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2 PERIOD DOMAINS AND PERIOD MAPPINGS

Introduction and Review

The aim of these lectures is to develop a working understanding of the
notions of period domain and period mapping, along with familiarity with
basic examples thereof. The fundamental references are [9] and [10]. We
will not give specific references to these, but essentially everything below is
contained in or derivative of these articles. Three general references are [11],
[14], and [3]. There was not time to put in the figures (my apologies). See
the first chapter of [3]. There is space to copy them in by hand, which is a
good exercise in itself.

In previous lectures you have studied the notion of a polarized Hodge
structure H of weight k over the integers. To recapitulate, H is a a triple
(HZ,⊕Hp,q, Q), where (a) HZ is a free Z-module, (b) ⊕Hp,q is a direct
sum decomposition of the complex vector space HC = HZ ⊗Z C satisfying
Hp,q = Hq,p where p + q = k, (c) Q(x, y) is a non-degenerate bilinear
form which is symmetric for k even and anti-symmetric for k odd. The
bilinear form is compatible with the direct sum decomposition (the Hodge
decomposition) in the following way:

(1) Q(x, y) = 0 if x ∈ Hp,q and y ∈ Hr,s, (r, s) �= (q, p).

(2) ip−qQ(x, x̄) > 0 for x ∈ Hp,q − {0}.
The compatibility relations are the Riemann bilinear relations. The Weil
operator is the linear transfomration C : HC −→ HC such that C(x) =
ip−qx. It is a real operator, that is, it restricts to a real linear transformation
of HR. The expression

h(x, y) = Q(Cx, ȳ)

defines a positive hermitian form.

A Hodge structure can also be defined by a filtration. Let

F p =
⊕
a≥p

Ha,b.

Then one has the decreasing filtration · · · ⊃ F 0 ⊃ F 1 ⊃ F 2 ⊃ · · · . It
satisfies

H = F p ⊕ F k−p+1

for a Hodge structure of weight k. Conversely, a filtration satisfying this
property defines a Hodge structure of weight k.

The motivating example of a polarized Hodge structure of weight k is the
primitive k-th cohomology of a projective algebraic manifold of dimension k.
Before defining primitivity, let us consider the simplest nontrivial example,
the first cohomology of a compact Riemannn surface M . An abelian differ-
ential is a one-form which in a local analytic coordinate z can be written as
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φ = f(z)dz, where f(z) is a holomorphic function. The exterior derivative
of such a form is

(3) dφ =
∂f

∂z
dz ∧ dz + ∂f

∂z̄
dz̄ ∧ dz

The first term vanishes since dz ∧ dz = 0. The second term vanishes since f
is holomorphic; here we have used the Cauchy-Riemann equation. It follows
that abelian differentials are closed, and so represent cohomology classes.
The space of abelian differentials of a compact Riemann surface spans the
subspace of classes of type (1, 0), that is, the subspace H1,0(M). The Hodge
structure is given by that space and H0,1(M), which is spanned by the the
complex conjugates of the abelian differentials. Thus one has

H1(M,C) = H1,0(M)⊕H0,1(M) = {f(z)dz} ⊕ {g(z̄)dz̄},
where g(z̄) is anti-holomorphic.

The cohomology class of a nonzero abelian differential is nonzero. To see
this, consider the integral

(4)
√−1

∫
M
φ ∧ φ̄.

Let {Tα} be a triangulation of M that is so fine that each closed triangle Tα
is contained in a coordinate neighborhood with coordinate zα. Thus on Tα,
φ = fα(zα). Therefore the above integral is a sum of terms

(5)
√−1

∫
Tα

|fα(zα)|2dzα ∧ dz̄α.

Now
√−1dzα ∧ dz̄α = 2dxα ∧ dyα, where zα = xα +

√−1yα. The form
dxα ∧ dyα is the volume form in the natural orientation determined by the
complex structure: rotation by 90◦ counterclockwise in the xα-yα plane.
Thus the integral (4) is a sum of positive terms (5). We conclude that if
φ �= 0, then

(6)
√−1

∫
M
φ ∧ φ̄ > 0.

This is the second Riemann bilinear relation; it implies that the cohomology
class of φ is nonzero.

Consider a second abelian differential ψ = {gα(zα)dzα}. Then

(7)
√−1

∫
M
φ ∧ ψ = 0,

since this integral is a sum of integrals with integrands fα(zα)gα(zα)dzα ∧
dzα = 0. This is the first Riemann bilinear relation. We conclude that
The first cohomology group of a compact orientable Riemann surface is a
polarized Hodge structure of weight one.

Let us now return to the issue of primitivity. The k-th cohomology of
any projective algebraic manifold is a Hodge structure of weight k. The
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cohomology ring of such a manifold is Hodge structure which is a direct
sum of pure Hodge structures of various weights. The cohomology ring can
be reconstructed from its primitive part. To define it, let

(8) L : Hk(M) −→ Hk+2(M)

be the operator defined by L(x) = ω ∧ x, where ω is the positive (1, 1) form
which represents the Kälher class, that is, the hyperplane class. The adjoint
of the operator L is the operator defined by

(9) 〈L(x), y〉 = 〈x,Λ(y)〉 ,
where 〈x, y〉 is the cup product. A cohomology class x is primitive if Λ(x) =
0. We write the primitive cohomolology as Hk(M)o or Hk(M)prim. When
M is a variety of complex dimension d, where d is odd,

Hd(M)o = Hd(M).

The case of Riemann surfaces illustrates this phenomenon: H1(M) is prim-
itive. When d is even,

Hd(M) = {x ∈ Hd(M) | L(x) = 0}.
For example, in the case of an algebraic surface, where d = 2, the primitive
cohomology is the orthogonal complement of the hyperplane class. In general
the cohomology is the direct sum of the sub-Hodge structures LiHj(M)o.

Example 1. Consider an algebraic surface M ⊂ P
3. Let ω be the Kähler

form on P
3, that is the form given by

√−1∂∂̄ log ||Z||2, where Z is the
vector of homogeneous coordinates. The positive (1, 1) form ω represents
the cohomology class of a hyperplane section of M . One finds that∫

M
ω2 > 0.

On the other hand, consider a holomorphic two-form φ, given in local coor-
dinates by f(z, w)dz ∧ dw. Note that

i2
∫
U
|f |2dz ∧ dw ∧ dz̄ ∧ dw̄ = −

∫
U
|f |2(idz ∧ dz̄) ∧ (idw ∧ dw̄) < 0

Thus the hermitian form h(x, y) defined above takes different signs on the
span of ω and on H2,0(M). Moreover, the (2, 0) cohomology of M is primi-
tive, since if x has type (2, 0), then L(x) has type (3, 1), which is necessarily
zero. Thus h cannot be definite on H2(M). It is positive on the hyperplane
class and (as it turns out) negative on the primitive cohomology.

1. Period domains and monodromy

Fix a lattice HZ, a weight k, a bilinear form Q, and a vector of Hodge
numbers h = (hp,q) = (dimHp,q). For example, we might takeHZ = Z

2g, the
weight to be one, and Q to be the standard symplectic form, and h = (g, g),
where h1,0 = g and h0,1 = g. This is the case of Riemann surfaces. Fix a
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lattice Zn, where n = rank HZ and a bilinear form Q0 on Z
n isometric to Q.

A marked Hodge structure (H,m) is a Hodge structure H on HZ together
with an isometry m : Zn −→ HZ. A marked Hodge structure determines
a distinguished basis {m(ei)} of HZ, and such a distinguished basis in turn
determines a marking.

Let D be the set of all marked Hodge structures on HZ polarized by Q
with Hodge numbers h. This is the period domain with the given data. We
will show in a moment that this set is a complex manifold. Below we study
important special cases of period domains, beginning with elliptic curves
and Riemann surfaces of higher genus, then progressing to period domains
of higher weight. For domains of higher weight, we will discover a new
phenomenon, Griffiths transversality, which plays an important role.

Let Γ be the group of isometries of HZ relative to Q. This is an arithmetic
group – a group of integral matrices defined by algebraic equations – which
acts on D. It turns out that the action is properly discontinuous, so that
the quotient D/Γ, the period space, is defined as an analytic space. Whereas
D parametrizes marked Hodge structures, D/Γ parametrizes isomorphism
classes of Hodge structures. The period space is the quotient of a certain
complex manifold D by the action of a discrete group Γ. As such it is an
analytic space with mild singularities (quotient singularities). Such spaces
are called orbifolds or V-manifolds. Every point of such an object has a
neighborhood which is the quotient of an open set in Cn by a the action of a
finite group. When the group is trivial, one has a manifold. In general, open
sets of orbifolds are parametrized by open sets in C

n, but the parametriza-
tion may be n-to-1 with n > 1. In addition, a special phenomenon occurs in
dimension one. Locally, the only possible orbifold structure is the quotient
of a disk by a cyclic group. The quotient of the unit disk Δ by the group μn
of n-th roots of unity is homeomorphic to the unit disk. Indeed, the map
f(z) = zn identifies Δ/μn with Δ. The map f : Δ −→ Δ descends to a bi-
jection Δ/μn −→ Δ. This phenomenon, where orbifolds are also manifolds,
is special to dimension one.

Note that the group Γ may be viewed as the subgroup of matrices with
integer entries in an orthogonal or symplectic group.

Consider now a family of algebraic varieties {Xs | s ∈ S}. Let Δ ⊂ S
be the discriminant locus — the set of points in S where the fiber Xs is
singular. We assume this to be a proper (Zariski) closed subset. The map
f that associates to a point s ∈ S − Δ the class of the Hodge structure
of Hk(Xs) in D/Γ is called the period map. It is a map with quite special
properties; in particular, it is holomorphic, it is the quotient of a holomorphic
map of f̃ : S̃ −→ D, where S̃ is the universal cover, and its behavior
as one approaches the discriminant locus is controlled by the monodromy
representation. The monodromy reprentation is a homomorphis

ρ : π1(S, o) −→ AutHk(Xo)
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which is equivariant in the sense that

f̃(γx) = ρ(γ)f̃(x),

where f̃ is the“lift” of f .

To define this monodromy representation, consider first a family of al-
gebraic varietes X/Δ, that is, a map f : X −→ Δ, where Δ is the a disk
of unit radius and every point of Δ except the origin is a regular value.
Thus the fibers Xs = f−1(s) are smooth for s �= 0. However, X0 is in
general singular. Let ξ = ∂/∂θ be the angular vector field. It defines a
flow φ(θ) where φ(θ) is the diffeomorphism “rotation counterclockwise by
θ radians. Note that φ(θ1)φ(θ2) = φ(θ1 + θ2): the flow is a one-parameter
family of diffeomorphisms such that φ(2π) is the identity. Over the punc-
tured disk Δ∗ = Δ − {0}, one may construct a vectorfield η which lifts ξ
in the sense that f∗η = ξ. Let ψ(θ) be the associated flow. It satisfies
f ◦ ψ(θ) = ψ(θ) and ψ(θ1)φ(θ2) = φ(θ1 + θ2) Let T = ψ(2π). This trans-
formation, the monodromy transformation, is not usually the identity map,
even when considered on the level of homology, which is usually how it is
viewed.

More generally, one proceeds as follows. Let X/S be a family of varieties
with discriminant locus Δ. Let γ be a loop in S −Δ. It is given parametri-
cally by a map γ(t) : [0, 1] −→ S −Δ. Consider the “cylinder” f−1(γ([0, 1])
over the “circle” γ([0, 1]). Let η be a vectorfield defined on this cylinder such
that f∗η = ∂/∂t. Let ψ(t) be the corresponding flow, and let ρ(γ) = ψ(1)
considered in homology: using the flow, we push the cycles around the cylin-
der from the fiber Xγ(0) back to the same fiber. This map is not necessarily
the idenity, though it is if γ is homotopic to the identity. There results a
homomorphism

π1(S −Δ, o) −→ Aut(Hk(Xo,Z)).

This is the monodromy representation.

As the simplest example of a monodromy representation, let M be the
Moebius band. It is a bundle over the circle with fiber which can be identified
with the interval [−1, 1]. Let f : M −→ S1 be the projection. Consider also
the boundary of the Moebius band, ∂M . The fiber of f : ∂M −→ S1 is the
two point space f−1(θ) ∼= {−1,+1}. What is the monodromy representation
for ∂M −→ S1? It is the nontrivial map π1(S

1, 0) −→ AutH0({−1,+1}),
which can be identified with the map Z −→ Z/2. It is generated by the



PERIOD DOMAINS AND PERIOD MAPPINGS 7

permutation which interchanges +1 and −1. Quite often monodromy rep-
resentations are (nearly) surjective and have large kernels. See [2] and [8].

Figure: Moebius band

Exercise 1. Consider the family M −→ S1 where M is the Moebius strip.
What is the monodromy on H1(f

−1(0), ∂f−1(0)) ∼= H1([−1,+1], {−1,+1})?

A more significant example, which will we will study in more detail in
the next section, concerns the family of elliptic curves y2 = (x2 − t)(x− 1).
For |t| < 1/3, (for example) this family is smooth. The fiber over the origin
is a cubic curve with one node. Consider as homology basis the positively
oriented circle δ of radius 1/2. It encircles the two branch point at ±√t. Let
γ be the path that runs from∞ to the branch point between −√t and +

√
t.

When it meets the cut, it travels upwards to
√−2/3, after which it makes

a large rightward arc before traveling back to the base point at infimity.
By drawing picutres at θ = 0, π/2, and π, ones sees that (s) T (δ) = δ; (b)
T (γ) = γ + δ. Thus the matrix of T is

(10) T =

(
1 1
0 1

)
.

Figure: Dehn twist

Exercise 2. What is the monodromy for the family y2 = x(x − 1)(x − t)
near t = 0, 1,∞?



8 PERIOD DOMAINS AND PERIOD MAPPINGS

2. Elliptic curves

Let us now pass from the very general to the very concrete. We will de-
termine the period domain and period space for Hodge structures of elliptic
curves, and we will study several natural period mappings associated to fam-
ilies of elliptic curves. This discussion will provide a guide to understanding
period domains for arbitrary Hodge structures of weight one. Once we do
this, we will consider the non-classical situation, that of Hodge structures
of higher weight.

Let E be an elliptic curve, that is, a Riemann surface of genus one. Such a
surface can be defined by the affine equation y2 = p(x), where p(x) is a cubic
polynomial with distinct roots. Then E is a double cover of the Riemann
sphere CP

1 with branch points at the roots of p and also at infinity. A
homology basis {δ, γ} for E is pictured below.

Figure: Homology basis for E
The intersection matrix for the the indicated homology basis is the “stan-

dard symplectic form,”

Q0 =

(
0 1

−1 0

)
Note that it is unimodular, i.e., has determinant 1. This is a reflection of
Poincaré duality. Let {δ∗, γ∗} be the basis which is dual to the standard
symplectic basis, i.e., δ∗(δ) = γ∗(γ) = 1, δ∗(γ) = γ∗(δ) = 0. As noted
above, such a basis determines a marking of H1(M).

For a basis of H1,0(S), take the differential form

ω =
dx

y
=

dx√
p(x)

.

It is obvious that ω is holomorphic on the part of S above the the comple-
ment of the set of zeros of p(x), plus the point at infinity. A calculation
in local coordinates shows that ω is holomorphic at those points as well.
(Exercise).
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At this point we can give an approximate answer to the question “what
is the period domain for Hodge structures of elliptic curves?” A marking
m : Z2 −→ H1(M,Z) determines a subspace m−1(H1,0(M)) ⊂ C

2. That is,
a marked Hodge structure determines a one-dimensional subspace of C

2.
The set of one-dimensional subspaces of a two-dimensional vector space
is a Grassman variety. In this case it is just complex projective space of
dimension one. Thus the set of marked Hodge structures D of weight one
with h1,0 = 1 can be identified with a subset of CP1.

It is natural to ask: is D = CP
1? The discussion below shows that it is

not. Nonetheless, CP1 does play a special role. Every period domain has its
so-called compact dual Ď, and in the present case, Ď = CP

1. The compact
dual is a compact complex manifold with a number of special properties,
and the period domain D is an open subset of it.

To answer the question of which part of CP1 corresponds to polarized
Hodge structures, consider the vector of integrals

(A,B) =

(∫
δ
ω,

∫
γ
ω

)
These are the periods of ω. We refer to them as the A-period and the
B-period. Note that

ω = Aδ∗ +Bγ∗.
The second Riemann bilinear relation is the statement

i

∫
S
ω ∧ ω > 0.

Substituting the expression for ω in terms of the dual basis and using

(δ∗ ∪ γ∗)[S] = 1,

we find that

(11) i(AB̄ −BĀ) > 0.

It follows that A �= 0, and B �= 0. Therefore the period ratio Z = B/A
is defined. The period ratio depends only on the choice of marking. It is
therefore an invariant of the marked Hodge structure (H,m).

The ratio Z can be viewed as the B-period of the unique cohomology
class in H1,0 whose A-period is one:

(A,B) = (1, Z).

From (11), it follows that Z, the normalized period, has positive imaginary
part. Thus to the marked Hodge structure (H1,m) is associated a point in
the upper half plane,

H = {z ∈ C | �z > 0}.
Consequently there is a map

(12) {Marked Hodge Structures} −→ H.
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This map has an inverse given by

Z ∈ C �→ C(δ∗ + Zγ∗).

Thus (12) is an isomorphism:

D = {Marked Hodge Structures} ∼= H.
To see how D sits inside the Grassmannian CP

1, let [A,B] be homogeneous
coordinates for projective space. Identify {[A,B] | A �= 0} with the complex
line C via [A,B] �→ B/A. Then CP

1 is identified with the one-point com-
pactification of the complex line, where the point at infinity corresponds to
the point of CP1 with homogeneous coordinates [0, 1]. The inclusion of D
in Ď can then be identified with the composition of maps

H −→ C −→ C ∪ {∞} ∼= CP
1

The upper half plane can be thought of as the part of the northen hemisphere
strictly above the equator, which in turn can be thought of as the one-point
compactification of the real line. This is no surprise, since the upper half
plane is biholomorphic to the unit disk.

Having identified the period domain D with the upper half-plane, let us
identify the period space D/Γ. The key question is: what is the group of
transformations that preserves the lattice H1

Z
and the bilinear form Q? The

answer is clear: the group of 2 × 2 integral symplectic matrices. This is a
group which acts transitively on markings. Let M be such a matrix, and
consider the equation

tMQ0M = Q0.

Set

M =

(
a b
c d

)
The above matrix equation is equivalent to the single scalar equation ad −
bc = 1, that is, to the condition detM = 1. Thus the group Γ, which
is an integral symplectic group, is also the group of integer matrices of
determinant 1, that is the group SL(2,Z). This group acts on complex
projective space by fractional linear transformations. Indeed, we have

(1, Z)M = (a+ cZ, b+ dZ) ≡ (1, (b+ dZ)/(a+ cZ)),

so the action on normalized period matrices is by

Z �→ b+ dZ

a+ cZ
.

The action on H is properly discontinuous: that is, for a compact set K ⊂
H, there are only finitely many group elements g such that gK ∩ K �= ∅.
Consequently the quotient H/Γ is a Hausdorff topological space. It is even
more: in general an analytic manifold with a natural orbifold structure. To
conclude, we have found that

{Isomorphism Classes of Hodge Structures} ∼= D/Γ ∼= H/Γ.
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To see what sort of an object is the period space, note that a fundamental
domain for Γ is given by the set

F = {z ∈ H | |�(z)| ≤ 1/2, |z] ≥ 1}.
which is pictured below. The domain F is a triangle with two real vertices
at ω and −ω̄, where

ω =
−1 +√−3

2
is a primitive cube root of unity, and with one ideal vertex at infinity. The
group Γ is generated by the element

S =

(
0 1
−1 0

)
,

corresponding to the fractional linear transformation

S(Z) = −1/Z,
and the element

T =

(
1 1
0 1

)
,

corresponding to the fractional linear transformation

T (Z) = Z + 1.

The period space D/Γ is the same as the fundamental domain F with the
identifications determined by S and T applied. The identification defined
by S glues the right and left sides of F to make a cylinder. The points ω
and −1/ω = −ω̄ are identified by T . The map S glues one side of the edge
of the cylinder to the other: the arc from ω to i is identified with the arc
from −1/ω to i. Topologically, the result is a disk. As an orbifold it can
be identified with the complex line with two special points corresponding to
ω and i. From one point of view this is because ω and i are fixed points
for the action of Γ, of order 6 and 2, respectively. From another point of
view, there is a meromorphic function j(z), the quotient of modular forms
of weight 12, which is invariant under the action of Γ and which gives a
bijective holomorphic map H/Γ −→ C.

The modular forms are defined as follows.

g2 = 60
∑

(m,n)�=(0,0)

1

(m+ nτ)4
,

g3 = 140
∑

(m,n)�=(0,0)

1

(m+ nτ)6
,

and
Δ = g32 − 27g23.

The function Δ(τ) is the discriminant. It vanishes if and only if the elliptic
curve

y2 = 4x3 − g2x− g3
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is singular. The j-invariant is the quotient

j(τ) =
1728g32

Δ

Thus j(τ) = 0 for the elliptic curve with g2 = 0. By a change of coordinates,
we may assume that the curve has equation y2 = x3 − 1. This is elliptic
curve with branch points at infinity and the cube roots of unity. It has an
automorphism of order six, given by (x, y) �→ (ωx,−y).

Figure: Fundamental domain

Exercise 3. Show that the group G = SL(2,R) acts transitively on the
upper half plane by fractional linear transformations. Show that the isotropy
group K = {g ∈ G | g.i = i} is isomorphic to the unitary group U(1). Then
show H ∼= G/K. The period space is then GZ\G/K, where GZ is the set of
integer valued points of G.

3. Period mappings: an example

Let us consider now the family of elliptic curves Et given by

y2 = x(x− 1)(x− t)

The parameter space for this family is the extended complex line, C∪{∞} ∼=
CP

1. The fibers Et are smooth for t �= 0, 1,∞. The set of points Δ =
{0, 1,∞} is the discriminant locus of the family. Thus the family {Et} is
smooth when restricted to CP

1 −Δ.

Fix a point t0 in the complement of the discriminant locus, and let U
be a coordinate disk centered at t0 which lies in the complement of the
discriminant locus. Then a homology basis {δ, γ} for Et exists which lies in
the inverse image of the complement of U . See the figure below. Therefore
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the periods for Et take the form

At =

∫
δ

dx√
x(x− 1)(x− t)

Bt =

∫
γ

dx√
x(x− 1)(x− t)

The domains of integration are fixed and the integrands depend holomor-
phically on the parameter t. Therefore At and Bt are holomorphic functions
on U , as is the ratio Zt = Bt/At. Thus the period map, which so far we have
defined only locally, that is, on U , is a holomorphic function with values in
H.

Figure: Homology basis for Et
One approach to defining the period map globally is to consider its full

analytic continuation, which will be a function from the universal cover of
the parameter space minus the idiscriminant locus to the period domain,
in this case the upper half plane. The branches of the analytic continua-
tion correspond to different markings of the fibers Et, that is, to different
homology bases. Consider therefore the composed map

{Universal cover of CP1 −Δ} −→ H −→ Γ\H.
This map is holomorphic, and it is also invariant under the action of covering
transformations on the left. Thus we obtain a holomorphic map

CP
1 −Δ −→ Γ\H.

This is the period map.

The family of elliptic curves just discussed has three singular fibers. Are
there nontrivial families with fewer fibers? Consider a family with just
two singular fibers, which we may take to be at zero and infinity. Thus the
parameter space for the smooth fibers is C∗, the complex line with the origin
removed. The universal cover of C∗ is the complex line, and the covering
map C −→ C

∗ is given by exp 2πiz. Thus the lift of the period map to the
universal cover is a holomorphic map C −→ H. Now the upper half plane
is biholomorphic to the unit disk (exercise: verify this). Consequently the
lift is in essence a bounded entire function. Such functions are constant.
This means that if s and t are nonzero complex numbers, then Es ∼= Et for
a family of elliptic curves with at most two singular fibers.
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As a related application, suppose that one has a family of elliptic curves
parametrized by the unit disk minus the origin, which we write as Δ∗. Sup-
pose further that the monodromy transformation is trivial. This means that
analytic continuation defines a period map f : Δ∗ −→ H. Again using the
fact that H is biholomorphic to the disk, we apply the Riemann removable
singularity theorem to conclude that the period map extends to a holomor-
phic map f : Δ −→ H. The point f(0) corresponds to the Hodge structure
of a a smooth elliptic curve. From this we conclude that the family of elliptic
curves on the punctured disk is the restriction of a family of elliptic curves
on the disk.Slight technical problem:

fine versus coarse moduli
space?

3.1. Asymptotics of the period map. Let us examine the behavior of
the period map for the family y2 = x(x− 1)(x− t) as t approaches infinity
along the ray [2,∞) on the real axis. Let δ and γ be as above, and note that∫

δ

dx√
x(x− 1)(x− t)

∼
∫
δ

dx

x
√−t ∼

2π√
t

when t is large. By deforming the path of integration over γ, we find that∫
γ

dx√
x(x− 1)(x− t)

= −2
∫ t

0

dx√
x(x− 1)(x− t)

The difference between the last integrand and the integrand 1/x(x − t) is
1/2x2+higher powers of x−1 The integral of the latter expression is asymp-
totically neglible. The residual integral can be computed exactly:

−2
∫ t

0

dx√
x(x− 1)(x− t)

=
4√
t
arctan

√
1− t√
t

∼ 2
√−1√
t

log t.

Thus the period ratio Z satisfies the asymptotic expansion

Z(t) ∼
√−1
π

log t.

This behavior is typical, though much harder to prove. The dominant term
in a period is of the form ta(log t)b, where a is a rational number such that
(2πa) is a root of unity. The exponent b is the index of nilpotence of γm−1,
plus one, where λm = 1 for all λ. Here we use that fact, to be proved later,
that the eigenvalues of T are roots of unity, so that such an m exists. In our
example, m = 1 and b = 2, since (T − 1)2 = 0.

Although it is not yet apparent, the asymptotic behavoir of the period
map is controlled by the index of nilpotence of γm− 1. Here m is an integer
such that the eigenvalues λ of γ satifsy λm = 1. Then the eigenvalues of
γm are one, and γm is nilpotent. For algebraic curves, (γm − 1)2 = 0, for
surfacs (γm − 1)3 = 0, etc. Of course the index of nilpotence can be less
than maximal in special cases.
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Exercise 4. (a) Consider the family of zero-dimensonal varities Xt defined
by zp = t. Describe the monodromy on H0(Xt). (b) [Harder] Consider the
family zp + wq = t. Describe the monodromy on H0(Xt). (See also [13]).

Exercise 5. Consider the family of ellpitc curves {Et} defined by y2 = x3−1.
What is the monodromy representation? What is the period map? Describe
the singular fibers.

4. Hodge structures of weight one

Let us now study the period domain for polarizd Hodge structures of
weight one. One source of such Hodge structures is the first cohomology of
Riemann surfaces. Another is the first cohomology of abelian varieties. An
abelian variety is a compact complex torus that is also a projective algebraic
variety. Elliptic curves are abelian varieties of dimension one.

It is natural to ask if all weight one Hodge structures come from Riemann
surfaces. This is the case for elliptic curves, since the moduli space (the space
of isomorphism classes) of elliptic curves has dimension one, the same as the
dimension of the period space. For genus greater than one, the dimension
of the moduli space is 3g − 3. Thus the space of Hodge structures of which
come from such Riemann surfaces is a space of dimension at most 3g − 3
for g > 1. The Torelli theorem states that the period map is injective.
This means that the map which associates to a point in the moduli space
its corresponding Hodge structure is injective. Consequently the space of
Hodge structures coming from Riemann surfaces of genus greater than one
has exactly dimension 3g − 3.

As we shall see shortly, the space of Hodge structures of genus g, that is,
with dimH1,0 = g has dimension g(g + 1)/2. It follows that the dimension
of the space of Hodge structures of genus g is larger than the dimension of
the space of Hodge structures coming from Riemann surfaces of genus g for
g > 3.

One can invert the construction of a polarized Hodge structure given an
abelian variety. If H is a Hodge structure of weight one, define the quotient

J(H) =
HC

H1,0 +HZ

Exercise 6. J(H) is a compact complex torus whose first cohomology is
isomorphic to H as a Hodge structure.

Remark 1. If H is a polarized Hodge structure, one can show more: J =
J(H) is a projective algebraic variety. The idea is as follows. The polarizing
form Q is an element of Λ2HZ. One may view it as an element ωQ of
H2(J,Z). The first Riemann bilinear relation shows that ωQ has type (1, 1).
The second Riemann bilinear relation is equivalent to the statement that
ωQ is represented by a positive (1, 1) form. The exponential sheaf sequence
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shows that ωQ is the first Chern class of a holomorphic line bundle L. The
positivity of the first Chern class allows one to apply Kodaira’s theorem,
which implies that sections of some power of L give a projective imbedding
of J .

Let us now describe the period space D for polarized Hodge structures
of weight one and genus g = dimH1,0. This period space depends on the
choice of a skew form Q. For now we assume that

A =

(
0 I
−I 0

)
,

where I is he g × g identity matrix. Let {δj , γj}, where j runs from be a
basis for HZ. Write ei = δi and eg+i = γi. We assume the matrix of inner
products (ei, ej) to be Q. Let {φi} be a basis for H1,0, where i runs from 1
to g. Then

φi =
∑
j

Aijδ
j +

∑
j

Bijγ
j .

The g × 2g matrix
P = (A,B)

is called the period matrix of the Hodge structure with respect to the given
bases. The basis for HZ defines a marking m of the Hodge structure, and
S = m−1H1,0 ⊂ C

2g is the row space of the period matrix. Thus the period
domain D is a subset of the Grassmannian of g-planes in complex 2g-space.
The Riemann bilinear relations impose restrictions on these subspaces. The
first Riemann bilinear relation gives a set of equalities that express the fact
that Q(v, w) = 0 for any two vectors in S. The second Riemann bilinear
relation gives a set of inequalities:

√−1Q(v, v̄) > 0 for any nonzero vector
in S.

To understand both the equations and the inequalities, we first show that
A is a nonsingular matrix. If that is the case, we can change the basis of
H1,0 by replacing φi with the sum Aijφj , where (Aij) is the inverse of A.
The period matrix then takes the form

P = (I, A−1B) = (I, Z).

The first bilinear relation implies that Z is symmetric. The second bilinear
relation implies that Z has positive-definite imaginary part. From this we
conclude thatD is an open subset of a complex Euclidean space of dimension
g(g + 1)/2. It is a generalization of the upper half space in C, the so-called
Siegel upper half space of genus g, written Hg.

To show that A is nonsingular, let φ = vmφm be an arbitrary nonzero
element of H1,0. Then √−1Q(φ, φ̄) > 0.

Therefore√−1Q(vmAmjδ
j + vmBmjγ

j , v̄nĀnkδ
k + v̄nB̄nkγ

k) > 0,
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and so

(13)
√−1(vmv̄nAmjB̄nj − vmv̄nBmjĀnj) > 0.

Let

Hmn =
√−1(AmjB̄nj −BmjĀnj).

Then

H =
√−1(AB∗ −BA∗),

where B∗ is the Hermitian conjugate of B. Then (14) asserts that H is a
positive hermitian matrix. If A were singular, there would exist a vector
v such that vA = 0, in which case we would also have A∗v̄ = 0, so that
vHv̄ = 0, a contradiction. Thus A is nonsingular, as claimed.

At this point we know that the period matrix can be brought to the
normalized form P = (I, Z), where for the moment Z is an arbitrary g × g
matrix. Let us apply the first Riemann bilinear relation to elements φ =
vmφm and ψ = wnφn of H1,0. One finds that

(14) vmwnAmjBnj − vmwnBmjAnj = 0.

Setting A to the identity matrix, this simplifies to

(15) vmwnBnm − vmwnBmn = 0,

which can be written

v(B − tB)w = 0

for arbitrary v and w. Therefore B, that is, Z, is a symmetric matrix,
as claimed. The fact that H is postive-definite is now equivalent to the
statement that Z has positive-definite imaginary part. To conclude:

Hg = {Z | Z is a complex symmetric matrix with positive imaginary part}.
Remark 2. As in the case of H = H1, there is a group-theoretic description.
Let G = Sp(g,R) be the group of real 2g × 2g matrices which preserve the
form Q. This is the real symplectic group. Fix a polarized Hodge structure
H. Let g be an element of the isotropy group K of this “reference” Hodge
structure. The element g preserves this Hodge structure. Then g is deter-
mined by its restriction to H1,0. The restriction to this subspace preserves
the positive hermitian form

√−1Q(v, w̄). Therefore K is the unitary group
of H1,0. Since G acts transitively on Hg (Exercise!), we find that

Hg
∼= G/K = Sp(g,R)/U(g).

The group which permutes the markings is GZ = Sp(g,Z). Thus the period
space is

Γ\Hg = GZ\G/K = Sp(g,Z)\Sp(g,R)/U(g).

Exercise 7. Compute the dimensions of the Lie groups Sp(g,R) and U(g).
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Remark 3. Let G be a non-compact Lie simple Lie group and let K be
a maximal compact subgroup. The quotient D = G/K is a homogeneous
space. By homogeneous we mean that there is a transitive group action.
The group is G. Spaces of this kind are a special kind of homogeneous space
known as a symmetric space. These spaces carry a G-invariant Riemannian
metric, and at each point x of D there is an isometry ix which fixes x and
which acts as −1 on the tangent space. That symmetry is given by an ele-
ment of K which can be identified with −I, where I is the identity matrix,
when G and K are identified with matrix groups in a suitable way. The
Siegel upper half space is an example of a Hermitian symmetric space. This
is a symmetric space which is also a complex manifold. For such spaces the
isotropy group contains a natural subgroup isomorphic to the circle group
U(1). Its action gives the complex structure tensor, for then isometries rep-
resenting multiplication by a unit complex number are defined. In particular,
an isometry representing rotation counterclockwise through an angle of 90◦
is defined at each point.

Remark 4. Let G/K be a hermitian symmetric space, and let Γ = GZ. A
theorem of Baily-Borel shows that M = GZ\G/K has s projective imbedding.
Thus, like the quotient of the upper half plane by the action of SL(2,Z), these
spaces are quasiprojective algebraic varieties. By this we mean that they are
of the form “a projective variety minus a projective subvariety.”

5. Hodge structures of weight two

New phenomena arise when one considers Hodge structures of weight
greater than one. All of the new phenomena present themselves in the weight
two case. Since we can study without struggling with notational issues, we
consider this case first. Polarized Hodge structures of weight two arise in
nature as the primitive second cohomology of an algebraic surface M . In
this case primitivity has a simple meaning: orthogonal to the hyperplane
class. Such a Hodge structure has the form

H2
0 = H2,0 ⊕H1,1

0 ⊕H0,2.

We remarked earlier that classes of type (2, 0) are primitive for reasons of
type. The same is of course true for classes of type (0, 2). In this case, the

Hodge filtration is F 2 = H2,0, F 1 = H2,0 ⊕ H1,1
0 , F 0 = H2

0 . By the first
Riemann bilinear relation, the orthogonal complement of F 2 is F 1. Thus
the data F 2 and Q determine the polarized Hodge structure. Let us set
p = dimH2,0 and q = dimH1,1

0 . Then a marked Hodge structure determines
a subspace S = m−1F 2 of dimension p in C

2p+q. The period domain D
whose description we seek is therefore a subset of the Grassmannian of p-
planes in 2p + q-space. As in the case of weight one structures, the first
and second bilinear relations impose certain equalities and inequalities. As
a result, D will be an open subset of a certain closed submanifold Ď of the
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Grassmannian. The submanifold Ď is the set of isotropic spaces of dimension
p: the set of p- dimensional subspaces S on which Q is identically zero. The
open set D is defined by the requirement that Q(v, v̄) < 0 for all nonzero
vectors in S.

As before, the period domain admits a group-theoretic description: it is a
certain kind of complex homogeneous space. Let G be the special orthogo-
nal group of the vector space HR endowed with the symmetric bilinear form
Q. We will show in a moment that this group acts transitively on marked
Hodge structures. Assuming this for the moment, consider some particu-
lar marked Hodge structure. An element g of G which leaves this Hodge
structure invariant restricts to the subspaces of the Hodge decomposition.
Since g is a real linear transformation, its restriction to H2,0 determines
its restriction to H0,2: just take the conjugate. The restriction to H2,0 also
preserves the negative hermitian form Q(v, w̄). Similarly, the restriction of g

to H1,1
0 preserves the negative-definite form Q(v, w). Let V be the isotropy

subgroup of G: the subgroup whose elments leave the particular marked
Hodge structure fixed. We have just defined a map V −→ U(p)×SO(q) via

g �→ (g|H2,0, g|H1,1
0 ). This map is an isomorphism (exercise). Thus we find

that

D ∼= G/V.

The easiest way to see the complex structure onD is realize that it is an open
set of Ď, which in turn is an algebraic submanifold of the Grassmannian.
Since G acts by holomorphic transformations, the complex structure defined
group-theoretically agrees with the one defined naively.

We now encounter the first major difference with classical Hodge theory.
In general the isotropy group V , while compact, is not maximal compact.
Indeed, for weight two structures, a maximal compact subgroup K has the
form SO(2p) × SO(q). An element of K is an element of G which pre-

serves (a) the subspace H1,1
0 and the subspace H2,0 ⊕ H0,2. The latter is

the complexification of the set of points left invariant by conjugation. The
restriction of Q to this subpace is a negative definite form of rank 2p. Thus
K is isomorphic to S(O(2p) × O(q)). Only in the case p = 1 do we have
V = K. In that case D is a hermitian symmmetric space, and it can be
realized as a bounded domain in complex euclidean space. In all other cases
D is not Hermitian symmetric, and it is not an open subset of complex
Euclidean space. Indeed, D abounds in compact complex subvarieties of
positive dimension, namely K/V and its tranlsates by G. It is worth men-
tioning that (a) the Hermitian symmetric case occurs for K3 surfaces, hence
their prominent role in algebraic geometry, and (b) in general (all weights)
the map G/V −→ G/K has target a symmetric space, and the source is a
complex manifold. However, the map is not holomorphic, even when G/K
happens to be hermitian- symmetric.
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Despite the nonclassical nature of D in higher weight, there are two facts
that make period domains and period mappings useful tools of study. The
first is that the period map is holomorphic. The second is that it satisfies
a differential equation which forces it, unlike an arbitrary holomorphic map
into a period domain, to behave as if it were mapping into a bounded do-
main. This differential equation, which we shall explain presently, is Griffiths
transversality.

Let us begin with the definition of the period map, which we do in com-
plete generality. Let f : X −→ S be a smooth family of algebraic vari-
eties. Let U ⊂ S be a contractible open set with distinguished point o.
Then the restriction of f to f−1(U) is a family differentiably isomorphic
to Xo × U −→ U , where the map is projection on the second factor. Let
{δi} be a basis for Hk(Xo,Z)0. Because of the product structure, this basis
defines a basis for Hk(Xs,Z)0 for all s in U . Consequently we have a family
of markings ms : Zn −→ Hk(Xs,Z). Let F p

s = m−1s (F pHk(Xs)0). Thus
is defined a family of filtrations F p

s of C
n. This is the local period map

p : U −→ D. If one admits that the period mapping is holomorphic, one
defines the period mapping from the universal cover of S to D as the full
analytic continuation of such a local period map. Thus one has first

p : S̃ −→ D

and subsequently the quotient map

p : S −→ Γ\D.
However, there is another argument. Lift the family X/S to a family X/S̃.
Then the bundle of cohomology groups of fibers is trivial, i.e, is isomorphic
to Hk(Xo,Z) × S̃. Therefore there is a marking for the cohomology of the
family pulled back. Using this marking, which makes to no reference to the
as yet unproved holomorphicity of the period map, we construct a period
map p : S̃ −→ D.

We will show that the period map is holomorphic in the special case of
surfaces in P

3. The method of proof, which relies on the Griffiths-Poincaré
residue, works for the case of hypersurfaces in P

n. Using the residue calculus,
we will also establish Griffiths transversality in this case.

Exercise 8. (a) Determine the groups G, V , and K for a Hodge structure
of weight three. (b) Do the same for weight four.

6. Poincaré residues

Let Xi be homogeneous coordinates on C
n+1, where i ranges from 0 to n.

Consider the n-form

d(X1/X0) ∧ · · · ∧ d(Xn/X0) =
1

Xn+1
0

n∑
i=0

XidX0 ∧ · · · ∧ d̂Xi ∧ · · · ∧ dXn
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where we view the Xi/X0 as affine coordinates on the open set U0 =
{[X] | X0 �= 0}. Note that this form is homogeneous of degree zero. An
object is homogeneous of degree d if it is multiplied by λd when each Xi is
multiplied by λ. This form is meromorphic on P

n with a pole of order n+1
on the hyperplane X0 = 0.

Let

Ω =

n∑
i=0

XidX0 ∧ · · · ∧ d̂Xi ∧ · · · ∧ dXn.

It is an expression which is homogeneous of degree n+1, and may be viewed
as a holomorphic section of Ωn(n+1) ∼= O on P

n. Meromorphic n-forms on
P
n are expressions of the form

ΩA =
AΩ

Qr
,

where A and Q are homogeneous polynomials such that ΩA is homogenous
of degree zero. Consider, for example, the case of a hypersurface of degree
d, defined by Q = 0, in P

3. The degree of Ω is 4, so meromorphic forms are
given by

ΩA =
AΩ

Q
,

where degA = d − 4. It is easy to count the dimension of the space of
meromorphic forms of this kind: the dimension of the space of homogeneous
polynomials of degree d in n+1 variable is the binomial coefficient

(
d+n+1

n

)
.

As a mnemonic device, remember that for d = 1, the answer is n + 1, the
number of homogeneous coordinates, and that the result is a polynomial of
degree n in d. (Exercise: prove all these statements).

We come now the Poincaré residue. The forms ΩA for fixed Q define
cohomology classes of degree n on P

n − X, where X is the locus Q = 0.
Grothendieck’s algebraic de Rham theorem applied to this case says that
the cohomology of Pn−X is generated by the classes of the ΩA. We assume
here that X is smooth.

There is a purely topological construction

res : Hn(Pn −X) −→ Hn−1(X)

which is defined as follows. Given a cycle γ of dimension n−1 onX, let Tε(γ)
denote the tube of radius epsilon around it relative to some Riemannian
metric. If ε is sufficiently small, then the boundary of this tube lies in
P
n −X. Define

res(α)(γ) =
1

2πi
α(∂Tε(γ)).

We call this the topological residue of α. For small ε the region inside the
Tε′ but outside Tε′′ for ε

′′ < ε′ < ε is bounded by smooth, nonintersecting
tubes. The fact α is closed gives (by Stokes theorem) that

α(∂Tε′(γ)) = α(∂Tε′′(γ)).
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Thus the topological residue is independent of the tube chosen so long as it
is small enough. We can also write

res(α)(γ) = lim
ε→0

1

2πi
α(∂Tε(γ)),

even though the sequence is in fact constant.

The residue map fits into the exact sequence

· · · −→ Hn(Pn) −→ Hn(Pn −X)
res−→ Hn−1(X)

G−→ Hn+1(Pn) −→ · · ·
where G is the Gysin map. It is the transpose via Poincaré duality of
the Hk(X) −→ Hk(P

n). The kernel of the Gysin map is the primitive
cohomology. Thus there is a surjection

Hn(Pn −X)
res−→ Hn−1(X)o −→ 0

When α is represented by a meromorphic form ΩA, we would like to
represent it by a differential form on X. To this end we will define an
analytic residue for forms with pole of order one. We will then compare the
analytic and topological residues, concluding that they are the same on the
level of cohomology.

Let us consider first the local version of the the analytic residue, where
projective space is replaces by a coordinate neighborhood in C

n and ΩA is
replaced by the expression α = adz1 ∧ · ∧ dzn/f , where the hypersurface is
defined by the holomorphic equation f(zn) = 0. Note that

df =
∑
i

∂f

∂zi
dzi.

If f(z) = 0 defines a smooth hypersurface, then at least one of its partial
derivatives is nonvanishing ateach point of f = 0. Assume that the partial
∂f
∂zn

is not zero at a point of f = 0 by shrinking the neighborhood if neces-
sary, we may assume that this partial derivative is nonzero throughout the
neighborhood. Multiply df by dz1 ∧ · · · ∧ dzn−1. Then

dz1 ∧ · · · dzn−1 ∧ df =
∂f

∂zn
dz1 ∧ · · · ∧ dzn.

Thus
adz1 ∧ · · · ∧ dzn

f
=
adz1 ∧ · · · ∧ dzn−1

∂f/∂zn
∧ df

f

Define the analytic residue to be the coefficient of df/f , restricted to f = 0.
Thus

Res

(
adz1 ∧ · · · ∧ dzn

f

)
=
adz1 ∧ · · · ∧ dzn−1

∂f/∂zn

∣∣∣
f=0

.

Since ∂f/∂zn is nonzero on f = 0, we see that the analytic residue of a
meromorphic form with a pole of order one is a holomorphic form.
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Let {Uβ} be a coordinate cover of a neighborhood of Tε(X) which restricts

to a coordinate cover ofX. We may assume thatX is locally given by zβn = 0.
Let {ρβ} be a partition of unity subordinate to the given cover. Then

res(α)(γ) = lim
ε→0

1

2πi

∑
β

∫
∂Tε(γ)

ρβaβdz
β
1 ∧ · · · ∧ dzβn−1

dzβn

zβn

Use Fubini’s theorem to integrate first with respect to zβn and then with

respect to the other variables. To evaluate the integral in zβn , define for any

function g(zβ1 , . . . , z
β
n), the quantity

[g]ε(z
β
1 , . . . z

β
n−1) =

1

2π

∫ 2π

0
g(zβ1 , . . . , z

β
n−1, εe

2πiθβn)dθβn

Then [g]ε is an average value satisfying

lim
ε→0

[g(z1, . . . , zn−1)]ε = g(z1, . . . , zn−1, 0).

Then one has

res(α)(γ) =
∑
β

∫
γ
(ρβaβ)(z

β
1 , . . . , z

β
n−1, 0)dz

β
1 ∧ · · · ∧ dzβn−1

The integral on the right is the integral of the analytic residue over γ. To
summarize,

res(α)(γ) = Res(α)(γ).

Thus the two residue maps are the same on the level of cohomology classes.

Recall what Grothendieck’s algebraic de Rham theorem says: the coho-
mology of Hn(Pn − X) is spanned by the classes AΩ/Qr. Thus there is a
filtration of the cohomology by order of pole: define

P rHn(Pn −X) = {β | β = [AΩ/Qk], where k ≤ r}
One has the increasing filtration P 1 ⊂ P 2 ⊂ · · · ⊂ Pn+1 = Hn(Pn − X).
This filtration maps to a filtration of the primitive cohomology. From the
discussion above, we see that

resP 1Hn(Pn −X) = Fn−1Hn−1(X)o.

Somewhat more elaborate arguments, which we shall sketch in a moment,
show that

resP rHn(Pn −X) = Fn−rHn−1(X)o.

Thus the residue maps the increasing filtration by order of pole to the de-
creasing Hodge filtration.
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7. Properties of the period mapping

We will now establish some properties of the period mapping for hypersur-
faes. All properties stated hold in general (see Eduardo Cattani’s lectures).

Theorem 1. The period mapping is holomorphic.

Let {F p(t)} be a decreasing filtration with parameter t. Let vi(t) be a
basis of F p(t) To first order, vi(t) = vi(0)+tv̇i(0). Define the homomorphism

Φp : F
p(0) −→ HC/F

p(0)

by

Φp(vi(0)) = v̇i(0) mod F p(0).

This homomorphism is zero if and only if F p(t) is constant to first order as a
map into the Grassmannian of k-planes in HC, where k = dimF p. This ho-
momorphism is the velocity vector of the curve F p(t) in the Grassmannian.
The complex structure of D is inherited from the complex structure of the
product of Grassmannians in which it imbeds by the map that sends a fil-
tration to a vector of subspaces with components F p ∈ Grass(dimF p, HC).
Thus it is sufficient to compute the derivative of F p(t) viewed as a curve in
the Grassmannian.

We do this only for FnHn(X), where X is a hypersurface in P
n+1, but

make some remarks about the general case. To that end, let Q(t) = Q+ tR
be a pencil of equations defining a pencil of hypersurfaces. Let A be a
polynomial such that AΩ/Q(t) defines a meromorphic form on P

n+1. The
resAΩ/Q(t) is a curve of vectors in Fn(t). Let γi be a basis for Hn(X0,Z),
where Q(t) = 0 defined Xt. For a given ε, there is a δ such that the tubes
∂Tε(γi) form a basis forHn+1(Pn+1−Xt) so long as |t| < δ. Thus coordinates
of resAΩ/Q(t) are give by the integrals (periods)

Ik(t) =

∫
∂Tε(γi)

AΩ

Q(t)
.

Because the domain of integration is fixed, as in our example of elliptic
curves, derivatives of Ik(t) can be computed by differentiation under the
integral sign. Since Q(t) depends holomorphically on parameters, the de-
rivative of Ik(t) with respect to t̄ is zero. That is, it satisfies the Cauchy-
Riemann equation, and so Fn(t) is holomorphic. The same argument applies
to F p(t) once one establishes compatibility of the filtrations by order of pole
and by Hodge level.

The next assertion is Griffiths transversality.

Theorem 2. Let {F p(t)} be a family of Hodge filtrations coming from a
family of projective algebraic manifolds. Then Φp takes values in F p−1/F p.
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There are two parts to the proof in the case of hypersurfaces. The first is
an observation from calculus. Let

Ik(t) =

∫
∂Tε(γi)

AΩ

Q(t)r
.

where here we allow poles of arbitrary order. Then

∂Ik(t)

∂t

∣∣∣
t=0

= −(r + 1)

∫
∂Tε(γi)

Q̇(0)AΩ

Q(0)r+1
.

Thus differentiating a meromorphic differential moves it by just one step in
the pole filtration. There is, of course, a subtlety. What is important is the
cohomology class of the differential. It could happen that a meromorphic
differential with a pole of order r is cohomologous to one with a pole of
smaller order.

The second part is the compatibility between the filtration by order of
pole and the Hodge filtration. We have established it only for hypersurfaces
and only for FnHn(X). However, given that compatiblility, we see that Φp

takes values in F p−1/F p.

Because of the distinction between the order of pole of a meromorphic
differential and minimum order of pole of a meromorphic form in the co-
holomogy class of a differential, it can be a somewhat delicate matter to
detemine whether Φp �= 0, that is, whether the derivative of the period
mapping is nonzero. We address this issue in the next section.

8. The Jacobian ideal and the local Torelli theorem

Let us now investigate the question of whether the cohomology class of a
meromorphic form can be represented by one of lower pole order. An answer
to this question will lead to a proof of the following result [?], which is the
local Torelli theorem of Griffiths.

Theorem 3. The period map for hypersurfaces of degree d in P
n is locally

injective for d > 2 and n > 1, except for the case of cubic surfaces.

To efficiently study differential forms of all degree on P
n+1−X, we intro-

duce a convenient calculus. Let dV = dX0∧· · ·∧dXn+1 be the “holomorphic
volume form on C

n+2. Let

E = Xki

(
∂

∂Xk

)
be the Euler vector field. It is an operator which is homogeneous of degree
zero. Then

Ω = i(E)dV,
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where i(E) means interior multiplication by the vectorfield E. Apply the
operator i(E) to the identity

dQ ∧ dV = 0,

to obtain

(degQ)QdV = dQ ∧ Ω.

If we use “≡” to mean “up to addition of an expression which is a multiple
of Q,” then this relation reads

dQ ∧ Ω ≡ 0.

Apply K
 = i(∂/∂X
) to the proceeding to obtain

Q
Ω ≡ dQ ∧ Ω
,

where

Ω
 = K
Ω

Now consider a general meromorphic n-form on P
n+1 − X. It can be

written as ∑



A
K
Ω

Qr
.

The exterior derivative of such an expression is simple if we ignore all terms
of lower pole order:

d
∑



A
K
Ω

Qr
≡ −(r + 1)

∑



A
dQ ∧K
Ω

Qr+1

One also has the identity

K
dQ+ dQK
 = Q
.

Therefore

d
∑



A
K
Ω

Qr
≡ (r + 1)

∑



A
K
dQ ∧ Ω

Qr+1
− (r + 1)

∑



A
Q
Ω

Qr+1

But dQ ∧ Ω ≡ 0, so that

d
∑



A
K
Ω

Qr
≡ −(r + 1)

∑



A
Q
Ω

Qr+1

Define the Jacobian ideal to be the ideal generated by the partials of Q.
Then we have the following result:

Proposition 1. Let ΩA be a meromorphic pole with a form which has a
pole of order r. It is cohomologous to a form with a pole of order one less if
A is in the Jacobian ideal of Q.
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As a first consequence of this result, we compute the dimension ofHn,0(X).
This space is spanned by residues of meromorphic forms AΩ/Q. The degree
of the numerator is d − (n + 2). The Jacobian ideal is generated in degree
d− 1. Thus the residue of ΩA is nonzero if A is nonzero, just as in the case
of abelian differentials. We conclude that

dimHn,0(X) =

(
d− 1

n+ 1

)
.

This expression is a polynomial in d of degree n+1 with integer coefficients.

We can now prove the local Torelli theorem of Griffiths. Consider first a
hypersurface X of degree d in P

n+1. The space FnHn(X) is nonzero under
the hypotheses of the theorem and is spanned by residues of meromorphic
forms AΩ/Q, where degA = d − (n + 2). The derivative of such a form at
t = 0 for the pencil Q+ tR has the form

−RAΩ
Q2

.

The numerator has degree 2d− (n+1). To proceed, we call upon an impor-
tant fact from commutative algebara that holds whenever X is smooth:

Proposition 2. Let R denote the polynomial ring in the n + 2 variables
of Q, where Q = 0 is smooth. Let S = R/J be the quotient ring. It is a
finite-dimensional graded C-algebra. Its component of top degree has degree
t = (d−1)(n+2) and dimension one. Let φ : St −→ C be any nonzero map.
Consider the composition

Sa × St−a −→ St φ−→ C.

where the first map sends classes represented by polynomials A and B to the
class of AB. The composition is a perfect pairing.

To prove the local Torelli theorem, suppose that R is such that the the
derivative of every class ΩA is zero. That is, RA lies in the Jacobian ideal
for all A of degree d − (n + 2). Then RB is in the Jacobian ideal for all B
of degree t− d. Under the stated hypotheses, the numbers d− (n+ 2) and
t − d are non- negative. Because the pairing is perfect, it follows that R is
in the Jacobian ideal. But an element of degree d in the Jacobian ideal has
the form

R =
∑
ij

AijXi
∂Q

∂Xj
.

A vectorfield on P
n has the general form

ξ =
∑
ij

AijXi
∂

∂Xj
.

corresponding to the one-parameter group

I + tA ∈ GL(n+ 2,C)
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Thus R = ξQ is tangent to the action of PGL(n+ 1), so that to first order
the pencil Q+ tR = 0 is constant. This completes the proof.

9. The Horizontal Distribution - Distance Decreasing
Properties

Let us examine Griffiths transversality in more detail. To this end it
is useful to consider the Hodge structure on the Lie algebra of the group
G which acts transitively on the period domain. Given any set of Hodge
structures, the vector spaces that one can build from their underlying vector
spaces carry natural Hodge structures. These constructions include: direct
sum, tensor product, dual, and hom. (exercise: re-imagine the definitions).
In particular, if H is a Hodge structure, then End(HR) carries a natural
Hodge structure: if φ : HC −→ HC satisfies φ(Hr,s) ⊂ Hr+p,s+q, we say that
φ has type (p, q). Note that this Hodge stucture is of weight zero.

Let g be the Lie algebra of G. Then gC carries a Hodge decomposition
inherited from the one on End(HC) defined by a given Hodge structure H.
The Lie algebra of V is g0,0. The holomorphic tangent space at H” can be
identified with the subalgebra

g = ⊕p<0 g
p,−p,

and one has
gC = g− ⊕ g0,0 ⊕ g+,

where
g+ = ⊕p>0 g

p,−p

is the complex conjugate of g−. The space g− is the holomorphic tangent
space of D at H. this space is a V -module, it defines a homogeneous bundle
isomorphic to the holomorphic tangent bundle. The subspace g−1,1 is also
a V -module. The homogeneous subbundle of the tangent bundle which it
defines is the bundle of holomorphic tangent vectors which satisfy Griffiths
transversality. We denote this bundel by Thor(D).

Exercise 9. Show that g− is a Lie subalgebra. Describe it and the associated
Lie group as explicitly as possible.

Another decomposition of the Lie algebra is given by

geven = ⊕p is eveng
−p,p

and
geven = ⊕p is eveng

−p,p

Then
gC = geven ⊕ godd = kC ⊕ pC,

where k is the Lie algebra of the maximal compact subgroup K of G con-
taining V , and where p is the orthogonal complement of k with respect to
the Killing form.
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It is only when K = V , that is, when geven = g0,0 that D is a Hermitian
symmetric domaain. This is, for example, the case in weight two if and only
if h2,0 = 1. This is because of the “accidental” isomorphisms between Lie
groups in low dimensions. In this case the isomorphism is SO(2,R) ∼= U(1).

The bundles Thor(D) has special properties relative to the holomorphic
sectional curvatures of D. While we do not have the time to develop the
theory here needed to explain this in full, here is a sketch. Let M be a
surface in R

3, x a point of M , and N a plane through x that contains
the normal vector. N cuts a curve on M passing through x. That curve
has an osculating circe — a circle which best approximates it. Let K(N)
be the reciprocal of the radius of that circle, taken with the correct sign:
positive if the curve bends away from the normal vector, negative if it bend
toward it. Call this the curvature of the curve K(N). The extreme values
of K(N) occur for orthogonal planes. Their product is called the Gaussian
curvature of M at x. Gauss showed that the Gaussian curvature is defined
intrinsically, that is, by the metric on M . Now let M be any Riemannian
manifold and P a plane in the tangent space ofM at x. Let Sp be the surface
consisting of geodesics emanating from x tangent to P . Let K(P ) be the
Gauss curvature in the induced metric. Thus is a associated to every plane
in the tangent space a number, the sectional curvature. Finally, suppose
that M is a complex manifold. Then there is an endomorphism J of the
tangent bundle whose square is minus the identity. This is the complex
structure tensor. It gives a coherent notion of multiplication by

√−1. A
plane in the tangent space is a complex tangent plane if it is invariant
under the action of J . The sectional curvature of these planes are called
holomorphic sectional curvatures. The invariant metric on the Riemann
sphere has constant holomorphic sectional curvature +1. For the invariant
metric on the torus, the curvature is zero. On the unit disk or the upper half
plane, it is −1. The unit ball (complex hyperbolic space) has an invariant
metric with holomorphic sectional curvature −1. However, the Riemannian
sectional curvatures are variable.

For period domains, the holomorphic sectional curvatures associated to
vectors in g−1,1 are negative. On the other hand, the sectional curvature for
vectors tangent to fibers of the map G/V −→ K/V are postive.

If f : M −→ N is a a holomorphic map between complex manifolds with
negative sectional curvatures, then f∗ds2N ≤ ds2M . That is, horizontal maps
decrease distances. The statement is NOT true for maps not tangent to the
horizontal distribution.

Let us take the distance-decreasing property of period maps as a given and
draw some consequences from it. The first illustrates the fact that period
domains act with respect to horizontal holomorphic maps as holomorphic
maps do with respect to bounded domains.
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Proposition 3. Let f : C −→ D be a holomorphic horizontal map. Then f
is constant.

For the proof, consider the Poincaré metric on the disk of radius R

ds2R =
R2dzdz̄

(R2 − |z|2)2) .

This is the metric of curvature −1. If ds2D is the G-invariant metric on D,
we have f∗ds2D ≤ ds2R. Notice that

ds2R(0) =
dzdz̄

R2
.

and that
f∗ds2D = Cdzdz̄

for some C > 0. Then

C ≤ 1

R2

for all R > 0. For R large enough, this is a contradiction.

Corollary 1. Let f : C∗ −→ Γ\D be a period map. Then f is constant.

Proof. For the proof, note that f has a lift f : C −→ D. The lift must be
constant. �
Corollary 2. Let X/P1 be a family of algebraic hypersurfaces of degree at
least three (or four in the case of dimension three). Then X/P1 has at least
three singular fibers.

Theorem 4. (Monodromy theorem) Let γ be monodromy transforma-
tion for a period map f : Δ∗ −→ Γ\D. Then γ is quasi-unipotent. That is
there is are integers m and N such that (γm − 1)N = 0.

The theorem says that the eigenvalues of γ are roots of unity and that a
suitable power of γ is nilpotent. For the proof, consider the lift f̃ : H −→ D,
and use the Poincaré metric

ds2H =
dx2 + dy2

y2
.

The distance between
√−1n and

√−1n+ 1 is 1/n, so that

dD((f̃(
√−1n), f̃(√−1n+ 1)) ≤ 1/n.

Write f̃(
√−1n) = gnV , for some gn ∈ G. Then the above relation reads

dD(gnV, γgnV ) ≤ 1/n,

or
dD(V, g

−1
n γgnV ) ≤ 1/n,

Consequently the sequence {g−1n γgn} converges to the compact subgroup
V . If the conjugacy class of γ has a limit point in a compact group, then
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its eigenvalues are of absolute value one. Because γ ∈ GZ, the eigenvalues
are algebraic integers. Their conjugates are also eigenvalues. A theorem
of Kronecker implies that the eigenvalue, which is an algebraic integer of
absolute value one, is in fact a root of unity.

10. The Horizontal Distribution - Integral Manifolds

A subbundle of the holomorphic tangent bundle defines a distribution,
that is, a field of subspaces at every point. An integral manifold of a distri-
bution is a manifold everywhere tangent to the distribution. A distribution
is said to be involutive, or integrable if whenever X and Y are vector fields
tangent to the distribution, so is the Lie bracket [X,Y ]. A theorem of Frobe-
nius states that every point of an involutive distribution has a neighborhood
U and coordinantes z1, . . . , zn such that the distribution, assumed to have
dimension k at each point, is spanned by ∂/∂zi, i = 1, . . . , k. The integral
manifolds are then locally given by equations zi = ci where i = k+1, . . . , n.
Thus the integral manifolds foliate the given manifold.

A distribution can be defined as the set of tangent vectors which are
annihilated by a set of one-forms {θi}. Consider the relation

dθ(X,Y ) = Xθ(Y )− Y θ(X)− θ([X,Y ]).

From it we see that a distribution is involutive if and only if the dθi anni-
hilate vectors tangent to it. Equivalently, the dθi are in the algebraic ideal
generated by the forms θi.

Consider now the contact distribution, defined by the null space of the
one-form

(16) θ = dz −
n∑

i=1

yidxi.

Tnhis is the so-called contact form. Note that

dθ =

n∑
i=1

dxi ∧ dyi

and that

θ ∧ (dθ)n = ±dx1 ∧ . . . ∧ dxn ∧ dy1 ∧ . . . ∧ dyn ∧ dz �= 0.

Thus θ ∧ dθ �= 0, and so the distribution defined by the contact form is not
involutive. It follows that integral manifolds of the contact distribution are
not of codimension 1. In fact, one can show that they are of dimension n, a
fact that is already clear for n = 1. See [1] or [12].

It is easy to exhibit an n-dimensional integral manifold of the contact dis-
tribution. For any function f(x1, . . . , xn), consider the manifoldM parametrized
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by

(x1, . . . , xn) �→ (x1, . . . , xn,
∂f

∂xi
, . . .

∂f

∂xn
, f).

Clearly it satisfies the contact equation.

A space of tangent vectors annihilated by the θi and such that pairs of
tangent vectors are annihilated by the dθi is called an integral element. A
basic question is: if E is an integral element, is it tangent to an integral
manifold V ? This is true of the contact distribution.

The reason for considering the contact distribution is that it provides a
simple model for the Griffiths distribution, which is non-involutive whenever
it is non-trivial. Some additional questions are: (a) what is the maximal
dimension of an integral manifold? (b) can one characterize them? (c)
what can one say about integral manifolds that are maximal with respect
to inclusion? (d) what can one say about “generic” integral manifolds.

We study some of these questions in the case of weight two. To this end,
choose a basis (Hodge frame) compatible with the Hodge decomposition
H2,0 ⊕ H1,1 ⊕ H0,2 and such that the intersection matrix for the bilinear
form Q is

Q =

⎛
⎝0 0 I
0 −I 0
I 0 0

⎞
⎠

Matrices of the form

g =

⎛
⎝ I 0 0
X I 0
Z tX I

⎞
⎠

where Z + tZ = tXX, satsify tgQg = Q. They act on Hodge frames. The
set of such matrices constitutes the unipotent group G− = exp g−.

The Maurer-Cartan form for G− is the form ω = g−1dg where g is in
block lower triangular form as above. It has the form

ω =

⎛
⎝ 0 0 0
dX 0 0
W tdX 0

⎞
⎠

where W = dZ − tXdX is skew-symmetric. A holomorphic tangent vector
ξ is horizontal iff it is annihilated by W . The equation Wij = 0 reads

dZij =
tXikdXkj = XkidXkj

Thus the Griffiths distribution in weight two is given by a system of coupled
contact equations.

In the case h2,0 = 2, the Maurer-Cartan form depends on a single form,
W12 = −W21. If we set h

2,0 = 2, h1,1o = q, Xk1 = xk, Xk2 = yk, and Z21 = z,
then the equation W21 = 0 reads

dz = yidxi.



PERIOD DOMAINS AND PERIOD MAPPINGS 33

In this case the Griffiths distribution is the contact distribution! The maxi-
mum dimension of an integral manifold is q, and integral manifolds are given
locally by x �→ (x,∇z(x), z(x)).

For h2,0 = p > 2, the behavior of the Griffiths distribution more com-
plicated. To understand it better, consider the Maurer-Cartan ω form
for G− It is a g−-valued 1-form which satisfies the integrability condition
dω − ω ∧ ω = 0. In the weight two case,

dω = d

⎛
⎝ 0 0 0
dX 0 0
W tdX 0

⎞
⎠ =

⎛
⎝ 0 0 0

0 0 0
dW 0 0

⎞
⎠ ,

where W = 0 on any integral element E. Thus on E, dω = 0, and by
integrability, ω ∧ ω = 0 as well. Let X and Y be in E. Then

ω ∧ ω(X,Y ) = [X,Y ] = 0.

Consequently an integral element E ⊂ g−1,1 satisfies [E,E] = 0. That is,
Integral elements are abelian subalgebras of g− contained in g−1,1. This
result holds in arbitrary weight. Thus in general the integral elements are
defined by quadratic equations.

Is every integral element tangent to an integral manifold? In general, the
answer is “no.” However, for the Griffiths distribution, the answer is “yes:”
given an abelian subalgebra a ⊂ g−1,1, the manifold V = exp a is an integral
manifold with tangent space a.

The next question is: On how many free parameters does an integral
manifold depend?

Two extreme cases are rigidity and flexibility. In the first case, an inte-
gral manifold through x with given tangent space is completely determined.
Examples are given in [6]. These are precisely the examples in weight two,

h1,1o even of maximal dimension h2,0h1,1/2. and h2,0 > 2. In the second case,
V with given tangent space depends on infinitely parameters. The contact
system is an example: the parameter is an arbitrary smooth function f .

The integral manifold of maximal dimension of [6] is defined as follows.
Fix a Hodge structure H with dimH2,0 = p and dimH1,1 = 2q. Fix a
complex structure on H1,1

R
: an endomorphism J of this real vector space

with J2 = −1. Let H1,1 = H1,1
+ ⊕H1,1

− be the eigenspace decomposition for

J . Note that H1,1
+ is totally isotropic: Q(v, w) = 0 for all v, w ∈ H1,1

+ . Let

a = Hom(H2,0, H1,1
+ ).

This is a subspace of Hom(H2,0, H1,1) ∼= g−1,1 of dimension pq.
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We claim that a is an abelian subspace. To see this, write

g(X,Z) =

⎛
⎝ I 0 0
X I 0
Z tX 0

⎞
⎠

Then [g(X,Z), g(X ′, Z ′)] = g(0, XtX ′−X ′tX). The matrix XtX ′ is matrix
of dot products of column vectors of X. Q.E.D.

The integral element a = Hom(H2,0, H1,1
+ ) is tangent to the VHS exp a.

Let V ⊂ G = SO(2p, 2q) be the group which preserves the reference Hodge
structure and which commutes with J . Then V ∼= S(U(p) × U(q). Let
H ∼= U(p, q) be the subgroup of G which preserves J . Then V is an open
subset of the orbit W of the reference Hodge structure under the action of
H. Thus W is a Hermitian symmetric space imbedded in D as a closed,
horizontal, complex manifold.

By choosing J artfully, one can ensure that there is an arithmetic group
Γ operating on D with H/Γ ∩ H of finite volume and even compact. The
space H/Γ ∩H is (quasi)-projective.

Note. If dimH1,1 is odd, there is a VHS U of maximal dimension pq+1
which fibers over the unit disk whose fibers are W ′s as described above.
However, U , which is a kind of tube domain, does not admit a discrete group
action with finite covolume. Whether there is a quasi- projective example of
dimension pq + 1 is unknown.

An integral element a (aka infinitesimal variation of Hodge structure,
aka abelian subspace) is maximal if whenever a′ is another integral element
containing a, then a′ = a. Integral elements of maximal dimension are
maximal, but the converse is not true. For a geometric example, consider the
integral elements that come from variations of Hodge structure of sufficiently
high degree. The proof [5] is based on Donagi’s symmetrizer construction.

We also give a “linear algebra” example [7]:

Theorem 5. Let a be an integral element for a weight two Hodge structure
H. Suppose that a is generic in the sense that there is a vector v ∈ H2,0

such that a(v) = H1,1. Then a is isomorphic to H1,1 and is maximal.

Proof. Since the map a −→ H1,1 defined by X �→ X(e1) is surjec-
tive, dim a ≥ dimH1,1 = q. By a suitable change of basis, we can assume
that there is a basis e1, . . . , ep for H2,0 such that a(e1) = H1,1, a basis
M1, . . . ,M q for a subspace of a and compatible basis e1, . . . , eq for H1,1 such
that M i(e1) = ej . The condition (A,B) = 0 is the condition Ai ·Bj−Bi ·Aj

where Ai denotes the i-th column of A.

Let N be an element of a. We may subtract a linear combination of the
M i so that N(e1) = 0, i.e., N1 = 0.
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On the one hand, (Mk, N) = 0. On the other hand,

(Mk, N)1j = Mk
1 ·Nj −N1 ·Mk

j = ek ·Nj = Nkj

Thus Nkj = 0 for all k, j. Thus N is in the span of the M i. Q.E.D.

Theorem 6. Let a be a generic integral element for a weight two Hodge
structure. Set q = dimH2,0. Then all integral manifolds tangent to a are
given by functions f2, . . . fq satisfying [Hfi , Hfj ] = 0 where Hf is the Hessian
of H.

The proof is elementary and uses the matrix-valued contact system de-
scribed earlier:

dZij =
tXikdXkj = XkidXkj

Consider
dZi1 = XkidXk1

Then as usual, Zi1 is a function fi(X11, X21, . . . , Xq1).

The Xki are determined by the contact equation:

Xki =
∂fi
∂Xki

.

Thus one can determine the remaining functions Zij .

Question: do the functions Zij give a solution — the system is overde-
termined. Compatibility: dZij = 0.

This implies [Hfi , Hfj ] = 0.

Example. Choose the fi so that their Hessians are diagonal. Thus
enforce

∂2fi
∂xj∂xk

= 0 i �= j.

In two variables this is the equation ∂2g/∂x∂y = 0, a form of the wave
equation. A class of solutions is given by g(x, y) = a(x) + b(y).

More generally,

fi(x1, . . . , xs) =
∑
j

hij(xj)

gives a very restricted but nonetheless infinite-dimensional family of solu-
tions.
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