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Introduction

These notes are intended to accompany the course Introduction to Variations of
Hodge Structure (VHS) at the 2010 ICTP Summer School on Hodge Theory.
The modern theory of variations of Hodge structure (although some authors have

referred to this period as the pre-history) begins with the work of Griffiths [23, 24, 25]
and continues with that of Deligne [17, 18, 19], and Schmid [41]. The basic object of
study are period domains which parametrize the possible polarized Hodge structures
in a given smooth projective variety. An analytic family of such varieties gives rise to
a holomorphic map with values in a period domain, satisfying an additional system of
differential equations. Moreover, period domains are homogeneous quasi-projective
varieties and, following Griffiths and Schmid, one can apply Lie theoretic techniques
to study these maps.
These notes are not intended as a comprehensive survey of the theory of VHS.

We refer the reader to the surveys [25, 30, 2, 1, 33], the collections [26, 1], and the
monographs [4, 40, 45, 46] for fuller accounts of various aspects of the theory. In
these notes we will emphasize the theory of abstract variations of Hodge structure
and, in particular, their asymptotic behavior. The geometric aspects will be the
subject of the subsequent course by James Carlson.
In §1, we study the basic correspondence between local systems, representations

of the fundamental group, and bundles with a flat connection. We also define the
Kodaira-Spencer map associated with a family of smooth projective varieties. The
second section is devoted to the study of Griffiths’ period map and a discussion of
its main properties: holomorphicity and horizontality. These properties motivate
the notion of an abstract VHS. In §3, we define the classifying spaces for polarized
Hodge structures and study some of their basic properties. The last two sections
deal with the asymptotics of a period mapping with particular attention to Schmid’s
Orbit Theorems. We emphasize throughout this discussion the relationship between
nilpotent and SL2-orbits and mixed Hodge structures.
In these notes I have often drawn from previous work in collaboration with Aroldo

Kaplan, Wilfried Schmid, Pierre Deligne, and Javier Fernandez to all of whom I am
very grateful.
A final version of these notes will be posted after the conclusion of the Summer

School.
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VARIATIONS OF HODGE STRUCTURE 3

1. Analytic families

1.1. The Kodaira-Spencer Map. We will be interested in considering families of
compact Kähler manifolds or smooth projective varieties varying holomorphically
on a base of parameters. Specifically, consider a map

(1.1) ϕ : X → B,

where X and B are complex manifolds, and ϕ is a proper, holomorphic submersion;
i.e. ϕ is surjective and, for every x ∈ X , the differential

ϕ∗,x : Tx(X )→ Tϕ(x)(B)

is also surjective.
It follows from [7, Theorem 1.9] that for each b ∈ B, the fiber Xb := ϕ−1(b) is a

complex submanifold of X of codimension equal to the dimension of B. Moreover,
since ϕ is proper, Xb is compact. We think of {Xb; b ∈ B} as an analytic family
of compact complex manifolds. The following theorem asserts that, ϕ : X → B is a
C∞ fiber bundle; i.e. it is locally a product:

Theorem 1.1. For every b0 ∈ B there exists a polydisk U centered at b0 and a C∞
map F : X → U ×Xb0 such that the diagram

(1.2) ϕ−1(U) ⊂ X F ��

ϕ
������������

U ×Xb0

pr1
�����������

U
commutes. Moreover, for every x ∈ Xb0 the map

(1.3) σx : U → X ; σx(b) := F−1(b, x),

is holomorphic.

Remark 1. For the first statement to hold, it suffices to assume that X , B and ϕ are
smooth. In that context it is a well-known result due to Ehresmann. In fact, the
family ϕ trivializes over any contractible neighborhood of b ∈ B. We refer to [45,
Theorem 9.3] for a complete proof of both statements.

In what follows, we will assume that B = U and we have chosen local coordinates
(t1, . . . , tr) in B centered at b0. We set X = Xb0 = X0. Let G denote the inverse of
the diffeomorphism F : X → B ×X. The restriction

gt := G|{t}×X : X → Xt

is a diffeomorphism for each t ∈ B and carries the complex structure JXt to a
(1, 1) tensor Jt := g∗t (JXt) on X satisfying J2

t = − id. Moreover, it follows from [7,
Theorem 2.2] that Jt is integrable. Thus, we may, alternatively, think of {Xt} as a
family of complex structures on a fixed C∞ manifold X.
Let TX, TX , and TB denote the tangent bundles of X, X and B, respectively.

Recalling that for each x ∈ X ⊂ X ,
Tx(X) = ker{ϕ∗,x : TxX → T0B}

we have an exact sequence of vector bundles over X:
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(1.4) 0→ TX ↪→ TX|X ϕ∗→ X × T0(B)→0.

On the other hand, the fact that ϕ is a submersion means that we also have an
exact sequence of bundles over X :

(1.5) 0→ TX/B → TX ϕ∗→ ϕ∗(TB)→0,

where ϕ∗(TB) is the pull-back bundle defined in [7, (1.19)] and the relative bundle
TX/B is defined as the kernel of ϕ∗.
Since ϕ is holomorphic these maps are compatible with the complex structures

and, therefore, we get analogous exact sequences of holomorphic tangent bundles.

(1.6) 0→ T hX ↪→ T hX|X ϕ∗→ X × T h
0 (B)→0.

(1.7) 0→ T h
X/B → T hX ϕ∗→ ϕ∗(T hB)→0,

The sequence (1.6) gives rise to an exact sequence of sheaves of holomorphic
sections and, consequently, to a long exact sequence in cohomology yielding, in
particular, a map:

(1.8) H0(X,O(X × T h
0 (B)))→ H1(X,O(T hX)),

where O(T h(X)) is the sheaf of holomorphic vector fields on X.
SinceX is compact, any global holomorphic function is constant and, consequently

H0(X,O(X × T h
0 (B))) ∼= T h

0 (B). On the other hand, it follows from the Dolbeault
isomorphism theorem that:

(1.9) H1(X,O(T hX)) ∼= H0,1

∂̄
(X,T hX).

Definition 1.2. The map

(1.10) ρ : T h
0 (B)→ H1(X,O(T hX)) ∼= H0,1

∂̄
(X,T hX)

is called the Kodaira-Spencer map at t = 0.

We may obtain a description of ρ using the map σx defined in (1.3). Indeed, for
each v ∈ T h

0 (B), let us denote by V the constant holomorphic vector field on B
whose value at 0 is v. We may regard V as a holomorphic vector field on B×X and
we define a C∞ vector field Yv on X by Yv = G∗(V ). Note that for x ∈ X, t ∈ B,
(1.11) Yv(σx(t)) = (σx)∗,t(V )

and, therefore, Yv is a vector field of type (1, 0. Moreover,

φ∗(Yv(σx(t))) = V (t),

and, therefore, Yv is the unique smooth vector field of type (1, 0) on X projecting
to V . In local coordinates (U, {zU

1 , . . . , z
U
n }) the vector field Yv|X may be written as

(1.12) Yv(x) =
n∑

j=1

νU
j

∂

∂zU
j

.
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Since the coordinate changes in T hX:(
∂zV

k

∂zU
j

)

are holomorphic one can show:

Exercise 1. The expression

(1.13) αv =
n∑

j=1

∂̄(νU
j )⊗

∂

∂zU
j

defines a global (0, 1) form on X with values on the holomorphic tangent bundle
T hX.

Following the steps involved in the proof of the Dolbeault isomorphism it is easy
to check that [αv] is the cohomology class in H

0,1

∂̄
(X,T hX) corresponding to ρ(v)

in (1.10).
We will give a different description of the form αv which motivates the definition

of the Kodaira-Spencer map: As noted above, the family ϕ : X → B gives rise
to a family {Jt : t ∈ B} of almost complex structures on X. As we saw in [7,
Proposition A.1] such an almost complex structure is equivalent to a splitting for
each x ∈ X:

Tx,C(X) = (Tx)+t ⊕ (Tx)−t ; (Tx)−t = (Tx)+t ,

and where (Tx)+0 = T h
x (X). If t is small enough we may assume that the projection

of (Tx)−t on (Tx)−0 , according to the decomposition corresponding to t = 0, is sur-
jective. Hence, in a coordinate neighborhood (U, {zU

1 , . . . , z
U
n }), there is a basis† of

the subspace (Tx)−t , x ∈ U , of the form
∂

∂z̄U
k

−
n∑

j=1

wU
jk(z, t)

∂

∂zU
j

; k = 1, . . . , n.

Thus, the local expression
n∑

j=1

wU
jk(z, t)

∂

∂zU
j

describes, in local coordinates, how the almost complex structure varies with t ∈ B.
Now, given v ∈ T h

0 (B) we can “differentiate” the above expression with respect to t
in the direction of v to get ‡:

n∑
j=1

v
(
wU

jk(z, t)
) ∂

∂zU
j

.

We then have the following result whose proof may be found in [45, §9.1.2]:

†Note that this is essentially the notation in Example 1.16 of [7].
‡Note that in what follows we could as well assume v ∈ T0(B); i.e. v need not be of type (1, 0).
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Proposition 1.3. For each v ∈ T h
0 (B) the expression

n∑
j=1

∂̄ (v (wjk(z, t)))⊗ ∂

∂zU
j

.

defines a global (0, 1) form on X with values on the holomorphic tangent bundle
T hX, whose cohomology class in H0,1

∂̄
(X,T hX) agrees with the Kodaira-Spencer

class ρ(v).

Our next goal is to globalize these constructions to a non-contractible base B.

1.2. Local Systems. In the next two sections we will collect some basic results
about local systems and bundles with flat connections. We refer to [16] and [45,
§9.2] for details.
We recall that the constant sheaf with stalk Cn is the sheaf of C-vectorspaces

whose sections over any open set U is the vector space Cn.

Definition 1.4. A sheaf L over B is called a local system of C-vectorspaces if it is
locally isomorphic to a constant sheaf with stalk Cn for a fixed n.

If L → B is a local system, and we fix a base point b0 ∈ B, then for any curve
γ : [0, 1]→ B, γ(0) = b0, γ(1) = b1, the pull-back γ∗(L) to [0, 1] is locally constant,
hence constant. Thus we get an C-vectorspace isomorphism:

τγ : Lb1 → Lb0 ,

which depends only on the homotopy class of the path γ. Taking closed loops based
at b0, we get a map:

(1.14) ρ : π1(B, b0)→ GL(Lb0) ∼= GL(n,C).

It is easy to check that ρ is a group homomorphism and, consequently, it defines a
representation of the fundamental group π1(B, b0) on Lb0

∼= Cn. If B is connected,
this construction is independent, up to conjugation, of the base point b0. We will
assume throughout that B is connected.
Conversely, suppose ρ : π1(B, b0) → GL(n,C) is a finite-dimensional representa-

tion and let p : B̃ → B be the universal covering space of B. The fundamental
group π1(B, b0) acts on B̃ by covering (deck) transformations† and we may define a
holomorphic vector bundle V → B by

(1.15) V := B̃ × Cn/ ∼ ,
where the equivalence relation ∼ is defined as

(1.16) (b̃, v) ∼ (σ(b̃), ρ(σ−1)(v)) ; σ ∈ π1(B, b0),

and the map V → B is the natural projection from B̃ to B.‡ Suppose U ⊂ B is an
evenly covered open set in B, that is p−1(U) is a disjoint union of open sets Wj ∈ B̃

†Since the group action on π1(B, b0) is defined by concatenation of loops, the action on the
universal covering space is a right action.

‡In other words, V is the vector bundle associated to the principal bundle π1(B, b0) → B̃ → B
by the representation ρ
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biholomorphic to U . Let us denote by pj = p|Wj . Then, given any v ∈ Cn we have,
for any choice of j, a local section

v̂(z) = [p−1
j (z), v] ; z ∈ U

on U . We call v̂ a constant section of the bundle V and note that this notion is
well defined since the transition functions of the bundle V take value on the discrete
group ρ(π1(B, b0)). We denote by L the sheaf of constant local sections of V. Clearly,
L is a locally constant sheaf, i.e. a local system. As we shall see below, every local
system arises in this way from a certain class of holomorphic vector bundles.

Example 1.5. Let B = Δ∗ := {z ∈ C : 0 < |z| < r}, where we assume, for
simplicity that we have scaled our variable so that r > 1. For t0 = 1 ∈ Δ∗ we have
π1(Δ∗, t0) ∼= Z, where we choose as generator a simple loop c oriented clockwise.
Let

(1.17) ρ : π1(Δ∗, t0) ∼= Z → C2 ; ρ(n) =
(
1 n
0 1

)
∈ GL(2,C).

Recalling that the upper half-plane H = {z = x + iy ∈ C : y > 0} is the univer-
sal covering space of Δ∗ with projection z �→ exp(2πiz), we have a commutative
diagram:

H × C2 −−−−→ V ∼= H × C2/ ∼
pr1

⏐⏐
 ⏐⏐

H

exp(2πi•)−−−−−−→ Δ∗
Let N be the nilpotent transformation

(1.18) N =
(
0 1
0 0

)
.

Then, for any v ∈ C2, the map ṽ : Δ∗ → V defined by

(1.19) ṽ(t) :=
[
log t
2πi

, exp
(
log t
2πi

N

)
· v
]
∈ H × C2/ ∼

is a section of the vector bundle V. Indeed, suppose we follow a determination of log
around the loop c, then z0 = log(t0/2πi) changes to z0 − 1 (i.e. ρ(c)(z0) = z0 − 1),
while the second component is modified by the linear transformation exp(−N) =
ρ(c−1) as required by (1.16). Note that, on a contractible neighborhood U of t ∈ Δ∗,
we can write

ṽ(t) = exp((log t/2πi)N) · v̂(t),
where v̂(t) is the constant section defined on U .
This example may be generalized to an arbitrary nilpotent transformation N ∈

gl(V ) of a C-vectorspace V if we define

ρ : π1(Δ∗, t0)→ GL(V )

by ρ(c) = exp(N), where c is, again, a simple loop oriented clockwise, and to
commuting nilpotent transformations {N1, . . . , Nr} ∈ gl(V ) by considering B =
(Δ∗)r and

ρ : π1((Δ∗)r, t0) ∼= Zr → GL(V )
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the representation that maps the j-th standard generator of Zr to γj = expNj .

1.3. Flat Bundles. As we saw in the previous section, a local system over B gives
rise to a representation of the fundamental group of B which, in turn, may be used
to construct a vector bundle with a subspace of “distinguished” constant sections
isomorphic to the original local system. Here, we want to explore what is involved
in the existence of this subspace of constant sections from the point of view of the
bundle itself. We refer to [16, 34] for details.
Recall that a holomorphic connection on a holomorphic vector bundle E → B is

a C-linear map:

(1.20) ∇ : O(U,E)→ Ω1(U)⊗O(U,E) := Ω1(U,E),

where U ⊂ B is an open set and such that

(1.21) ∇(f · σ) = df ⊗ σ + f · ∇σ ; f ∈ O(U), σ ∈ O(U,E).
In terms of a local holomorphic coframe σ1, . . . , σd of O(U,E), we can write:

(1.22) ∇σj =
d∑

i=1

θij ⊗ σi.

The holomorphic forms θij ∈ Ω1(U) are called connection forms.

Definition 1.6. Let E : B be a bundle with a connection ∇. A section σ ∈ O(U,E)
is said to be flat if ∇σ = 0. The connection ∇ is called flat if there is a trivializing
cover of B for which the corresponding coframe consists of flat sections.

A connection on a holomorphic line bundle E → B allows us to differentiate
holomorphic (resp. smooth) sections of E in the direction of a holomorphic vector
field X on U ⊂ B. Indeed, for U small enough and a coframe σ1, . . . , σd of O(U,E)
we set:

∇X

⎛
⎝ d∑

j=1

fjσj

⎞
⎠ :=

d∑
i=1

⎛
⎝X(fi) +

d∑
j=1

fj θij(X)

⎞
⎠σi .

Clearly, if the coefficients fj are holomorphic, so is the resulting section.

Exercise 2. Prove that the connection forms must satisfy the following compatibility
condition: If σ′1, . . . , σ′d is another coframe on U and

σ′j =
d∑

i=1

gijσi ; gij ∈ O(U),

then

(1.23)
d∑

i=1

gji θ
′
ik = dgjk +

d∑
i=1

θji gik.

Deduce that if we define the matrices: θ = (θij), θ′ = (θ′ij), g = (gij), dg = (dgij),
then

(1.24) θ′ = g−1 · dg + g−1 · θ · g.
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Exercise 3. Let L→M be a line bundle and suppose that Uα is a trivializing cover
of M with transition functions gαβ ∈ O(Uα ∩Uβ). Prove that a connection on M is
given by a collection of holomorphic one-forms θα ∈ Ω1(Uα) such that:

(1.25) θβ |Uα∩Uβ
− θα|Uα∩Uβ

= d(log gαβ).

The curvature matrix of a connection ∇ is defined as the matrix of holomorphic
two-forms:

(1.26) Θij = dθij −
d∑

k=1

θik ∧ θkj ,

or, in matrix notation:
Θ = dθ − θ ∧ θ.

Exercise 4. With the notation of Exercise 2, prove that

(1.27) Θ′ = g−1 ·Θ · g.
The curvature forms measure the “failure” of the connection to be flat:

Theorem 1.7. A connection is flat if and only if the curvature forms are identically
zero.

Proof. We note, first of all, that (1.27) implies that the vanishing of the curvature
forms is independent of the choice of coframe. On the other hand, if ∇ is flat, we
can find a trivializing cover where the connection forms and, therefore, the curvature
forms vanish.
Suppose (U, z1, . . . , zn) is a coordinate neighborhood on B such that there ex-

ists a local coframe σ1, . . . , σd of O(U,E). This allows us to define coordinates
{z1, . . . , zn, ξ1, . . . , ξd} on E. The forms

dξi +
d∑

j=1

ξi θij

define a distribution of dimension n on E corresponding to “flat liftings”. The
existence of an n-dimensional integral manifold is equivalent to the existence of
a flat local coframe. The distribution is involutive if and only if the curvature
forms vanish. Thus, the result follows from Frobenius Theorem. We refer to [34,
Proposition 2.5], [45, §9.2.1] for a full proof. �
Suppose now that a vector bundle V → B arises from a local system L as before.

Then, the bundle V has a trivializing cover relative to which the transition functions
are constant (since they take values in a discrete subgroup of GL(n,C)), and it
follows from (1.23) that the local forms θij = 0 define a connection on V; that is,
relative to the coframe σα

1 , . . . , σ
α
d arising from that trivializing cover, we may define

(1.28) ∇
(

d∑
i=1

fi σ
α
i

)
=

d∑
i=1

dfi ⊗ σα
i .

Since the curvature forms for ∇ vanish, it follows that ∇ is flat.
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Conversely, suppose E → B is a bundle with a flat connection ∇. Then the
transition functions corresponding to the covering by open sets with flat coframes
must be constant. Consequently we can define a local system of constant sections,
i.e. the flat sections.
Summarizing the results of these two sections we can say that there is an equiva-

lence between the following three categories:

i) Local systems over a connected, complex manifold B.
ii) Finite-dimensional representations of the fundamental group π1(B, b0).
iii) Holomorphic bundles V → B with a flat connection ∇.

1.4. The Gauss-Manin Connection. We return now to the case of an analytic
family ϕ : X → B of compact, complex manifolds parametrized by the complex
manifold B. By Theorem 1.1, X is locally trivial as a C∞ manifold. We write as
before,

ϕ−1(U) ⊂ X F−→ U ×Xb0

for a neighborhood U of b0. Set G = F−1. For any curve μ : [0, 1] → B such that
μ(0) = b0, μ(1) = b1 we get a diffeomorphism:

fμ : X = Xb0 → Xb1 .

This gives rise to isomorphisms

(1.29) f∗μ : H
k(Xb1 , F )→ Hk(Xb0 , F ),

where F = Z,Q,R,C. In particular, since these isomorphisms depend only on
the homotopy class of μ, we get a representation of π1(B, b0) on Hk(Xb0 , F ) for
F = Z,Q,R,C. We will denote byHk → B the holomorphic vector bundle associated
with this representation of π1(B, b0). The fiber of Hk over b ∈ B is isomorphic to
Hk(Xb,C) and the flat connection is known as the Gauss-Manin connection. Given
α ∈ Hk(Xb0 , F ), the section

α̂(t) := G(t, α) ; t ∈ U
is a holomorphic, flat section over U .
The local system of flat sections agrees with is the k-th direct image sheaf Rkϕ∗F .

We recall that Rkϕ∗F is the sheaf associated with the presheaf that assigns to an
open set U the cohomology Hk(ϕ−1(U), F ). In our case, we may assume, without
loss of generality, that the map

pr2 ◦ F : ϕ−1(U)→ X

deduced from (1.2) is a deformation retract. Hence, for U contractible,

Hk(ϕ−1(U), F ) ∼= Hk(X,F ).

2. Variations of Hodge Structure

2.1. Geometric Variations of Hodge Structure. We consider a family ϕ : X →
B and assume that X ⊂ PN so that each fiber Xt, t ∈ B, is now a smooth projective



VARIATIONS OF HODGE STRUCTURE 11

variety.† The Chern class of the hyperplane bundle restricted to X induces integral
Kähler classes ωt ∈ H1,1(Xt) ∩ H2(Xt,Z) which fit together to define a section of
the local system R2ϕ∗Z over B.
On each fiber Xt we have a Hodge decomposition:

Hk(Xt,C) =
⊕

p+q=k

Hp,q(Xt),

where Hp,q(Xt) is the space of de Rham cohomology classes and

Hp,q(Xt) ∼= Hp,q

∂̄
(Xt) ∼= Hq(Xt,Ω

p
Xt
),

where the last term is the sheaf cohomology of Xt with values on the sheaf of
holomorphic p-forms Ωp

Xt
.

Theorem 2.1. The Hodge numbers hp,q(Xt) = dimCH
p,q(Xt) are constant.

Proof. Recall that Hp,q

∂̄
(Xt) ∼= Hp,q(Xt), the ∂̄-harmonic forms of bidegree (p, q).

The Laplacian ΔXt

∂̄
varies smoothly with the parameter t and consequently the

dimension of its kernel is upper semicontinuous on t. This follows from the ellipticity
of the Laplacian [47, Theorem 4.13]. Hence,

(2.1) dimCHp,q(Xt) ≤ dimCHp,q(Xt0),

for t in a neighborhood of t0. But, on the other hand,∑
p+q=k

dimCHp,q(Xt) = bk(Xt) = bk(Xt0) =
∑

p+q=k

dimCHp,q(Xt0)

since Xt is diffeomorphic to Xt0 . Hence, dimCHp,q(Xt) must be constant. �

Recall from [7, Definition A.6] that the Hodge decomposition on Hk(Xt,C) may
be described by the filtration

(2.2) F p(Xt) :=
⊕
a≥p

Ha,k−a(Xt),

which satisfies the condition Hk(Xt,C) = F p(Xt) ⊕ F k−p+1(Xt). We set fp =∑
a≥p h

a,k−a. Assume now that B is contractible and that X is C∞-trivial over B.
Then we have diffeomorphisms gt : X = Xt0 → Xt which induce isomorphisms

g∗t : H
k(Xt,C)→ Hk(X,C).

This allows us to define a map‡

(2.3) Pp : B → G(hp, Hk(X,C)) ; Pp(t) = g∗t (F
p(Xt)).

A Theorem of Kodaira (cf. [45, Proposition 9.22] implies that, since the dimension
is constant, the spaces of harmonic forms Hp,q(Xt) vary smoothly with t. Hence the
map Pp is smooth. In fact we have:

†Much of what follows holds with weaker assumptions. Indeed, it is enough to assume that a
fiber Xt is Kähler to deduce that it will be Kähler for parameters close to t. We will not deal with
this more general situation here and refer to [45, §9.3] for details.

‡Voisin [45] refers to the map Pp as the period map. To avoid confusion we will reserve this name
for the map that assings to t ∈ B the flag of subspaces g∗

t (F p(Xt)).
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Theorem 2.2. The map Pp is holomorphic.

Proof. In order to prove Theorem 2.2 we need to understand the differential of Pp.
For simplicity we will assume that B = Δ = {z ∈ C : |z| < 1} though the results
apply with minimal changes in the general case. Suppose then that ϕ : X → Δ is
an analytic family, X = X0 = ϕ−1(0), and we have a trivialization

F : X → Δ×X.
Set G = F−1 and by gt : X → Xt = ϕ−1(t) the restriction G|{t}×X .
Then

Pp(t) = F p(t) := g∗t (F
p(Xt)) ⊂ Hk(X,C),

and its differential at t = 0 is a linear map:

(2.4) Pp
∗,0 : T0(Δ)→ Hom(F p(0), Hk(X,C)/F p(0)).

The assertion that Pp is holomorphic is equivalent to the statement that

(2.5) Pp
∗,0

(
∂

∂t̄

)
= 0.

We now describe the map (2.4) explicitly. Let α ∈ F p(0). Since the subbundle
Fp ⊂ Hk is C∞, we can construct a smooth section σ of Fp over U ⊂ Δ, 0 ∈ U , so
that σ(0) = α. Note that for t ∈ U ,

σ(t) ∈ F p(Xt) ⊂ Hk(Xt,C),

and, consequently, we may view g∗t (σ(t)) as a curve in Hk(X,C) such such that
g∗t (σ(t)) ∈ F p(t). Then,

(2.6)
(
Pp
∗,0

(
∂

∂t̄

))
(α) =

[
∂g∗t (σ(t))

∂t̄

]
mod F p(0),

where ∂/∂t̄ acts on the coefficients of the forms g∗t (σ(t)). Alternatively, we may
regard this action as the pull-back of the covariant derivative

(2.7) ∇∂/∂t̄(σ).

We can realize the cohomology classes σ(t) as the restriction of a global form

(2.8) Θ ∈
⊕
a≥p

Aa,k−a(X )

such that d(Θ|Xt) = 0 and σ(t) = [Θ|Xt ] ∈ Hk(Xt,C) [45, Proposition 9.2.2]. We
can now write the form G∗(Θ) ∈ Ak(Δ×X,C) as:

G∗(Θ) = ψ + dt ∧ φ,
where neither ψ nor φ, involve dt, dt̄; i.e. they are smooth forms on X whose
coefficients vary smoothly with t. Note, in particular, that ψ{t}×X = g∗t (Θ|Xt) is a
closed form. We then have:

(2.9) dG∗(Θ) = dt ∧ ∂ψ
∂t

+ dt̄ ∧ ∂ψ
∂t̄

+ dt ∧ dφ.
Hence,

(2.10)
∂g∗t (σ(t))

∂t̄
= ι∂/∂t̄ (dG

∗(Θ)) .
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Now, in view of (2.8), we have that at t = 0, ψ restricts to a closed form whose
cohomology class lies in F p(X) and, therefore, (2.10) vanishes modulo F p(X). �
The interpretation of the differential of Pp in terms of the Gauss-Manin connection

as in (2.7) and the expression (2.9) allow us to obtain a deeper statement:

Theorem 2.3 (Griffiths’ Horizontality). Let ϕ : X → B be an analytic family
and let (Hk,∇) denote the holomorphic vector bundle with the (flat) Gauss-Manin
connection. Let σ ∈ Γ(B,Fp) be a smooth section of the holomorphic subbundle
Fp ⊂ Hk. Then, for any (1, 0) vector field V on B,

(2.11) ∇V (σ) ∈ Γ(B,Fp−1)

Proof. Again, for simplicity, we consider the case B = Δ. Then, arguing as in the
proof of Theorem 2.2, we have

∇ ∂
∂t
|t=0

(σ) =
∂

∂t
|t=0 (g∗t (σ(t))) .

But, (2.9) implies that:
∂

∂t
|t=0 (g∗t (σ(t))) = ι∂/∂t(dG

∗(Θ))|t=0 − dφ|t=0.

Since, clearly, the right-hand side lies in F p−1(0), the result follows. �
Remark 2. Given the Dolbeault isomorphism Hp,q

∂̄
(X) ∼= Hq(X,Ωp), we can repre-

sent the differential of Pp:

Pp
∗,0 : T

h
0 (B)→ Hom(Hq(X0,Ωp), Hq+1(X0,Ωp−1)

as the composition of the Kodaira-Spencer map:

ρ : T h
0 (B)→ H1(X,T h(X0))

with the map

H1(X,T h(X0))→ Hom(Hq(X0,Ωp), Hq+1(X0,Ωp−1)

given by interior product and the product in Cech-cohomology. We refer to [45,
Theorem 10.4] for details.

Given a a family ϕ : X → B with X ⊂ PN , the Chern class of the hyperplane
bundle restricted to X induces integral Kähler classes ωt ∈ H1,1(Xt) ∩ H2(Xt,Z)
which fit together to define a section of the local system R2ϕ∗Z over B. This means
that cup product by powers of the Kähler classes is a flat morphism and, conse-
quently, the restriction of the Gauss-Manin connection to the primitive cohomology
remains flat. Similarly, the polarization forms are flat and they polarize the Hodge
decompositions on each fiber Hk

0 (Xt,C).

2.2. Abstract Variations of Hodge Structure. The geometric situation de-
scribed in 2.1 may be abstracted in the following definition:

Definition 2.4. Let B be a connected complex manifold, a variation of Hodge
structure of weigth k (VHS) over B consists of a local system VZ of free Z-modules†

†In other contexts one only assumes the existence of a local system VQ (resp. VR) of vector spaces
over Q (resp. over R) and refers to the resulting structure as a rational (resp. real) variation of
Hodge structure.
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and a filtration of the associated holomorphic vector bundle V:

(2.12) · · · ⊂ Fp ⊂ Fp−1 ⊂ · · ·
by holomorphic subbundles Fp satisfying:

i) V = Fp ⊕ Fk−p+1 as C∞ bundles, where the conjugation is taking relative
to the local system of real vectorspaces VR := VZ ⊗ R.

ii) ∇(Fp) ⊂ Ω1
B ⊗ Fp−1, where ∇ denotes the flat connection on V, and Fp

denotes the sheaf of holomorphic sections of Fp.

We will refer to the holomorphic subbundles Fp as the Hodge bundles of the vari-
ation. It follows from [7, §A.2] that for each t ∈ B, we have a Hodge decomposition:
(2.13) Vt =

⊕
p+q=k

V
p,q
t ; V

q,p
t = V

p,q
t ,

where Vp,q is the C∞ subbundle of V defined by:

Vp,q = Fp ∩ Fq.

We will say that a VHS (V,∇, {Fp}) is polarized if there exists a flat non-degenerate
bilinear form Q of parity (−1)k on V, defined over Z, such that for each t ∈ B the
Hodge structure on Vt is polarized, in the sense of [7, Definition A.9], by Qt.
We note that we can define a flat Hermitian form on F by Qh(·, ·) := i−kQ(·, ·̄)

making the decomposition (2.13) orthogonal and such that (−1)pQh is positive
definite on Vp,k−p. The (generally not flat) positive definite Hermitian form on V:

H :=
∑

p+q=k

(−1)pQh|Vp,q

is usually called the Hodge metric on V.
We may then restate Theorems 2.2 and 2.3 together with the Hodge-Riemann

bilinear relations as asserting that given a family ϕ : X → B of smooth projec-
tive varieties, the holomorphic bundle whose fibers are the primitive cohomology
Hk

0 (Xt,C), t ∈ B, endowed with the flat Gauss-Manin connection, carry a polarized
Hodge structure of weight k.

3. Classifying Spaces

In analogy with the case of a family of projective varieties, we may regard a
variation of Hodge structure as a family of Hodge structures on a fixed vector space
Vt0 . This is done via parallel translation relative to the flat connection ∇ and the
result is well defined modulo the homotopy group π1(B, t0).
In what follows we will fix the following data:
i) A lattice VZ. We will denote by VF = VZ ⊗Z F , for F = Q,R, or C.
ii) An integer k.
iii) A collection of Hodge numbers hp,q, p + q = k, such that hp,q = hq,p and∑

hp,q = dimC VC. We set

fp =
∑
p≥a

ha,k−a.

iv) An integral, non degenerate bilinear form Q, of parity (−1)k.
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Definition 3.1. The space D = D(VZ, Q, k, {hp,q}) consisting of all Hodge struc-
tures of weight k and Hodge numbers hp,q, polarized by Q is called the classifying
space of Hodge structures weight k and Hodge numbers {hp,q}.
We will also be interested in considering the space Ď consisting of all filtrations

of VC:

(3.1) · · · ⊂ F p ⊂ F p−1 ⊂ · · ·
such that dimC F

p = fp and

(3.2) Q(F p, F k−p+1) = 0.

We will refer to Ď as the dual of D.

Example 3.2. A Hodge structure of weight 1 is a complex structure on VR; that is,
a decompostion VC = Ω⊕Ω̄. The polarization formQ is a non-degenerate alternating
form and the polarization conditions reduce to:

Q(Ω,Ω) = 0 ; iQ(u, ū) > 0 if 0 �= u ∈ Ω.
Hence, the classifying space for Hodge structures of weight one is the Siegel upper-
half space defined in [7, Example 1.16]. The dual Ď agrees with the spaceM defined
in that same example. Geometrically, the weight-one case correspond to the study
of the Hodge structure in the cohomology H1(X,C) for a smooth algebraic curve
X. This example will be discussed from that point of view in Carlson’s course.

The space Ď may be regarded as the set of points in the product of Grassmannians
k∏

p=1

G(fp, VC)

satisfying the flag compatibility conditions and the polynomial condition (3.2).
Hence, Ď is a projective variety. In fact we have:

Theorem 3.3. Both D and Ď are smooth complex manifolds. Indeed, Ď is a ho-
mogeneous space Ď ∼= GC/B, where

(3.3) GC := Aut(VC, Q);

that is, the group of of elements in GL(V,C) that preserve the non-degenerate bilinear
form Q, and B ⊂ G is the subgroup preserving a given flag F0 := {F p

0 }. The open
subset D of Ď is the orbit of the real group G = Aut(VR, Q) and D ∼= G/V , where

V = G ∩B
is a compact subgroup.

Proof. The fact that GC acts transitively on Ď is a linear algebra statement. We
refer to [23, Theorem 4.3] for a proof. Being homogeneous, Ď is smooth and since D
is open in Ď, it is smooth as well. We illustrate these results in the cases of weight
one and two.
For k = 1, dimC VC = 2n, and GC

∼= Sp(n,C). It follows from the non-degeneracy
of Q that given any n-dimensional subspace Ω ∈ VC such that Q(Ω,Ω) = 0; i.e. a
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maximal isotropic subspace of VC, that there exists a basis {w1, . . . , w2n} of VC such
that {w1, . . . , wn} is a basis of Ω and, in this basis, the form Q is:

(3.4) Q =
(
0 −iIn
iIn 0

)
.

This shows that GC acts transitively on Ď. On the other hand, if Ω0 ∈ D, then
we can choose our basis so that wn+i = w̄i and, consequently, the group of real
transformations G ∼= Sp(n,R) acts transitively on D. The isotropy subgroup at
some point Ω0 ∈ D consists of real transformations in GL(VR) ∼= GL(2n,R) which
preserve a complex structure and a Hermitian form in the resulting n-dimensional
complex vector space. Hence V ∼= U(n) and

D ∼= Sp(n,R)/U(n).

In the weight-two case, dimV = 2h2,0+h1,1 and Q is a non-degenerate symmetric
form defined over R (in fact, over Z). The complex Lie group G ∼= O(2h2,0+h1,1,C).
Given a reference polarized Hodge structure

VC = V 2,0
0 ⊕ V 1,1

0 ⊕ V 0,2
0 ; V 0,2

0 = V 2,0
0

the real vector space VR decomposes as:

(3.5) VR =
(
(V 2,0

0 ⊕ V 0,2
0 ) ∩ VR

)
⊕
(
V 1,1

0 ∩ VR

)
and the form Q is negative definite on the first summand and positive definite on
the second. Hence G ∼= O(2h2,0, h1,1). On the other hand, the elements in G that
fix the reference Hodge structure must preserve each summand of (3.5). In the
first summand, they must, in addition, preserve the complex structure V 2,0

0 ⊕ V 0,2
0

and a (negative) definite Hermitian form while, on the second summand, they must
preserve a positive definite real symmetric form. Hence:

V ∼= U(h2,0)×O(h1,1).

Clearly the connected component of G acts transitively as well. These arguments
generalize to arbitrary weight. �
Exercise 5. Describe the groups G and V for arbitrary even and odd weights.

The tangent bundles of the homogeneous spaces D and Ď may be described in
terms of Lie algebras. Let g (resp. g0) denote the Lie algebra of GC (resp G). Then

(3.6) g = {X ∈ gl(VC) : Q(Xu, v) +Q(u,Xv) = 0 , for all u, v ∈ VC},
and g0 = g ∩ gl(VR). The choice of a reference Hodge filtration F0 := {F p

0 } defines
a filtration on g:

F ag := {X ∈ g : X(F p
0 ) ⊂ F p+a

0 }.
We may, and will, assume that F0 ∈ D; in particular, the filtration F ag defines a
Hodge structure of weight 0 on g:

(3.7) ga,−a := {X ∈ g : X(V p,q
0 ) ⊂ V p+a,q−a

0 } = F ag ∩ F−ag.

Note that [F pg, F qg] ⊂ F p+qg and [ga,−a, gb,−b] ⊂ ga+b,−a−b. The Lie algebra b of
B is the subalgebra F 0g and the Lie algebra of V is given by:

v = g0 ∩ b = g0,−0 ∩ g0.
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Since Ď = GC/B and B is the stabilizer of F0, the holomorphic tangent space of
Ď at F0 is g/b, while the tangent space at any other point is obtained via the action
of G. More precisely, the holomorphic tangent bundle of Ď is a homogeneous vector
bundle associated to the principal bundle

B → GC → Ď

by the adjoint action of B on g/b. In other words,

T h(Ď) ∼= Ď ×B g/b.

Since [F 0g, F pg] ⊂ F pg, it follows that the adjoint action of B leaves invariant the
subspaces F pg. In particular, we can consider the homogeneous subbundle T−1,1(Ď)
of T h(Ď) associated with the subspace

F−1g = b⊕ g−1,1.

We will refer to T−1,1(Ď) as the horizontal subbundle. Since D ⊂ Ď is open, these
bundles restrict to holomorphic bundles over D.
It will be useful to unravel the definition of the horizontal bundle. We may view

an element of the fiber of T−1,1(Ď) as the equivalence class of a pair (F, [X]), where
[X] ∈ g/b. Then, if F = g · F0, we have that Ad(g−1)(X) ∈ F−1g, and, if we regard
g as a Lie algebra of endomorphisms of VC this implies

(g−1 ·X · g)F p
0 ⊂ F p−1

0

or, equivalently

(3.8) X(F p) ⊂ F p−1.

We may now define the period map of an abstract variation of Hodge structure.
Let (V,∇,Q, {Fp}) be a polarized variation of Hodge structure over a connected,
complex manifold B and let b0 ∈ B. Given a curve μ : [0, 1] → B with μ(0) = b0
and μ(1) = b1 we may define a C-linear isomorphism

μ∗ : Vb1 → Vb0

by parallel translation relative to the flat connection ∇. These isomorphisms depend
on the homotopy class of μ and, as before, we denote by

ρ : π1(B, b0)→ GL(Vb0)

the resulting representation. We call ρ the monodromy representation and the image

(3.9) Γ := ρ(π1(B, b0)) ⊂ GL(Vb0 ,Z)

the monodromy subgroup. We note that since VZ and Q are flat, the monodromy
representation is defined over Z and preserves the bilinear form Qb0 . In particular,
since V is compact, the action of Γ on D is properly discontinuous and the quotient
D/Γ is an analytic variety.
Hence, we may view the polarized Hodge structures on the fibers of V as a family

of polarized Hodge structures on Vb0 well-defined up to the action of the monodromy
subgroup. That is, we obtain a map

(3.10) Φ: B → D/Γ,
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where D is the appropriate classifying space for polarized Hodge structures. We call
Φ the period map of the polarized VHS.

Theorem 3.4. The period map has local liftings to D which are holomorphic. More-
over, the differential takes values on the horizontal subbundle T−1,1(D).

Proof. This is just the statement that the subbundles Fp are holomorphic together
with condition ii) in Definition 2.4. �
We will refer to any locally liftable map Φ: B → D/Γ with holomorphic and

horizontal local liftings as a period map.

Example 3.5. In the weight-one case, T−1,1(D) = T h(D). Hence, a period map
is simply a locally liftable, holomorphic map Φ: B → D/Γ, where D is the Siegel
upper half space and Γ ⊂ Sp(n,Z) is a discrete subgroup. If B̃ → B is the universal
covering of B, we get a global lifting

B̃
Φ̃−−−−→ D⏐⏐
 ⏐⏐


B
Φ−−−−→ D/Γ

and the map Φ̃ is a holomorphic map with values in Siegel’s upper half-space.

Exercise 6. Describe period maps in the weight-two case.

4. Mixed Hodge Structures and the Orbit Theorems

In the remainder of these notes we will be interested in studying the asymptotic
behavior of a variation of Hodge structure of weight k. Geometrically, this situation
arises, for example, when we have a family of smooth projective varieties X → B,
where B is a quasi-projective variety defined as the complement of a divisor with
normal crossings Y in a smooth projective variety B̄. Then, locally on the divisor Y ,
we may consider the polarized variation of Hodge structure defined by the primitive
cohomology over an open set U ⊂ B̄ such that U = Δn and

U ∩ Y = {z ∈ Δn : z1 · · · zr = 0}.
This means that

U ∩B = (Δ∗)r ×Δn−r.

Thus, we will consider period maps

(4.1) Φ: (Δ∗)r ×Δn−r → D/Γ

and their liftings to the universal cover:

(4.2) Φ̃ : Hr ×Δn−r → D,

where H = {z ∈ C : Im(z) > 0} is the universal covering space of Δ∗ as in Exam-
ple 1.5. The map Φ̃ is then holomorphic and horizontal.
We will denote by c1, . . . , cr the generators of π1((Δ∗)r); i.e., cj is a clockwise loop

around the origin in the j-th factor Δ∗. Let γj = ρ(cj). Clearly the monodromy
transformations γj , j = 1, . . . , r, commute. We have:



VARIATIONS OF HODGE STRUCTURE 19

Theorem 4.1 (Monodromy Theorem). The monodromy transformations γj,
j = 1, . . . , r, are quasi unipotent; that is, there exist integers νj such that (γνj

j − id)
is nilpotent. Moreover, the index of nilpotency of (γνj

j − id) is at most k + 1.

Proof. In the geometric case this result is due to Landman[36]. The proof for (inte-
gral) variations of Hodge structure is due to Borel (cf. [41, (4.5)]). The statement
on the index of nilpotency is proved in [41, (6.1)] �

4.1. Nilpotent Orbits. For simplicity of notation, we will often assume that r =
n. This will, generally, entail no loss of generality as our statements will usually
hold uniformly on compact subsets of Δn−r but this will be made precise when
necessary. We will also assume that the monodromy transformations γj are actually
unipotent, that is νj = 1. This may be accomplished by lifting the period map to a
finite covering of (Δ∗)r. We point out that most of the results that follow hold for
real variations of Hodge structure, provided that we assume that the monodromy
transformations are unipotent. In what follows we will write:

(4.3) γj = eNj ; j = 1, . . . , r,

where Nj are nilpotent elements in g ∩ gl(VQ) such that Nk+1 = 0. We then have

(4.4) Φ̃(z1, . . . , zj + 1, . . . , zr) = exp(Nj) · Φ̃(z1, . . . , zj , . . . , zr),
and the map Ψ: Hr → Ď defined by

(4.5) Ψ(z1, . . . , zr) := exp

⎛
⎝− r∑

j=1

zj Nj

⎞
⎠ · Φ̃(z1, . . . , zr)

is the lifting of a holomorphic map ψ : (Δ∗)r → D so that

(4.6) ψ(t1, . . . , tr) = Ψ
(
log t1
2πi

, . . . ,
log tr
2πi

)
.

Example 4.2. Let F0 ∈ Ď and let N1, . . . , Nr be commuting elements in g∩ gl(VQ)
such that

(4.7) Nj(F
p
0 ) ⊂ F p−1

0 .

Then the map

(4.8) θ : Hr → Ď ; θ(z1, . . . , zr) = exp

⎛
⎝ r∑

j=1

zj Nj

⎞
⎠ · F0

is holomorphic and, because of (4.7) and (3.8), its differential takes values on the
horizontal subbundle. Hence, if we assume that there exists α > 0 such that:

(4.9) θ(z1, . . . , zr) ∈ D ; for Im(zj) > α,

the map θ is the lifting of a period map defined on a product of punctured disks Δ∗ε.
Such a map will be called a nilpotent orbit. Note that for a nilpotent orbit the map
(4.5) is constant, equal to F0.
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Theorem 4.3 (Nilpotent Orbit Theorem). Let Φ: (Δ∗)r × Δn−r → D be a
period map and let N1, . . . , Nr be the monodromy logarithms. Let

ψ : (Δ∗)r ×Δn−r → Ď

be as in (4.6). Then
i) The map ψ extends holomorphically to Δr ×Δn−r.
ii) For each w ∈ Δn−r, the map θ : Cr ×Δn−r → Ď given by

θ(z, w) = exp (
∑

zj Nj).ψ(0, w)

is a nilpotent orbit. Moreover, if C ⊂ Δn−r is compact, there exists α > 0
such that θ(z, w) ∈ D for Im(zj) > α, 1 ≤ j ≤ n, w ∈ C.

iii) For any G-invariant distance d on D, there exist positive constants β, K,
such that, for Im(zj) > α,

d(Φ(z, w), θ(z, w)) ≤ K
∑

j

(Im(zj))β e−2πIm(zj) .

Moreover, the constants α, β, K depend only on the choice of d and the weight and
Hodge numbers used to define D and may be chosen uniformly for w in a compact
subset C ⊂ Δn−r.

Proof. The proof of Theorem 4.3, which is due to Wilfried Schmid [41], hinges upon
the existence of G-invariant Hermitian metrics on D, whose holomorphic sectional
curvatures along horizontal directions are negative and bounded away from zero [29].
We refer the reader to [30] for an expository account and to [42] for an enlightening
proof in the case when D is Hermitian symmetric†; the latter is also explicitely
worked out in [6] for VHS of weight one. We should remark that the distance
estimate in iii) is stronger than that in Schmid’s original version [41, (4.12)] and is
due to Deligne (cf. [12, (1.15)] for a proof). �

The Nilpotent Orbit Theorem has a very nice interpretation in the context of
Deligne’s canonical extension [16]. Let V → (Δ∗)r ×Δn−r be the flat bundle under-
lying a polarized VHS and pick a base point (t0, w0). Given v ∈ V := V(t0,w0), let
v
 denote the multivalued flat section of V defined by v. Then

(4.10) ṽ(t, w) := exp

⎛
⎝ r∑

j=1

log tj
2πi

Nj

⎞
⎠ · v
(t, w)

is a global section of V. The canonical extension V → Δn is characterized by its
being trivialized by sections of the form (4.10). The Nilpotent Orbit Theorem is
then equivalent to the regularity of the Gauss-Manin connection and implies that
the Hodge bundles Fp extend to holomorphic subbundles Fp ⊂ V. Writing the Hodge
bundles interms of a basis of sections of the form (4.10) yields the holomorphic map
Ψ. Its constant part —corresponding to the nilpotent orbit— defines a polarized
VHS as well. The connection ∇ extends to a connection on Δn with logarithmic
poles along the divisor {t1 · · · tr = 0} and nilpotent residues.

†In this case the Nilpotent Orbit Theorem follows from the classical Schwarz Lemma.
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Given a period map Φ: (Δ∗)r → D/Γ, we will call the value

Flim := ψ(0) ∈ Ď
the limiting Hodge filtration. Note that Flim depends on the choice of coordinates in
(Δ∗)r. Indeed, a change of coordinates compatible with the divisor structure must
be, after relabeling if necessary, of the form (t̂1, . . . , t̂r) = (t1f1(t), . . . , trfr(t)) where
fj are holomorphic around 0 ∈ Δr and fj(0) �= 0. We then have from (4.6):

ψ̂(t̂ ) = exp(− 1
2πi

r∑
j=1

log(t̂j)Nj) · Φ(t̂ )

= exp(− 1
2πi

r∑
j=1

log(fj)Nj) exp(− 1
2πi

r∑
j=1

log(tj)Nj) · Φ(t)

= exp(− 1
2πi

r∑
j=1

log(fj)Nj) ·Ψ(t),

(4.11)

and, letting t→ 0

(4.12) F̂lim = exp

⎛
⎝− 1

2πi

∑
j

log(fj(0))Nj

⎞
⎠ · Flim.

4.2. Mixed Hodge Structures. We will review some basic notions about mixed
Hodge structures following the notation of [12]. We refer to [22] and [40] for a full
account.

Definition 4.4. Let VQ be a vector space over Q, VR = VQ ⊗R, and VC = VQ ⊗C.
A mixed Hodge Structure (MHS) on VC consists of a pair of filtrations of V , (W,F ),
where W is an increasing filtration defined over Q and F is decreasing, such that F
induces a Hodge structure of weight k on GrWk :=Wk/Wk−1 for each k.

The filtration W is called the weight filtration, while F is called the Hodge filtra-
tion. We point out that for many of the subsequent results, it is enough to assume
that W is defined over R. This notion is compatible with passage to the dual and
with tensor products. In particular, given a MHS on VC we may define a MHS on
gl(VC) by:

(4.13) Wagl := {X ∈ gl(VC) : X(W�) ⊂W�+a}
(4.14) F bgl := {X ∈ gl(VC) : X(F p) ⊂ F p+b}
An element T ∈W2agl ∩ F agl ∩ gl(VQ) is called an (a, a)-morphism of (W,F ).

Definition 4.5. A splitting of a MHS (W,F ) is a bigrading

VC =
⊕
p,q

Jp,q

such that

(4.15) W� =
⊕

p+q≤�

Jp,q ; F p =
⊕
a≥p

Ja,b
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An (a, a) morphism T of a MHS (W,F ) is said to be compatible with the splitting
{Jp,q} if T (Jp,q) ⊂ Jp+a,q+a.
Every MHS admits splittings compatible with all its morphisms. In particular,

we have the following result due to Deligne[20]:

Theorem 4.6. Given a MHS (W,F ) the subspaces:

(4.16) Ip,q := F p ∩Wp+q ∩
(
F q ∩Wp+q + U q−1

p+q−2

)
, with

Ua
b =

∑
j≥0

F a−j ∩Wb−j ,

define a splitting of (W,F ) compatible with all morphisms. Moreover, {Ip,q} is
uniquely characterized by the property:

(4.17) Ip,q ≡ Iq,p

⎛
⎝ mod

⊕
a<p;b<q

Ia,b

⎞
⎠

This correspondence establishes an equivalence of categories between MHS and bi-
gradings {Ip,q} satisfying (4.17).

Proof. We refer to [12, Theorem 2.13] for a proof. �

Definition 4.7. A mixed Hodge structure (W,F ) is said to split over R if it admits
a splitting {Jp,q} such that

Jq,p = Jp,q.

In this case,

VC =
⊕

k

⎛
⎝ ⊕

p+q=k

Jp,q

⎞
⎠

is a decomposition of VC as a direct sum of Hodge structures.

Example 4.8. The paradigmatic example of a mixed Hodge structure split over R

is the Hodge decomposition on the cohomology of a compact Kähler manifold X (cf.
[7, §5]). Let

VQ = H∗(X,Q) =
2n⊕

k=0

Hk(X,Q)

and set
Jp,q = Hn−p,n−q(X).

Thus,

(4.18) W� =
⊕

d≥2n−�

Hd(X,C), F p =
⊕

s

⊕
r≤n−p

Hr,s(X).

With this choice of indexing, the operators Lω, where ω is a Kähler class, are
(−1,−1)-morphisms of the MHS.
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The situation described by Example 4.8 carries additional structure: the Lefschetz
theorems and the Hodge-Riemann bilinear relations. We extend these ideas to the
case of abstract mixed Hodge structures. Recall from [7, Proposition A.12] that given
a nilpotent transformation N ∈ gl(VQ) there exists a unique increasing filtration
defined over Q, W =W�(N), such that:

i) N(W�) ⊂W�−2,
ii) For � ≥ 0 : N � : GrW� → GrW−� is an isomorphism.

Definition 4.9. A polarized MHS (PMHS) [5, (2.4)] of weight k ∈ Z on VC consists
of a MHS (W,F ) on V , a (−1,−1) morphism N ∈ g∩ gl(VQ), and a nondegenerate,
rational bilinear form Q such that:

i) Nk+1 = 0,
ii) W =W (N)[−k], where W [−k]� :=W�−k,
iii) Q(F a, F k−a+1) = 0 and,
iv) the Hodge structure of weight k + l induced by F on ker(N l+1 : GrWk+l →

GrWk−l−2) is polarized by Q(·, N l·).
Example 4.10. We continue with Example 4.8. We may restate the Hard Lefschetz
Theorem [7, Corollary 5.11] and the Hodge-Riemann bilinear relations [7, Theo-
rem 5.17] by saying that the mixed Hodge structure in the cohomology H∗(X,C)
of an n-dimensional compact Kähler manifold X is a MHS of weight n polarized by
the rational bilinear form Q on H∗(X,C) defined by:

Q([α], [β]) = (−1)r(r+1)/2

∫
X
α ∧ β ; [α] ∈ Hr(X,C), [β] ∈ Hs(X,C)

and the nilpotent operator Lω for any Kähler class ω. Note that ii) in [7, Theo-
rem 5.17] is the assertion that Lω ∈ g ∩ gl(VQ).

There is a very close relationship between polarized mixed Hodge structures and
nilpotent orbits as indicated by the following:

Theorem 4.11. Let θ(z) = exp(
∑r

j=1 zjNj) · F be a nilpotent orbit in the sense of
Example 4.2, then:

i) Every element in the cone

(4.19) C := {N =
r∑

j=1

λj Nj ;λj ∈ R>0} ⊂ g

defines the same weight filtration W (C).
ii) The pair (W (C)[−k], F ) defines a MHS polarized by every N ∈ C.
iii) Conversely, suppose {N1, . . . , Nr} ∈ g ∩ gl(VQ) are commuting nilpotent ele-

ments with the property that the weight filtration W (
∑
λjNj), is independent

of the choice of λ1, . . . , λr ∈ R>0. Then, if F ∈ Ď is such that (W (C)[−k], F )
is polarized by every† element N ∈ C, the map θ(z) = exp(

∑r
j=1 zjNj) · F is

a nilpotent orbit.

†In fact, it suffices to assume that this holds for some N ∈ C.
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Proof. Part i) is proved in [5, (3.3)], while ii) was proved by Schmid [41, Theo-
rem 6.16] as a consequence of his SL2-orbit theorem to be discussed below. In the
case of geometric variations it was also shown by Steenbrink [43] and Clemens and
Schmid [14]. The converse is Proposition 4.66 in [12]. �
Remark 3. If {N1, . . . , Nr} and F satisfy the conditions in iii) of Theorem 4.11 we
will simply say that (N1, . . . , Nr;F ) is a nilpotent orbit. This notation emphasizes
the fact that the notion of a nilpotent orbit is a (polarized) linear algebra notion.

Example 4.12. We continue with the situation discussed in Examples 4.8 and
4.10. Let ω1, . . . , ωr ∈ K be Kähler classes in the compact Kähler manifold X.
Then, clearly, the nilpotent transformations Lω1 , · · · , Lωr commute and since every
positive linear combination is also a Kähler class, it follows from the Hard Lefschetz
Theorem that the weight filtration is independent of the coefficients. Moreover, the
assumptions of iii) in Theorem 4.11 hold and therefore the map

θ(z1, . . . , zr) := exp(z1Lω1 + · · ·+ zrLωr) · F,
where F is as in (4.18) is a nilpotent orbit and hence defines a variation of Hodge
structure on H∗(X,C). Note that these Hodge structures are defined in the total
cohomology of X. The relationship between this VHS and mirror symmetry is
discused in [9, 10]. This PVHS on H∗(X,C) plays a central role in the mixed
Lefschetz and Hodge-Riemann bilinear relations discussed in [7, §5].
4.3. SL2-orbits. Theorem 4.11 establishes a relationhip between polarized mixed
Hodge structures and nilpotent orbits. In the case of PMHS split over R this corre-
spondence yields an equivalence with a particular class of nilpotent orbits equivariant
under a natural action of SL(2,R). For simplicity, we will restrict ourselves to the
one-variable case and refer the reader to [12, 11] for the general case.
Let (W,F0) be a MHS on VC, split over R and polarized by N ∈ F−1

0 g ∩ gl(VQ).
Since W =W (N)[−k], the subspaces

V� =
⊕

p+q=k+�

Ip,q(W,F0) , −k ≤ � ≤ k

constitute a grading of W (N) defined over R. Let Y = Y (W,F0) denote the real
semisimple endomorphism of VC which acts on V� as multiplication by the integer �.
Since NV� ⊂ V�−2,

(4.20) [Y,N ] = −2N.
Because N polarizes the MHS (W,F0) one also obtains (cf. [12, (2.7)]):

Y ∈ g0, and

(4.21) There exists N+ ∈ g0 such that [Y,N+] = 2N+, [N+, N ] = Y .

Therefore, there is a Lie algebra homomorphism ρ : sl(2,C) → g defined over R

such that, for the standard generators {y,n+,n−} defined in [7, (A.30)]:
(4.22) ρ(y) = Y , ρ(n−) = N , ρ(n+) = N+.

The Lie algebra sl(2,C) carries a Hodge structure of weight 0:

(sl(2,C))−1,1 = (sl(2,C))1,−1 = C(iy + n− + n+)
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(sl(2,C))0,0 = C(n+ − n−) .

A homomorphism ρ : sl(2,C)→ g is said to be Hodge at F ∈ D, if it is a morphism
of Hodge structures: that defined above on sl(2,C) and the one determined by Fg in
g. The lifting ρ̃ : SL(2,C)→ GC of such a morphism induces a horizontal, equivariant
embedding ρ̂ : P1 −→ Ď by ρ̂(g.i) = ρ(g).F , g ∈ SL(2,C). Moreover

i) ρ̃(SL(2,R)) ⊂ GR and, therefore ρ̂(H) ⊂ D, whereH is the upper-half plane.
ii) ρ̂(z) = (exp zρ(n−))(exp(−iρ(n−))).F .
iii) ρ̂(z) = (expxρ(n−))(exp(−1/2) log y ρ(y))).F . for z = x+ iy ∈ H.

Theorem 4.13. Let (W,F0) be a MHS split over R and polarized by N ∈ F−1
0 g.

Then

i) The filtration F√−1 := exp iN.F0 lies in D.
ii) The homomorphism ρ : sl(2,C)→ g defined by (4.22) is Hodge at F√−1.

Conversely, if a homomorphism ρ : sl(2,C)→ g is Hodge at F ∈ D, then

(W (ρ(n−))[−k], exp(−iρ(n−)).F )
is a MHS, split over R and polarized by ρ(n−).

The following is a simplified version of Schmid’s SL2-orbit theorem. We refer to
[41] for a proof.

Theorem 4.14 (SL2-Orbit Theorem). Let z �→ exp zN.F be a nilpotent orbit.
There exists

i) A filtration F√−1 ∈ D;
ii) A homomorphism ρ : sl(2,C)→ g Hodge at F√−1 ;
iii) A real analytic, GR-valued function g(y), defined for y >> 0,

such that

i) N = ρ(n−) ;
ii) For y >> 0, exp(iyN).F = g(y) exp(iyN).F0, where F0 = exp(−iN).F√−1 ;
iii) Both g(y) and g(y)−1 have convergent power series expansions at y =∞, of

the form 1 +
∑∞

n=1 An y
−n , with

An ∈Wn−1g ∩ ker(adN)n+1 .

We may regard the SL2-orbit theorem as associating to any given nilpotent orbit
a distinguished nilpotent orbit, whose corresponding limiting mixed Hodge structure
splits over R, together with a very fine description of the relationship between the
two orbits. In particular, it yields the fact that nilpotent orbits are equivalent to
PMHS and, given this it may be interpreted as associating to any PMHS another one
which splits over R. One may reverse this process and take as a starting point the
existence of the limiting MHS associated with a nilpotent orbit. It is then possible
to define characterize functorially the PMHS corresponding to the SL2-orbit. We
refer to [12] for a full discussion. It is also possible to define other functorial real
splittings of a MHS. One such is due to Deligne [20] and is central to the several-
variable arguments in [12].
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5. Asymptotic Behavior of a Period Mapping

In this section we will study the asymptotic behavior of a period map. Much of
this material is taken from [11, 9, 10]. Our setting is the same as in the previous
section; i.e. we consider a period map

Φ: (Δ∗)r ×Δn−r → D/Γ

and its lifting to the universal cover:

Φ̃ : Hr ×Δn−r → D,

The map Φ̃ is, thus, holomorphic and horizontal. We assume that the monodromy
transformations γ1, . . . , γr are unipotent and let N1, . . . , Nr ∈ g ∩ gl(VQ) denote the
monodromy logarithms. Let Flim(w), w ∈ Δn−r be the limiting Hodge filtration.
Then, for each w ∈ Δn−r we have a nilpotent orbit (N1, . . . , Nr;Flim(w)). Moreover,
the Nilpotent Orbit Theorem implies that we may write:

(5.1) Φ̃(z, w) = exp

⎛
⎝ r∑

j=1

zjNj

⎞
⎠ · ψ(t, w),

where tj = exp(2πizj), and ψ(t, w) is a holomorphic map on Δn with values on Ď
and ψ(0, w) = Flim(w).
Since Ď is a homogeneous space of the Lie group GC, we can obtain holomorphic

liftings of ψ to GC. We describe a lifting adapted to the limiting mixed Hodge
structure. Let W = W (C)[−k] denote the shifted weight filtration of any linear
combination of N1, . . . , Nr with positive real coefficients, and let F0 = Flim(0). We
let {Ip,q} denote the canonical bigrading of the mixed Hodge structure (W,F0) (cf.
Theorem 4.6). The subspaces

(5.2) Ia,bg := {X ∈ g : X(Ip,q) ⊂ Ip+a,q+b}
define the canonical bigrading of the mixed Hodge structure defined by (Wg, F0g)
on g. We note that [

Ia,bg, Ia′,b′g
]
⊂ Ia+a′,b+b′g.

Set

(5.3) pa :=
⊕

q

Ia,qg and g− :=
⊕

a≤−1

pa.

Since, by (4.15),
F 0

0 (g) =
⊕
p≥0

Ip,qg ,

it follows that g− is a nilpotent subalgebra of g complementary to b = F 0
0 (g), the

lie algebra of the isotropy subgroup B of GC at F0. Hence, in a neighborhood of the
origin in Δn, we may write:

ψ(t, w) = exp(Γ(t, w)) · F0,

where

(5.4) Γ: U ⊂ Δn → g−
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is holomorphic in an open set U around the origin, and Γ(0) = 0. Consequently, we
may rewrite (5.1) as:

(5.5) Φ̃(t, w) = exp

⎛
⎝ r∑

j=1

zj Nj

⎞
⎠ · exp(Γ(t, w)) · F0

Since Nj ∈ I−1,−1g ⊂ g−, the product

E(z, w) := exp

⎛
⎝ r∑

j=1

zj Nj

⎞
⎠ · exp(Γ(t, w))

lies in the nilpotent group exp(g−) and, hence we may write

(5.6) E(z, w) := exp(X(z, w)) ; X(z, w) ∈ g− .

It follows from (3.8) that the horizontality of Φ̃ implies that

E−1 dE ∈ p−1 ⊗ T ∗(Hr ×Δn−r).

Hence, writing
X(z, w) =

∑
j≤−1

Xj(z, w) ; Xj ∈ pj ,

we have

E−1 dE = exp(−X(z, w)) d(exp(X(z, w)))
= (I−X +

X2

2
− · · · ) (dX−1 + dX−2 + · · · )

≡ dX−1

⎛
⎝ mod

⎛
⎝⊕

a≤−2

pa

⎞
⎠⊗ T ∗(Hr ×Δn−r

⎞
⎠ ,

and therefore we must have

(5.7) E−1 dE = dX−1.

Note that, in particular, it follows from (5.7) that dE−1 ∧ dE = 0 and equating
terms according to the decomposition of g− it follows that:

(5.8) dX−1 ∧ dX−1 = 0.

Theorem 5.1. Let (N1, . . . , Nr, F ) be a nilpotent orbit and let

Γ: Δr ×Δn−r → g−
be a holomorphic map with Γ(0, 0) = 0.

i) If the map
Φ̃ : Hr ×Δn−r → Ď

is horizontal then it lies in D for Im(zj) > α, where the constant α may
be chosen uniformly on compact subsets of Δn−r. In other words, Φ̃ is the
lifting of a period map defined in a neighborhood of 0 ∈ Δn.
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ii) Let R : Δr ×Δn−r ∈ p−1 be a holomorphic map with R(0, 0) = 0 and set:

X−1(z, w) =
r∑

j=1

zj Nj +R(t, w) ; tj = exp(2πizj).

Then, if X−1 satisfies the differential equation (5.8), there exists a unique
period map Φ defined in a neighborhood of 0 ∈ Δn and such that R = Γ−1.

Proof. The first statement is Theorem 2.8 in [11] and is a consequence of the several-
variables asymptotic results in [12]. The second statement is Theorem 2.7 in [9]. Its
proof consists in showing that the differential equation (5.8) is the integrability
condition required for finding a (unique) solution of (5.7). The result then follows
from i). A proof in another context may be found in [39]. �
Theorem 5.1 means that, asymptotically, a period map consists of linear-algebraic

and analytic data. The linear algebraic data is given by the nilpotent orbit or,
equivalently, the polarized mixed Hodge structure. The analytic data is given by
the holomorphic, p−1-valued map Γ−1.

Example 5.2. Consider a PVHS over Δ∗ of Hodge structures of weight 1 on
the 2n-dimensional vector space V . We denote by Q the polarizing form. Let
Φ: Δ∗ → D/Sp(VZ, Q) be the corresponding period map. The monodromy loga-
rithm N satisfies N2 = 0 and, by Example A.13 in [7], its weight filtration is:

W−1(N) = Im(N) ; W0(N) = ker(N).

Let Flim be the limiting Hodge filtration. We have a bigrading of VC:

VC = I0,0 ⊕ I0,1 ⊕ I1,0 ⊕ I1,1

defined by the mixed Hodge structure (W (N)[−1], Flim). The nilpotent transfor-
mation N maps I1,1 isomorphically onto I0,0 and vanishes on the other summands.
The form Q(·, N ·) polarizes the Hodge structure on GrW2 and hence defines a posi-
tive definite Hermitian form on I1,1. Similarly, we have that Q polarizes the Hodge
decomposition on V1 := I1,0 ⊕ I0,1. Thus, we may a basis so that

(5.9) N =

⎛
⎜⎜⎝
0 0 Iν 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ; Q =

⎛
⎜⎜⎝
0 0 −Iν 0
0 0 0 −In−ν

Iν 0 0 0
0 In−ν 0 0

⎞
⎟⎟⎠

where ν = dimC I
1,1 and the Hodge filtration Flim = I1,0 ⊕ I1,1 is the subspace

spanned by the columns of the 2n× n matrix:

(5.10) Flim =

⎛
⎜⎜⎝
0 0
0 iIn−ν

Iν 0
0 In−ν

⎞
⎟⎟⎠

The Lie algebra g− = p−1 and the period map can be written as:

Φ(t) = exp(
log t
2πi

N) · exp(Γ(t)) · Flim
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which takes the matrix form (cf. Example 1.16 in [7]):

(5.11) Φ(t) =
(
W (t)
In

)
,

where

(5.12) W (t) =
(

log t
2πi Iν +A11(t) A12(t)

AT
12(t) A22(t)

)
,

with A11(t) and A22(t) symmetric and A22(0) = iI; hence, A22(t) has positive
definite imaginary part for t near zero. This computation is carried out from scratch
in [25, (13.3)].

Example 5.3. We will consider a polarized variation of Hodge structure

V → Δ∗

over the punctured disk Δ∗, of weight 3, and Hodge numbers h3,0 = h2,1 = h1,2 =
h0,3 = 1. The classifying space for such Hodge structures is the homogeneous space
D = Sp(2,R)/U(1)×U(1). We will assume that the limiting mixed Hodge structure
(W (N)[−3], F0) is split over R† and that the monodromy has maximal unipotency
index, that is: N3 �= 0 while, of course, N4 = 0. Hence, the bigrading defined by
(W,F0) is:

VC = I0,0 ⊕ I1,1 ⊕ I2,2 ⊕ I3,3,

where each Ip,q is one-dimensional and defined over R. We have N(Ip,p) ⊂ Ip−1,p−1

and therefore we may choose a basis ep of Ip,p such that N(ep) = ep−1. These
elements may be chosen to be real and the polarization conditions mean that the
skew-symmetric polarization form Q must satisfy:

Q(e3, e0) = Q(e2, e1) = 1.

Choosing a coordinate t in Δ centered at 0, we can write the period map:

Φ(t) = exp(
log t
2πi

)ψ(t)

where ψ(t) : Δ → Ď is holomorphic. Moreover, there exists a unique holomorphic
map Γ: Δ→ g−, with Γ(0) = 0 and such that

ψ(t) = exp(Γ(t)) · F0.

Recall also that Γ is completely determined by its (−1)-component which must be
of the form:

(5.13) Γ−1(t) =

⎛
⎜⎜⎝
0 a(t) 0 0
0 0 b(t) 0
0 0 0 c(t)
0 0 0 0

⎞
⎟⎟⎠ ,

and it is easy to check that since Γ(t) is an infinitesimal automorphism of Q, c(t) =
a(t).
Now, both the limiting mixed Hodge filtration and, consequently, the limiting

mixed Hodge structure depend on the choice of coordinate t and we would like to

†This assumption is not necessary but is made to simplify the arguments.
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understand this dependency. A change of coordinates fixing the origin must be of
the form t̂ = t · f(t), with f(0) = λ �= 0. Now, it follows from (4.12) that:

(5.14) F̂0 = exp
(
− log λ
2πi

N

)
· F0.

and

(5.15) ψ̂(t̂ ) = exp
(
− log f(t)

2πi
N

)
· ψ(t).

Set M = exp
(
− log λ

2πi N
)
∈ g. Then M preserves the weight filtration and maps

F0 to F̂0. Hence it maps the canonical bigrading {Ip,q} of (W,F0) to the canonical
bigrading {Îp,q}of (W, F̂0) and, consequently:

Îp,q(g) = M · Ip,q(g) ·M−1.

Hence, given (5.15) we have

ψ̂(t̂ ) = exp
(
− log f(t)

2πi
N

)
· exp(Γ(t)) · F0

= exp
(
− log f(t)

2πi
N

)
· exp(Γ(t)) ·M−1F̂0

= exp
(
− log f(t)

2πi
N

)
·M−1 · exp(M · Γ(t) ·M−1) · F̂0

= exp
(
− log(f(t)/λ)

2πi
N

)
· exp(M · Γ(t) ·M−1) · F̂0

It then follows by uniqueness of the lifting that

exp(Γ̂(t̂ )) = exp
(
− log(f(t)/λ)

2πi
N

)
· exp(M · Γ(t) ·M−1),

which yields

(5.16) Γ̂−1(t̂ ) = − log(f(t)/λ)2πi
N +M · Γ−1(t) ·M−1.

Let us now assume, for simplicity, that λ = 0 (this amounts to a simple rescaling
of the variable) then (5.17) becomes:

(5.17) Γ̂−1(t̂ ) = − log f(t)2πi
N + Γ−1(t).

Hence, given (5.13) it follows that in the coordinate

t̂ := t exp(2πia(t).
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the function Γ̂−1(t̂ ) takes the form

(5.18) Γ̂−1(t̂ ) =

⎛
⎜⎜⎝
0 0 0 0
0 0 b̂(t̂ ) 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

and, consequently, the period mapping depends on the nilpotent orbit and just one
analytic function b̂(t̂ ). The coordinate t̂ is called the canonical coordinate and first
appeared in the work on Mirror Symmetry (cf. [37]. In fact, it was shown by Deligne
that the holomorphic function b̂(t̂ ) is related to the so-called Yukawa coupling (see
[21, 1]). We refer to [9] for a full discussion of the canonical coordinates.
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Lecture Notes in Mathematics 412, 211-219. Springer-Verlag, Berlin and New York, 1974.

[43] Joseph Steenbrink. Limits of Hodge structures. Invent. Math., 31(3):229–257, 1975/76.
[44] Joseph Steenbrink and Steven Zucker. Variation of mixed Hodge structure. I. Invent. Math.,

80(3):489–542, 1985.
[45] Claire Voisin. Hodge theory and complex algebraic geometry. I, volume 76 of Cambridge Stud-

ies in Advanced Mathematics. Cambridge University Press, Cambridge, english edition, 2007.
Translated from the French by Leila Schneps.

[46] Claire Voisin. Hodge theory and complex algebraic geometry. II, volume 77 of Cambridge Stud-
ies in Advanced Mathematics. Cambridge University Press, Cambridge, english edition, 2007.
Translated from the French by Leila Schneps.

[47] Raymond O. Wells, Jr. Differential analysis on complex manifolds, volume 65 of Graduate
Texts in Mathematics. Springer, New York, third edition, 2008. With a new appendix by Oscar
Garcia-Prada.

Department of Mathematics and Statistics, University of Massachusetts Amherst,
Amherst, MA 01003, USA

E-mail address: cattani@math.umass.edu


