclusion OX,x ⊂ O(an)
X,x and the quotient O(an)

X,x /OX,x is OX,x-flat.

3. Let f : X → Y be a regular application between algebraic varieties, the closure of f(X) and
the Zariski closure of f(X) coincide.

If F is an OX -module, one can associate a sheaf on X(an) in the following manner: we have a
continuous map given by the identity i : X(an) → X; let F ′ be the reciprocal sheaf on X(an) by i;
then, F (an) is given by F ′ ⊗O′X O

(an)
X . Then we have:

1. Let F be an OX -module on the variety X, the sheaf F (an) is an O(an)X -module.

2. If F is coherent, the analytic sheaf F (an) is coherent.

3. If X is a projective variety and F a coherent module on X, the k-th cohomology of F is
isomorphic to the k-th cohomology of F (an).
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4. LetX be a projective variety and F , G be coherent modules on X, any analytic morphism of
F (an) into G(an) is defined by one and only one algebraic morphism of F into G.

5. LetX be a projective variety. Let M be an analytic coherent sheaf on X(an). There is an
algebraic coherent sheaf F on X which is unique up to isomorphism, such that F (an) is
isomorphic toM.
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