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Abstract

These are the lecture notes from my two lectures 4 and 5. To get an idea of what
you will find in them, parse the table of contents. Caveat emptor (buyer beware, no
refunds): the lectures have a very informal flavor to them and the notes reflect this
fact. There are plenty of exercises and some refererences so you can start looking
things up on your own. My book [5] contains some of the notions discussed here, as
well as some amplifications.
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1 Sheaf cohomology and all that (a minimalist approach)
sc

1. We say that a sheaf of Abelian groups I on a topological space X is injective if

the Abelian-group-valued functor on sheaves Hom(−, I) is exact.

2. Exercise.

(a) Verify that for every sheaf F , the functor Hom(−, F ) is exact on one side, but,
in general, not on the other.

(b) The injectivity of I is equivalent to the following:
for every injection F → G and every map F → I there is a map G→ I making
the obvious diagram commute.

(c) A short exact sequence 0→ I → A→ B → 0 splits.

(d) If 0→ A→ B → C → 0 is exact and A is injective, then B is injective IFF C
is.

(e) A vector space over a field field k is an injective k-module.
Reversing the arrows, you can define the notion of projectivity (for sheaves,
modules over a ring, etc.). Show that free implies projective.

3. It is a fact that every Abelian group can be embedded into an injective Abelian
group. Obviously, this is true in the category of vector spaces!

4. Exercise.

Deduce form the embedding statememt above that every sheaf F can be embedded
into an injective sheaf. (Hint: consider the sheaf Πx∈XFx on X.)

5. By iteration of the embedding result, it is easy to show that given every sheaf F ,
there is an injective resolution of F , i.e. a long exact sequence

0→ F
e→ I0 d0→ I1 d1→ I2 d2→ . . .

s.t. each I is injecitve.

6. The resolution is not unique, but it is so in the homotopy category. Let us not worry
about this. See [4].

7. Let f : X → Y be continuous and F be a sheaf on X.

The direct image sheaf f∗F on Y is the sheaf (check this)

U �→ F (f−1(U)).
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8. A complex of sheaves K is a

. . .→ Ki di→ Ki+1 di+1→ . . .

with d2 = 0. We have the cohomology sheaves

Hi(K) := Ker di/Im di−1

- recall that everything is defined as a presheaf and you must take the associated
sheaf; the only excpetion is the kernel (check this) -.

A map of complexes f : K → L is a compatible system of maps f i : Ki → Li.
Compatible means that the obvious diagrams commute.

There is the induced map Hi(K)→ Hi(L).

A quasi-isomorphism (qis) f : K → L is a map inducing isomorphisms on all coho-
mology sheaves.

The translated complex K[d] has K[d]i : Kd+i with the same differentials (up to sign
(−1)d).

Note that K[1] means moving the entries one step to the left.

An exact sequence of complexes is the obvious thing.

Later, I will mentione distinguished triangles:

K → L→M
+→ K[1]

You can mentally replace this with a short exact sequence

0→ K → L→M → 0

and this turns out to be ok.

9. The direct image complex Rf∗F associacted with (F, f) is “the” complex of sheaves
on Y

Rf∗F := f∗I,

where F → I is an injective resolution as above.

This is well-definied up to unique isomorphism in the homotopy category. This is
easy to verify (check it). For the basic definitions, and a proof of this fact, see [4].

10. If C is a bounded below complex of sheaves on X, i.e. with Hi(K) = 0 ∀i� 0, then
C admits an injective resolution, i.e. a qis C → I, where each entry Ij is injective.

Again, this is well-defined up to unique isomorphism in the homotopy category.

Rf∗ is a “derived functor.” However, this notion and the proof of this fact require
to plunge in the derived cateogory. See [7].
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11. We can thus define the derived direct image complex

Rf∗C := f∗I.

12. Define the (hyper)cohomology groups of (X with coefficients in) C as follows:

take the unique map c : X → p (a point);

take the complex of global sections Rc∗C = c∗I = I(X);

set
H i(X, C) := H i(I(X)).

13. Exercise.

Use the homotopy statements to formulate and prove that these groups are well-
defined (typically, this means: unique up to unique isomorphism; make this precise).

14. The direct image sheaves of C wrt to f are

Rif∗C := Hi(Rf∗C) := Hi(f∗I), i ∈ Z.

15. Exercise.

Prove that the sheaf Rif∗C is the sheaf associated with the presheaf

U �→ H i(f−1(U), C).

(See [8])

Remark that for every y ∈ Y there is a natural map (it is called the base change
map)

(Rif∗C)y −→ H i(Xy, C|Xy
).

Give examples where this map is not an isomorphism/injecitve/surjective.

16. It is a fact that if I on X is injective, then f∗I on Y is injective.

A nice proof of this fact uses the fact that the pull-back functor f∗ on sheaves is the
left adjoint to f∗, i.e. (cf. [7])

Hom(f∗F,G) = Hom(F, f∗G).

17. Exercise.

Use the adjunction property to prove that I injective implies f∗I injective.

Observe that the converse does not hold.

Observe that if I is injective, then, in general, the pull-back f∗I is not injective.
Find classes of maps for which the conclusion holds.
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18. Exercise.

Use that f∗ preserves injectives to deduce that

H i(X, C) = H i(Y, Rf∗C).

19. It is a fact that, on good spaces, the cohomology defined above with for the constant
sheaf ZX is the same as the one defined using Cech and singular cohomologies:

H i(X, ZX) = H i(X, Z) = Ȟ i(X, Z).

20. Exercise.

(a) Let j : Rn \ {0} → Rn be the open immerison. Determine the sheaves Rqj∗Z.

20b (b) (DT!)
Let X = Y = C, X∗ = Y ∗ = C∗, let f : C→ C be the holomorpic map z �→ z2,
and let f∗ : C∗ → C∗ be the restriction.
Show that Rif∗ZX = 0, ∀i > 0. Ditto for f∗.
Show that there is a split short exact sequence of sheaves of vector spaces (if
you use Z-coefficients, there is no splitting)

0 −→ QY −→ f∗QX −→ Q −→ 0

and study determine the stalks of Q.
Do the same over Y ∗. The sequence is one of locally constant sheaves and Q is
the locally constant sheaf with stalk at a fixed point x ∈ X endowed with the
automorphism multiplication by −1 (explain what this means).

(c) Show that on a good connected space X a locally constant sheaf L (a.k.a.
local system) yields a representation of the fundamental group π1(X, x) in the
group A(Lx) of automorphisms of the stalk Lx at a pre-fixed point x ∈ X, and
viceversa. (Hint: consider the quotient (X̃ × Lx)/π1(X, x) under a suitable
action).

(d) Use the principle of analytic continuation and the monodromy theorem (cf. [9])
to prove that every local system on a simply connected space is constant (trivial
representation).

(e) Give an example of a local system that is not semisismple. (simple:= irre-
ducible:= no non trivial subobject; semisimple := direct sum of simples). (Hint:
consider, for example, the standard 2× 2 unipotent matrix.)
Note that the matrix in th eHint is the one of the Picard-Lefschetz transfor-
mation associated with the degeneration of a one-parameter family of elliptic
plane cubic curves to a rational cubic curve with a node; in other words it is
the monodromy of the associated non trivial! fiber bundle over a punctored
disk with fiber S1 × S1).
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(f) Given a fiber bundle, e.g. a smooth proper map (see the Erhesmann Lemma
f : X → Y , with fiber Xy, prove that the direct image sheaf is locally constant
with typical stalk

(Rif∗ZX)y = H i(Xy, Z).

(g) Show that the Hopf bundle h : S3 → S2, with fiber S1, is not (isomorphic to)
a trivial bundle, though the local systems Rih∗ZS3 are trivial on S2.
Do the same for k : S1 × S3 → S2. Verify that you can turn the above into
a proper holomorphic submersion of compact complex manifolds k : S → CP1

(see the Hopf surface in [1])
Show that the Deligne theorem on the degeneration for smooth projective maps
cannot hold for the Hopf map above. Deduce that this is an example of a map
in complex geometry for which the DT does not hold.

(h) Show that if a map f is proper and with finite fibers (e.g. a finite topological
covering, a branched covering, the normalization of a complex space, for exam-
ple of a curve, the embedding of a closed subvariety etc.), then Rif∗F = 0 for
every i > 0 and every sheaf F .
Compute f∗Z in your examples.
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2 The intersection cohomology complex
ic

We are going to define and “calculate” the intersection complex IX of a variety of dimension
d with one isolated singularity:

Y = Yreg

∐
Ysing, U := Yreg, Ysing = {p},

U
j �� Y p.i��

IX , and its twisted version IX(L), can be defined for any variety.

1. Recall that given a complex K the a-th truncated complex τ≤aK is the subcomplex
C with the following entries:

Cb = Kb, ∀b < a, Ca = Ker da, Cb = 0, ∀b > a.

The single most important property is that

Hb(τ≤aK) = Hb(K), ∀b ≤ a, zero otherwise.

2. Let Y be as above. Define the intersection cohomology complex (with Z-coefficients,
for example) as follows

IY := τ≤d−1Rj∗ZU .

3. Toy model.

Let Y ⊆ C3 be the affine cone over an elliptic curve E ⊆ CP2.

R0j∗ZU = ZY (recall that we always have R0f∗ = f∗).

As to the others we observe that U is the C∗-bundle of the hyperplane line bundle H
on E, i.e. the one induced by the hyperplane bundle on CP2. By choosing a metric,
we get the unit sphere (here S1) bundle U ′ over E. Note that U ′ and U have the
same homotopy type. The bundle U ′ → E is automatically an oriented S1-bundle.
The associated Euler class e ∈ H2(E, Z) is the first Chern class c1(H).

4. Exercise.

(You will find all you need in [3].) Use the spectral sequence for this oriented bundle
(here it is just the Wang sequence) to compute the groups

H i(U ′, Z) = H i(U, Z).

Answer: (caution: the answer below is for Q-coefficients only!: work this situation
out and keep track of the torsion)

H0(U) = H0(E), H1(U) = H1(E), H2(U) = H1(E), H3(U) = H2(E).

Deduce that, with Q-coefficents (work out the Z case as well), we have that IY has
only two non zero cohomology sheaves

H0(IY ) = QY , H1(IY ) = H1(E)p (skyscraper at p).
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5. Exercise.

Compute IY for Y = Cd, with p the origin.

Answer: IY = QY (here Z-coefficients ok).

6. The above result is general:

if Y is nonnsingular, then IY = QY (Z ok);

if Y is the quotient of a nonsingular variety by a finite group action, then IY = QY

(Z coefficients, KO!).

7. Let L be a local system on U . Define

IY (L) := τ≤d−1Rj∗L.

Note that, and this is a general fact, that

H0(IY (L)) = j∗L.

8. Useful notation: j!L is the sheaf on Y which agrees with L on U and has stalk zero
at p.

9. Exercise.

(a) Let C be a singular curve. Compute IC .
Answer: let f : Ĉ → C be the normalization. Then IC = f∗ZĈ .

(b) Let things be as in §1, Exercise 20b. Let L = (f∗ZX)|Y ∗ and M := Q|Y ∗ .
Compute

IY (L), IY (M).

(c) Let U be as in the toy model. Determine π1(U). Classify local systems of low
ranks on U . Find some of their IY (L)’s.

(d) Let f : C → D be a branched cover of nonsingular curves. Let fo : Co → Do

be the corresponding topological cover.
Prove that L := fo∗QCo is semisimple (Z-coefficients is KO!, even fo rthe iden-
tity!).
Determine ID(L) and describe its stalks. (Try higher dimensions.)
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3 Verdier duality
vd

1. Let Mm be an oriented manifold. We have Poincaré duality:

H i(M, Q) 	 Hm−i
c (M, Q)∗.

2. Exercise.

Find compact and non-compact examples of the failure of Poincaré duality for sin-
gular complex varieties.

3. Verdier duality (which we do not define here; see [7]) achieves the following.

Given a comple of sheaves K on Y , we get its Verdier dual K∗, with, for every open
U ⊆ Y

H i(U,K∗) = H−i
c (U, K)∗.

Note that H i
c(Y,K) is defined the same way as H i(Y,K), except that we take global

sections with compact supports.

The formation of K∗ is functorial in K:

K −→ L, L∗ −→ K∗,

and satisifies
K∗∗ = K, (K[l])∗ = K∗[−l]

4. Exercise.

Recall the definition of the translation functor [m] on complexes and the one of H i

and H i
c and show that

H i(Y,K[l]) = H i+l(Y, K), H i
c(Y,K[l]) = H i+l

c (Y, K).

5. It is a fact that, for the oriented manifold Mm we have

Q
∗
Y = QY [m]

so that we get Poincaré duality (verify this!).

If M is not oriented, you get something else. See [3] (look for “densities”); see [10]
(look for “sheaf of orientations”); [9], look for “Borel-Moore cycles” and the resulting
complex of sheaves (this maybe somewhere in [2].)

6. One of th emost important proeprties of IY is its self-duality, which we express as
follows (the translation is just for comodity): first set

ICY := IY [d]
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(we have translated the complex IY , which had non zero cohomology sheaves only
in degrees [0, d − 1], to the LEFT by d units, so that the corresponding interval is
now [−d,−1]), then we have that

IC∗Y = ICY .

7. Exercise.

Use the toy model to verify that the equality holds (in that case) at the level of
cohomology sheaves by verifying that (here V is a “typical” neighborhood of p)

Hi(ICY )p = H i(V, ICV ) = H−i
c (V, ICV )∗.

(To do this, you will need to compute H i
c(U) as you did H i(U); be careful though

about using homotopy types and Hc!). (You will find the following distinguished
triangle useful - recall we can view them as short exact sequences, and as such,
yielding a long exact sequence of cohomology groups, with or without supports - :

H0(IY ) −→ IY −→ H1(IY )[−1] +−→;

you will also find useful the following long exact sequence

. . . −→ Ha
c (U) −→ Ha

c (Y ) −→ Ha
c (p) −→ Ha+1

c (U) −→ . . .

8. Define the intersection cohomology groups of Y as

IH i(Y ) = H i(Y, IY ), IH i
c(Y ) = H i

c(Y, IY ).

The original definition is more geometric and involves chains and boundaries, like in
the early day of homology.

9. Since IC∗Y = ICY , we get that

H i(Y, ICY ) = H−i
c (Y, ICY )∗.

Using ICY = IY [d], we get, by Verdier duality

H i(Y, IY ) = H2n−i
c (Y, IY )∗,

and we immediately deduce Poincaré duality for intersection cohomology groups on
an arbitrarily singular complex algebraic variety/space:

IH i(Y, IY ) = IH2d−i
c (Y, IY )∗.
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10. Variant for twisted coefficients.

If Y o ⊆ Yreg ⊆ Y and L is a local system on Y o, we have IY (L), its translated
ICY (L) and one has

ICY (L)∗ = ICY (L∗).

There is the corrisponding duality statement for the groups IH i(Y, IY (L)) etc.:

IH i(Y, IY (L∗)) = IH2d−i
c (Y, IY (L))∗,

where of course L∗ is the dual local system.

11. Exercise.

Define the dual local system L∗ of a local system L as the sheaf of germs of sheaf
maps L→ QY .

(a) Show that it is a local system and that there is a pairing (map of sheaves)

L⊗QY L∗ −→ QY

inducing identifications
(Ly)∗ = (L∗)y.

(Recall that the tensor product is defined by taking the sheaf associated with
the presheaf tensor product U �→ L(U)⊗ QU (U)L∗(U)).

(b) If L is given by the representation r : π1(Y, y)→ A(Ly), find an expression for
a representation associated with L∗. (Hint: inverse-transpose.)

12. Verdier duality and Rf∗ for a proper map.vdrf

It is a fact that if f is proper, then

(Rf∗C)∗ = Rf∗C∗.

We apply this to ICY (L)∗ = ICY (L∗) and get

(Rf∗ICY (L))∗ = Rf∗ICY (L∗).

In particular,
Rf∗ICY is self-dual.
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4 The decomposition theorem (DT)
dt

1. Let f : X → Y be a proper map of algebraic varieties and L be a semisimple (= direct
sum of simples; simple = no nontrivial subobject) local system with Q-coefficients
(most of what follows fails with coefficinets not in a field of characteristic zero) on
an dense open set Xo ⊆ Xreg ⊆ X.

Examples include:

X is nonsingular, L = QX ; then IX(L) = IX = QX ;

X is singular, L = QXreg ; then IX(L) = IX .

2. Decomposition theorem.

There is a splitting in the derived category of sheaves on Y :

Rf∗ IX(L) 	
⊕

b∈B

IZb
(Lb)[lb]

where:

B is a finite set of indices,

Zb ⊆ Y is a collection of locally closed nonsingular subvarieties,

Lb is a semisimple local system on Zb, and

lb ∈ Z.

3. The case where we take IX = IX(L) is already important.

Even is X and Y are smooth, we must dealt with IZ ’s on Y , i.e. we cannot have a
direct sum of shifted sheaves for example.

Deligne’s theorem (1968), including the semisimplicity statement (1972) for proper
smooth maps of smooth varieties is a special case

Rf∗QX 	
⊕

i≥0

Rif∗QX [−i], IY (Rif∗QX) = Rif∗QX .

symm 4. Exercise.

Show that, using the self-duality of ICY , the rule (K[l])∗ = K∗[−l], the DT above,
and the fact that ICT = IT [dimT ] to show that we have that the DT can also
expressed in the following more symmetric form, where r is a uniquely determined
nonnegative integer:

Rf∗ICX 	
r⊕

i=−r

P i[−i]

where each P i is a direct sum of some of the ICZb
appearing above without furhter

translations [?]! and
(P i)∗ = P−i, ∀i ∈ Z.
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Try this first in the case of smooth proper maps, where Rf∗QX = ⊕Rif∗[−i]QX .
This helps getting used to the change of indexing scheme as you go from IY to
ICY = IY [d].

5. Exercise.

(a) Go back to all the examples we met earlier, see what the DT says there and
study the summands.

(b) Argue that the DT cannot possibly hold for the Hopf surface map h : S → CP1

met earlier. (Hint: it is not an algebraic surface; still the DT could still hold;
it is the classical example of a non Kähler manifold; still the DT could hold; it
has first Bettin number b1(S) = 1 and, finally, this prohibiths the conclusion of
the DT from being true for this map.)
Note that this is a proper holomorphic submersion of compact complex mani-
folds, that the target and the fibers are projective, yet DT fails!.

stc (c) Let f : X → C be a proper map with connected fibers, X a nonsingular
algebraic surface, C a nonsingular curve.
Let Co be the set of regular values, Σ := C \ Co (it is a fact that it is finite).
Let fo : Xo → Co and j : Co → C be the obvious maps.
Deligne’s theorem applies to fo and is a statement on Co: show that it take
the following form

Rfo
∗QXo 	 QYo ⊕Rifo

∗QXo [−1]⊕ QCo [−2].

Show that the DT takes the form (let R1 := R1fo∗QXo)

Rf∗QX 	 QC ⊕ j∗R1[−1]⊕ QC [−2]⊕ VΣ[−2],

where VΣ is the skyscraper sheaf on the finite set Σ with stalk at each σ ∈ Σ
a vector space Vσ of rank equal to the number of irreducible components of
f−1(σ) minus one.
Find a more canonical description of Vσ as a quotient of H2(f−1(σ)).
Note that this splitting contains quite a lot of information. Extract it:

• the only feature of f−1(σ) that contributes to H∗(X) is its number of
components; if this is one, there is no contribution, no matter how singular
(including multiplicities) the fiber;

• let c ∈ C, let Δ be a small disk around c, let η ∈ Δ∗ be a regular value;
we have the bundle f∗ : XΔ∗ → Δ∗ with typical fiber Xη;
we have the (local) monodromy for this bundle: i.e. Ri is a local system,
i.e. π1(Δ∗) = Z acts on H i(Xη);
denote by R1π1 ⊆ R1

η the invariants of this (local) action;
show the following general fact for local systems L on a good connected
space Y : the invariants of the local system L

π1(Y,y)
y = H0(Y,L);
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there are the natural map restriction maps

H1(Xη) ⊇ H1(Xη)π1 r←− H1(f−1(Δ) �−→ H1(Xc);

use the DT above to deduce that r is surjective - this is the celbrated local
invariant cycle theorem: all local invariant classes come from XΔ -; it comes
for free from the DT.

Finally observe, that in this case, we indeed have Rf∗QX 	 ⊕Rif∗Q[−i] (but
you should view this as a coincidence due to the low dimensions).

(d) Write down the DT for a projective bundle over a smooth variety.

(e) Ditto for the blowing up of a nonsingular subvariety of a nonsingular variety.

(f) Let Y be a 3-fold with an isolated singularity at p ∈ Y . Let f : X → Y be a
resolution of the singularities of Y : f is an isomoprphism over Y \ p.

3f i. Assume dim f−1(p) = 2; show, using the symmetries expressed by Exercise
4, that the DT takes the following form:

Rf∗QX = ICY ⊕ Vp[−2]⊕Wp[−4],

where Vp = W ∗
p are skyscraper sheaves with dual stalks.

Hint: use H4(Xp) �= 0 (why is this true?) to infer, using that H4(IX) = 0,
that one must have a summand contributing to R4f∗Q etc.
Deduce that the irreducible components of top dimension 2 of Xp yield
linearly indepedent cohomology classes in H2(X).

ii. Assume that dim f−1(p) ≤ 1. Show that we must have

Rf∗QX = IY .

Note that this is remarkable and highlights a general principle: the proper
algebraic maps are restricted by the fact that the topology of Y , imper-
sonated by IY , restricts the topology of X. Using C∞ maps, even real
algebraic maps, you meet no such general restrictions.
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5 The relative hard Lefschetz and the hard Lefschetz for
intersection cohomology groups

rhl
1. Let f : X → Y be a projective smooth map of nonsingular varieties and � ∈ H2(X, Q)

be the first Chern class of a line bundle on X which is ample (Hermitean positive)
on every Xy.

We have the iterated cup product map

�i : Rjf∗QX −→ Rj+2if∗QX .

We have the hard Lefschetz theorem for the iterated cup product action of �y ∈
H∗(XY , Q): let d = dimXy, then

�i
y : Rd−if∗QX

�−→ Rd+if∗QX .

We view what above as the relative hard Lefschetz theorem for smooth proper maps.

2. Recall the symmetric form of the DT Rf∗ 	 ⊕iP
i[−i]. It is a formality to show that

we get iterated cup rpoduct maps

�iP j → P j+2i.

The relative hard Lefschetz theorem is the statement that

�i : P−i 	 P i.

Note that Verdier duality shows that P−i = (P i)∗. Verdier Duality holds in general,
outside of algebraic geometry and holds, for example for the Hopf surface map h :
S → CP1.

The RHL is a considerably deeper statement.

3. Exercise.

(a) Make the statement of the RHL explicit in the example of a map from a surface
to a curve (see §4, Exercise 5c.)

(b) Ditto for §4, Exercise 5(f)i. (Hint: in this case you get � : Vp 	Wp).

4. The hard Lefschetz theorem in intersection cohomology: apply the rhl to X → point:

let � be the first Chern class of an ample line bundle on a projective variety X of
dimension d, then

�i : IHd−i(X, Q) �−→ IHd+i(X, Q).
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5. Hodge-Lefscehtz package for intersection cohomology.

Let X be a projective variety. Then the statements of (see [6] for these statements):

the two Lefscehtz theorems, of the primitive Lefschetz decomposition, of the Hodge
decomposition and of the Hodge-Riemann bilinear relations hold for IH(X, Q).

6. Exercise.

Let f : X → Y be a resolution of the singularities of a projective surface with
isolated singularities (for simplicity; after you solve this, you may want to tackle the
case when the singularities are not isolated).

Show that the DT takes the form

Rf∗QX [2] = ICY ⊕ VΣ

where Σ is the set of singularities of Y and VΣ is skyscraper with fiber Vσ = H2(Xσ).

Deduce that the fundamental classes Ei of the curves given by the irreducible com-
ponents in the fibers are linearly independent.

Use Poincar’é duality to deduce that the intersection form (cup product) matrix
||Ei · Ej || on these classes is non degenerate.

(Grauert proved a general theorem, valid in the analytic context and for a germ
(Y, σ) that even shows that this form is negative definite).

Show that the contribution IH∗(Y ) to H∗(X) can be viewed as the space orthogonal
to the span of the Ei’s.

Deduce that IH∗(Y ) sits inside H∗(X) compatibly with the Hodge decomposition,
i.e. IHj(Y ) inherits a pure Hodge structure of weight j.
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