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Introductory Examples

The basic idea of Hodge theory is that the cohomology of an algebraic variety
has more structure than one sees when viewing the same object as a “bare”
topological space. This extra structure helps us understand the geometry of
the underlying variety, and it is also an interesting object of study in its own
right. Because of the technical complexity of the subject, in this chapter, we
look at some motivating examples which illuminate and guide our study of
the complete theory. We shall be able to understand, in terms of specific and
historically important examples, the notions of Hodge structure, period map,
and period domain. We begin with elliptic curves, which are the simplest in-
teresting Riemann surfaces.

1.1 Elliptic Curves

The simplest algebraic variety is the Riemann sphere, the complex projective
space P'. The next simplest examples are the branched double covers of the
Riemann sphere, given in affine coordinates by the equation

y? = p(x),

where p(x) is a polynomial of degree d. If the roots of p are distinct, which
we assume they are for now, the double cover C is a one-dimensional complex
manifold, or a Riemann surface. As a differentiable manifold it is character-
ized by its genus. To compute the genus, consider two cases. If d is even, all
the branch points are in the complex plane, and if d is odd, there is one branch
point at infinity. Thus the genus g of such a branched cover C is d/2 when
d is even and (d — 1)/2 when d is odd. These facts follow from Hurwitz’s
formula, which in turn follows from a computation of Euler characteristics
(see Problem 1.1.2). Riemann surfaces of genus 0, 1, and 2 are illustrated in
Fig. 1. Note thatif d = 1 or d = 2, then C is topologically a sphere. It is not
hard to prove that it is also isomorphic to the Riemann sphere as a complex
manifold.
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g=0 g=1 g=2

Figure 1. Riemann surfaces.

Now consider the case d = 3, so that the genus of C is 1. By a suitable

change of variables, we may assume the three roots of p(x) tobe 0, 1, and A,
where A # 0, 1:

¥ =x(x — D(x — ). (1.1.1)

We shall denote the Riemann surface defined by this equation (1.1.1) by &;,
and we call the resulting family the Legendre family. As topological spaces,
and even as differentiable manifolds, the various &, are all isomorphic, as
long as A # 0, 1, a condition which we assume to be now in force. However,
we shall prove the following:

Theorem 1.1.2 Suppose that A # 0, 1. Then there is an € > 0 such that
for all )" within distance € from A, the Riemann surfaces &, and &,/ are not
isomorphic as complex manifolds.

Our proof of this result, which guarantees an infinite supply of essentially
distinct elliptic curves, will lead us directly to the notions of period map and
period domain and to the main ideas of Hodge theory.

The first order of business is to recall some basic notions of Riemann
surface theory so as to have a detailed understanding of the topology of &,
which for now we write simply as £. Consider the multiple-valued holomor-
phic function

y=Vx(x — D — ).

On any simply connected open set which does not contain the branch points
x =0, 1, A, oo, it has two single-valued determinations. Therefore, we cut
the Riemann sphere from O to 1 and from A to infinity, as in Fig. 2. Then
analytic continuation of y in the complement of the cuts defines a single-
valued function. We call its graph a “sheet” of the Riemann surface. Note that
analytic continuation of y around § returns y to its original determination, so
S lies in a single sheet of £. We can viewit as lying in the Riemann sphere
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1.1 Elliptic Curves

Figure 2. Cuts in the Riemann sphere.

itself. But when we analytically continue along y, we pass from one sheet to
the other as we pass the branch cut. That path is therefore made of two pieces,
one in one sheet and one in the other sheet.

Thus the Riemann surface of y consists of two copies of the Riemann
sphere minus the cuts, which are then “cross-pasted”: we glue one copy to the
other along the cuts but with opposite orientations. This assembly process is
illustrated in Fig. 3. The two cuts are opened up into two ovals, the opened-
up Riemann sphere is stretched tolook like the lower object in the middle,

Figure 3. Assembling a Riemann surface.
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Figure 4. Torus.

a second copy is set above it to represent the other sheet, and the two sheets
are cross-pasted to obtain the final object.

The result of our assembly is shown in Fig. 4.

The oriented path § indicated in Fig. 4 can be thought of as lying in the
Riemann sphere, as in Fig. 2, where it encircles one branch cut and is given
parametrically by

80)=1/2+ (1/2 4+ k)e

for some small k. The two cycles § and y are oriented oppositely to the x and
y axes in the complex plane, and so the intersection number of the two cycles
is

-y =1.

We can read this information off either Fig. 3 or Fig. 2. Note that the two
cycles form a basis for the first homology of £ and that their intersection
matrix is the standard unimodular skew form,

(00

With this explanation of the homology of our elliptic curve, we turn to the
cohomology. Recall that cohomology classes are given by linear functionals
on homology classes, and so they are given by integration against a differential
form. (This is de Rham’s theorem — see Theorem 2.1.1). In order for the line
integral to be independent of the path chosen to represent the homology class,
the form must be closed. For the elliptic curve £ there is a naturally given
differential one-form that plays a central role in the story we are recounting.
It is defined by

d_x _ dx
y S =D =)

w =

(1.1.3)
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As discussed in Problem 1.1.1, this form is holomorphic, that is, it can be
written locally as

w = f(2)dz,

where z is a local coordinate and f(z) is a holomorphic function. In fact,
away from the branch points, x is a local coordinate, so this representation
follows from the fact that y(x) has single-valued holomorphic determinations.
Because f is holomorphic, w is closed (see Problem 1.1.7). Thus it has a well-
defined cohomology class.

Now let §* and y* denote the basis for H'(£;Z) which is dual to the given
basis of H,(&;Z). The cohomology class of @ can be written in terms of this
basis as

[a)]:(S*/a)—i-)/*/a).
s Y

In other words, the coordinates of [w] with respect to this basis are given by
the indicated integrals. These are called the periods of w. In the case at hand,
they are sometimes denoted A and B, so that

[w] = AS™ + By™. (1.1.4)

The expression (A, B) is called the period vector of £.

From the periods of w we are going to construct an invariant that can de-
tect changes in the complex structure of £. In the best of all possible worlds
this invariant would have different values for elliptic curves that have differ-
ent complex structures. The first step toward constructing it is to prove the
following.

Theorem 1.1.5 Let H'-° be the subspace of H'(E; C) spanned by w, and let
H%' be the complex conjugate of this subspace. Then

HY(&,C)=H" ¢ H*!.

The decomposition asserted by this theorem is the Hodge decomposition
and it is fundamental to all that follows. Now there is no difficulty in defin-
ing the (1, 0) and (0, 1) subspaces of cohomology: indeed, we have already
done this. The difficulty is in showing that the defined subspaces span the
cohomology, and that (equivalently) their intersection is zero. In the case of
elliptic curves, however, there is a quite elementary proof of this fact. Take
the cup product of (1.1.4) with its conjugate to obtain

[w] U[®] = (AB — BA)S* U y*.
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Multiply the previous relation by i = 4/—1 and use the fact that §* U y* is
the fundamental class of £ to rewrite the preceding equation as

i/a)/\cb =2Im(BA).
&

Now consider the integral above. Because the form w is given locally by fdz,
the integrand is locally given by

i| fl’dz Adz = 2| f]*dx Ady,

where dx A dy is the natural orientation defined by the holomorphic coordi-
nate, that is, by the complex structure. Thus the integrand is locally a pos-
itive function times the volume element, and so the integral is positive. We
conclude that

Im(BA) > 0.

We also conclude that neither A nor B can be O and, therefore, that the
cohomology class of w cannot be 0. Consequently the subspace H'-%(€) is
nonzero.

Because neither A nor B can be 0 we can rescale w and assume that A = 1.
For such “normalized” differentials, we conclude that the imaginary part of
the normalized B-period is positive:

ImB > 0. (1.1.6)

Now suppose that "9 and H%! do not give a direct sum decomposition of
H'(&;C). Then H'? = H%! and so [@] = A[w] for some complex number
M. Therefore

8* 4+ By* = AM(8* + By™).

Comparing coefficients, we find that A = 1 and then that B = B, in contra-
diction with the fact that B has a positive imaginary part. This completes the
proof of the Hodge theorem for elliptic curves, Theorem 1.1.5.

An Invariant of Framed Elliptic Curves

Now suppose that f : £, —> &, is an isomorphism of complex manifolds.
Let w, and w, be the given holomorphic forms. Then we claim that

ffoy =coy, (1.1.7)

for some nonzero complex number c. This equation is certainly true on the
level of cohomology classes, although we do not yet know that ¢ is nonzero.
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However, on the one hand,

ffou N frfo, = |C|2/ Wy N Oy,
(€] (€]

and on the other,

f*wA/\f*@AZ/

a);t/\G))L:/ w) N\ .
JACH (&1

(]
The last equality uses the fact that an isomorphism of complex manifolds is a
degree-one map. Because i w; A @, is a positive multiple of the volume form,
the integral is positive and therefore

c#0. (1.1.8)

We can now give a preliminary version of the invariant alluded to above.
It is the ratio of periods B/A, which we write more formally as

)
7(&,8,y) = fy—
Js @
From Eq. (1.1.6) we know that 7 has a positive imaginary part. From the just-
proved proportionality results (1.1.7) and (1.1.8), we conclude the follow-
ing.

Theorem 1.1.9 If f : & — & is an isomorphism of complex manifolds,
then t(E,68,y) =t(&', 8, y"), where §' = f,8 andy’ = f.y.

To interpret this result, let us define a framed elliptic curve (£, 8, y) to
consist of an elliptic curve and an integral basis for the first homology such
that§ - y = 1. Then we can say that “if framed elliptic curves are isomorphic,
then their 7-invariants are the same.”

Holomorphicity of the Period Mapping

Consider once again the Legendre family (1.1.1) and choose a complex num-
bera # 0, 1 and an € > 0 which is smaller than both the distance from a to 0
and the distance from a to 1. Then the Legendre family, restricted to A in the
disk of radius € centered at a, is trivial as a family of differentiable manifolds.
This means that it is possible to choose two families of integral homology
cycles §, and y, on &, such that §; - 5 = 1. We can “see” these cycles by
modifying Fig. 2 as indicated in Fig. 5. A close look at Fig. 5 shows that we
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Figure 5. Modified cuts in the Riemann sphere.

can move A within a small disk A without changing either §, or y,. Thus
we can view the integrals defining the periods A and B as having constant
domains of integration but variable integrands.

Let us study these periods more closely, writing them as

AGY) _/ dx BG) _/ dx
 Js S =Dlx — 1) S =D =)

We have suppressed the subscript on the homology cycles in view of the
remarks made at the end of the previous paragraph. The first observation is
the following.

Proposition 1.1.10 On any disk A in the complement of the set {0, 1, oo},
the periods of the Legendre family are single-valued holomorphic functions

of A.

The proof is straightforward. Since the domain of integration is constant,
we can compute dA /A by differentiating under the integral sign. But the
integrand is a holomorphic expression in A, and so that derivative is 0. We
conclude that the period function A(A) is holomorphic, and the same argument
applies to B(}).

Notice that the definitions of the period functions A and B on a disk A
depend on the choice of a symplectic homology basis {§, y}. Each choice of
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basis gives a different determination of the periods. However, if §' and y’ give
a different basis, then

8 =ad + by
y' =cs+dy,

7= (5 a)

has determinant 1. The periods with respect to the new basis are related to
those with respect to the old one as follows:

where the matrix

A’ =aA + bB
B ' =cA+dB.

Thus the new period vector (A’, B’) is the product of the matrix 7 and the
old period vector (A, B). The r-invariants are related by the corresponding

fractional linear transformation:
/

_d‘L’—I—C
bt 4a

The ambiguity in the definition of the periods and of the 7 invariant is due
to the ambiguity in the choice of a homology basis. Now consider a simply
connected open set U of P! \{0, 1, oo} and a point 1y and A of U. The choice
of homology basis for &, determines a choice of homology basis for all
other fibers &;. Thus the periods A(X) and B(}) as well as the ratio () are
single-valued holomorphic functions on U. On the full domain P! \{0, 1, oo},
however, these functions are multivalued.

We can now state a weak form of Theorem 1.1.2.

Theorem 1.1.11 The function t is nonconstant.

If 7, defined on a simply connected open set U, is a nonconstant holomorphic
function then its derivative is not identically zero. Therefore its derivative has
at most isolated zeroes. For a randomly chosen point, different from one of
these zeroes, 7 is a locally injective function.

There are at least two ways to prove that 7 is nonconstant. One is to compute
the derivative directly and to show that it is nonzero. The other is to show that
T tends to infinity as A approaches infinity along a suitable ray in the complex
plane. We give both arguments, beginning with an analysis of 7 along a
ray.
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Asymptotics of the Period Map

Let us show that 7 is a nonconstant function of A by showing that T approaches
infinity along the ray A > 2 of the real axis. Indeed, we will show that (1) is
asymptotically proportional to log A. To see this, assume A >> 2, and observe
that

/ dx / dx 2@
s /X =D =2 Ssxy/=A Vo
By deforming the path of integration, we find that

/ dx B _2/)‘ dx
y VX =D =2 )i Sk =DEx =)

The difference between the last integral and 1/x(v/x — 1) is 1/(2x?) +
higher powers of 1/x, an expression with asymptotically negligible integral
—A~!/4 + higher powers of A~!. The residual integral,

2/A dx
1 xJ/(x =)
can be computed exactly:
2/X dx 4 . V1 =X 2il N
— ——— = —=arctan ——— ~ —=log A.
1 X/x — A «/X \/X \/X 8
Thus one finds
T(\) ~ S loga, (1.1.12)
T

as claimed. Note also that (1) has a positive imaginary part, as asserted
in (1.1.6).

Derivative of the Period Map
We now prove the strong form of Theorem 1.1.2 by showing that /(1) # 0
for A # 0, 1 for any determination of 7. To this end, we write the holomorphic
differential w; in terms of the dual cohomology basis {§*, y*}:
w; = A(M)S* + B(L)y™.
The periods are coefficients that express w, in this basis, and the invariant

7(X) is an invariant of the line spanned by the vector w;, . The expression

W, = A'(W)8* + B'O)y*
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is the derivative of the cohomology class w; withrespect to the “Gauss—Manin
connection.” This is by definition the connection on the bundle of cohomology
vector spaces

U H#'E)

2€P\{0,1,00}

with respect to which the classes §*, y* are (locally) constant. Then
[wi]U [w;] = (AB" — A'B)§* U y*.

However, " = 0 if and only if AB’ — A’B = 0. Thus, to establish that t/(})
# 0, it suffices to establish that [w,] U [} ] # 0.
Now the derivative of w; is represented by the meromorphic form

_l dx
T2 /x(x = D(x — 1)}

This form has a pole of multiplicity two at p = (A, 0). To see this, note that at
the point p, the function y is a local coordinate. Therefore the relation y? =
x(x — 1)(x — A) can be written as y> = u(y)A(A — 1)(x — 1) where u(y) is
a holomorphic function of y satisfying u(0) = 1. Solving for x, we obtain
x = A + terms of order > 2 in y. Then setting p(x) = x(x — I)(x — X), we
have

/
Wy

(1.1.13)

_dx 2dy 2dy

oy P A=)
where a ~ b means that a and b agree up to lower-order terms in y. Using
(1.1.13), the previous expression, and the expansion of x in terms of y, we
find

1 dx N dy
T 2y(x—1A) A= Dx—2)

/
w

dy
~—>+a regular form. (1.1.14)
y

To explain why such a form represents a cohomology class on &, not just on
E\{p}, we first note that its residue vanishes. Recall that the residue of ¢ is
defined as

1
o | & =res@p)
1 c,
where C,, is a small positively counterclockwise—oriented circle on S cen-

tered at p. Next, note that the residue map in fact is defined on the level of
cohomology classes (just apply Stokes’ theorem). In fact the resulting map
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“res” is the coboundary map from the exact sequence of the pair (£, £\{p}),

res

0 — H' (&) — H'(E\[p) — H*E, E\Ip)),

provided we identify the third vector space with C using the isomorphism
H*(E, E\{p) = H({p) = C.

See Problem 1.1.10, where this sequence is discussed in more detail.
Observe that the sequence above is the simplest instance of the so-called
Gysin sequence for a smooth hypersurface (here just the point p) inside a
smooth variety (here the curve £). The Gysin sequence is at the heart of many
calculations and is treated in detail in Section 3.2.
From the Gysin sequence we see that ) represents a cohomology class
on &, not just on £\{p}. We now claim that

Ule] = 1.1.15
/8[60] [w]—m- (1.1.15)

By establishing this formula we will complete the proof that t/(1) # 0
for A # 0, 1. To do this, first observe that the formula (1.1.14) implies that
' +d(1/y) has no pole at p. To globalize this computation, let U be a
coordinate neighborhood of p on which |y| < €, and let p(z) be a smooth
function of |z| alone which vanishes for |z| > €/2, which is identically one
for |z| < €/4, and which decreases monotonically in |z| on the region € /4 <
|z| < €/2. Then the form

&' =o' +dp(y)/y)

lies in the same cohomology class on £\{p} as does «’. By construction,
it extends to a form on £ and represents the cohomology class of ' there.
Because w and @' are both holomorphic one-forms on the complement of U,

/a)/\d)': / wANd(p/y).
£ U
Because w A d(p/y) = —d(pw/y), Stokes’ theorem yields

[ ]
vy yl=¢ Y yi=g Y

3

A standard residue calculation of the line integral then yields

/ w 47i
bl=e/a Y AL —1)

This completes the proof.
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Picard-Fuchs Equation

In computing the derivative of the period map, we proved that the form @ and
its derivative o’ define linearly independent cohomology classes. Therefore
the class of the second derivative must be expressible as a linear combination
of the first two classes. Consequently there is a relation

a(M)w” + b(M)w' + c(M)w =0 (1.1.16)

in cohomology. The coefficients are meromorphic functions of A, and on the
level of forms the assertion is that the left-hand side is exact on &,. Let £ be

a one-cycle and set
T(A) = / w.
§

Then (1.1.16) can be read as a differential equation for the period function
arn”" 4+ br' +cwr =0.

One can determine the coefficients in this expression. The result is a differ-
ential equation with regular singular points at 0, 1, and oo:

1
A — D" +Cr— D' + Zﬂ =0. (1.1.17)

Solutions are given by hypergeometric functions (see [45], Section 2.11). To
find the coefficients a, b, c above, we seek a rational function f on &, such that
df is a linear combination of w, &', and @” whose coefficients are functions
of A. Now observe that

1 3
o = Ex_l/z(x — 1)_%()( —A) 2dx

o' = gx_%(x — 1)_%(x — k)_% dx.
Thus it is reasonable to consider the function
f=x3(x—D3(x—A).
Indeed,
df = (x — Do’ +x0' — 2x(x — 1",

which is a relation between o’ and ”. This is progress, but the coefficients
are not functions of A. Therefore consider the equivalent form

df =[x =2+ &= Dl +[(x — 1)+ A]o’
= 2[(x = 1) + All(x = 1) + (A = D]”
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and use the relations

1 3
_ )\‘ /o _ , _ )\‘ /N - /
(x ) = 20) (x " = 2a)

to obtain
1 1 / 1/

This completes the derivation.

One can find power series solutions of (1.1.17) which converge in a disk
Ay around any Ag # 0, 1. Analytic continuation of the resulting function
produces a multivalued solution defined on P'\{0, 1, co}. Now let 771 and 7,
be two linearly independent solutions defined on Ay, and let y be a loop in
P1\{0, 1, oo} based at A¢. Let 7/ be the function on A obtained by analytic
continuation of 7r; along y . Because the 7/ are also solutions of the differential
equation (1.1.17), they can be expressed as linear combinations of 7| and 7;:

(=)=(¢ ) ()

The indicated matrix, which we shall write as p(y), depends only on the
homotopy class of «, and is called the monodromy matrix. We determine this
matrix in the next section using a geometric argument. For now we note that
the map that sends « to p(«) defines a homomorphism

o : i (PN\{0, 1, o0}, Ag) — GL(2, C).

It is called the monodromy representation and its image is called the
monodromy group.

The Local Monodromy Representation

To better understand the monodromy representation, consider the family of
elliptic curves & defined by

¥ =2 —s)x — D).

The fiber &, given by y> = x?(x — 1) has a node at p = (0, 0). As s ap-
proaches 0, the fiber undergoes the changes pictured in Fig. 6. A copy of the
loop § is slowly contracted to a point, producing the double point at p. Note
that in the limit of s = 0, the cycle § is homologous to 0.

Now restrict this family to the circle |s| =€ and consider the vec-
tor field d/06 in the s-plane. It lifts to a vector field & on the manifold
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(p-(=-(=

€1n

Figure 6. Degeneration of an elliptic curve.

M ={(x,y,s) | y> = (x> —s)(x — 1)} which fibers over the circle via
(x, y,s) — s. By letting the flow which is tangent to £ act for time ¢, one
defines a diffeomorphism g4 of the fiber at & = 0 onto the fiber at@ = ¢. This
is illustrated in Fig. 7. (We think of a fluid flow transporting points of & to
points of £y, with streamlines tangent to the vector field.)

N
- )

NN\

[\
\J

(o]
(=1
m

¢

o
<

Figure 7. Diffeomorphism g, : & —> &.
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Figure 8. Picard-Lefschetz transformation.

Now consider the diffeomorphism g5 . It carries the fiber at & = 0 to itself
and therefore defines amap T on the homology of the fiber which depends only
on the homotopy class of g,,. This is the Picard—Lefschetz transformation of
the degeneration &;,.

Through a careful study of the pictures in Fig. 8, we obtain the matrix of
T in the “standard” basis {§, y}. Because the matrix is not the identity, we
conclude that the diffeomorphism is not homotopic to the identity map.

The left panel in Fig. 8 represents the cycle § and y on the fiber & for
s = r for some small r. The middle panel in Fig. 8 shows how the flow has
mapped these cycles to & with s = re™'. The right panel shows the result for
s = re?™,

It is clear from the pictures in Fig. 8 that T (§) = . To determine 7'(y) =
y’, we observe that y’ = a$ + by, and we compute intersection numbers as
follows. Using the sign convention as explained above in relation to Fig. 4,
we claim that " - § = —1, ¥’ - y = +1. The former is clear from the right
picture in Fig. 8, while the latter follows by superimposing the left and right
pictures in Fig. 8. Thus b = 1 and a = 1, and so

T(y)=y+6.

The matrix of T relative to the basis {3, y} is

11
T:(O 1). (1.1.18)

Equivalently, we have the Picard-Lefschetz formula
T(x)=x—(x-8)5 (1.1.19)

for an arbitrary homology cycle x.

The Picard—Lefschetz formula is valid in great generality: it holds for any
degeneration of Riemann surfaces acquiring a node where the local analytic
equation of the degeneration is y> = x> — s. For such a degeneration the cycle
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Figure 9. Dehn twist.

d 1s the one that is “pinched” to obtain the singular fiber, as in Fig. 6. This is
the so-called vanishing cycle: under the inclusion of & into the total space of
the degeneration, § is homologous to 0. In a neighborhood of the vanishing
cycle the Picard—Lefschetz diffeomorphism g,, acts as in Fig. 9: it is a so-
called Dehn twist.

The Global Monodromy Representation

The Picard-Lefschetz transformation determines the local monodromy rep-
resentation p : w1 (A*, p) — GL(2, C) for a family of Riemann surfaces
defined on the punctured disk 0 < |s| < €, where the fiber at s = 0 has a
node. Let us now determine the global monodromy transformation for the
Legendre family y?> = x(x — 1)(x — A). This is a representation

o : 1 (PN\{0, 1, 00}, p) — GL(2, C).

As afirst step, consider the degeneration A — 0. If A moves clockwise around
the circle of radius r < 1 centered at 0, then the slit connecting the branch
cuts x = A, and x = 0 turns through a full circle. Comparing with Fig. §,
where the slit makes a half turn, we see that the monodromy transformation
for A — 0 is the square of the matrix 7 in (1.1.18).

Now fix a base point p and choose generators a and b for the fundamental
group of the parameter space as in Fig. 10.

Let A = p(a) and B = p(b) be the monodromy matrices relative to the
basis indicated in the left picture of Fig. 8. From the discussion in the previous

paragraph, we have
1 2
a=(12).
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Figure 10. Parameter space for the Legendre family.

We claim that

(1)

To see that this is so, consider the degeneration A — 1 and recall, as shown in
Fig. 11, how the standard homology basis is defined relative to the standard
branch cuts.

The set of branch cuts in Fig. 11 is ill adapted to computing the monodromy
matrix of the degeneration A — 1. Instead we consider the cuts in Fig. 12.
The first frame gives the standard homology basis relative to this set of cuts.
The second frame shows the result of rotating the branch slit connecting A and
1 through a half circle. The cycle §’ is obtained by dragging y along with this

Figure 11. Standard homology basis.
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Figure 12. Monodromy for A — 1.

rotation via the Picard—Lefschetz diffeomorphism. Computing intersection
numbers, we find 8’ = § — y. Thus the Picard—Lefschetz transformation is

s=(1 9)

Note that this matrix can also be computed using (1.1.19), taking note of
the fact that the vanishing cycle is . The monodromy transformation p(b) is
therefore given by S2, which is the indicated matrix B.

Now let I' = p(7r;) denote the monodromy group. According to the pre-
ceding discussion, it is the group generated by the matrices A and B:

= (A, B).

The given matrices are congruent modulo 2 to the identity matrix, so every
matrix in " has this property. Let I'(V) be the set of matrices in SL(2, Z)
which is congruent to the identity modulo N. It is a normal subgroup of
finite index, and what we have seen is that I" is a subgroup of I'(2). We now
assert the following result, which completely describes the global monodromy
representation.

Theorem 1.1.20
(a) i (P\{0, 1, 00)) is a free group on two generators.
(b) The monodromy representation is injective.

(c) The image of the monodromy representation is I'(2).
(d) T'(2) has index six in SL(2, 7).

Proof. The proof of (a) is standard, since P'\{0, 1, oo} is homotopy equiv-
alent to the space obtained by joining two circles together at a point. The
proof of (d) is an easy exercise. For the proof of (b), observe that monodromy
matrices p(y) operate as linear fractional transformations on the part of the
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Figure 13. Fundamental domain for I" and I"(2).

complex plane with a positive imaginary part. A fundamental domain for this
action is given by the region indicated in Fig. 13. It is an ideal quadrilateral,
with sides formed by two semicircles with endpoints on the real axis and two
vertical rays with an endpoint on the real axis.

For our purposes it is better to look at this fundamental domain in the disk
model of hyperbolic space. It is then the central quadrilateral in Fig. 14. The
transformations A and B as well as their inverses act as reflections in the sides
of the quadrilateral, and repeated applications of these transformations tile
the disk by quadrilaterals congruent to the given one. Now take the center E
of the given quadrilateral and consider the set of points

V={gkE)|gel}

Join two points x and y by a geodesic if y = gx where g = A*! or g =
B*! — that is, if g is a standard generator of I" or its inverse. The union of
all these geodesics is the three 7, part of which is illustrated by the dotted
lines in Fig. 13. Let I'(7) be the group of automorphisms of 7 defined by
elements of I'. Thus we have the composition

T —p> r i) F(T)
Consider now an element y of ;. It is a word spelled with the letters a*!,

b*!'. By considering the action of p(y) on 7 — indeed, by considering the
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Figure 14. Fundamental domains for I'(2) — disk model.

position of p(y)(E) — one finds that p(y) # 1 if y # 1. See Problem 1.1.13
for more details.

For the proof of (c), the main idea is to compare the fundamental domain
for the action of I' = SL(2, Z) with that of I'(2). A fundamental domain of
the latter is made of six copies of the fundamental domain of the former, as
indicated in Fig. 13. See [45] for more details. Q.E.D.

Remark 1.1.21 In the preceding example the kernel of the monodromy rep-
resentation was trivial and its image was of finite index. The latter is typ-
ical [14], but the former is not. Thus, while the kernel of the monodromy
representation for cubic curves is finite [153], it is “large” for most fam-
ilies of hypersurfaces [34]. The notion “large” can be made precise; in
particular, large groups are infinite and in fact contain a nonabelian free

group.

Monodromy of the Picard-Fuchs Equation

Let us now return to the problem of understanding the monodromy of the pe-
riod functions 7r; (A) which solve the Picard—Fuchs equation (1.1.17). Analytic
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continuation of a solution

n(k):/ga)

along a loop « transforms the solution into

n’(k):/ w.
o)

Thus the monodromy representation for solutions of the Picard—Fuchs
equation is the same as the geometric monodromy representation. In particu-
lar, the representation must take values in the group of matrices with integer
coefficients. In the case of the Legendre family, it is precisely the group I'(2)
described in Theorem 1.1.20.

Problems

1.1.1.
1.1.2.

1.1.4.

Show that the differential (1.1.3) is holomorphic on £.

Show that the Euler characteristic of the Riemann sphere is two. Com-
pute the Euler characteristic of the Riemann sphere with d points
deleted. Let k£ be a divisor of d. Then there is a k-fold unbranched
cover of the Riemann sphere defined by the equation y* = p(x), where
p is a polynomial of degree d. Compute the Euler characteristic of
this unbranched cover. Then compute the Euler characteristic of the
corresponding k-fold branched cover, defined by the same equation.
Finally, compute the genus of that branched cover.

. Show that the only singular fibers of the Legendre family y? =

x(x — 1)(x — x)are at L = 0, 1. Consider next the family of elliptic
curves x> 4+ y3 4+ 73 + Axyz. What are its singular fibers?

Consider the family of elliptic curves &, . defined by y2=(x —a)
(x — b)(x — ¢). What is the locus in C* = {(a, b, ¢)} of the singu-
lar fibers (the discriminant locus)? More difficult: describe the mon-
odromy representation.

. Consider the family of elliptic curves £4 p ¢ defined by y* = x3 +

Ax? 4+ Bx + C. Whatis the locus in C* = {(A, B, C)} of the singular
fibers? More difficult: describe the monodromy representation.

. Consider the compact Riemann surface M with affine equation y? =

p(x) where p has degree two. Show that M is isomorphic as a complex
manifold (or as an algebraic curve) to the Riemann sphere.

. A holomorphic one-form on a Riemann surface is a differential one-

form which is locally given by f(z)dz, where z is a local holomorphic
coordinate. Show that such a form is closed. Formulate and investigate



1.1.8.

1.1.9.

1.1.10.

1.1.11.

1.1.12.

1.1.13.

Let us
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the analogous assertion(s) for holomorphic forms on a complex man-
ifold of complex dimension 2.

Prove the following identities: arccosu =ilog(u + +/u? — 1),
arccosu = arctan(+/(1 — u?)/u),  arctanu = arccos(1/+/1 + u?).
Then show that all the integrals and estimates leading up to (1.1.12)
hold as asserted.

Consider the family of elliptic curves defined by y> = (x> —s)
(x — 1). Find the asymptotic form of the period map 7(s) as s ap-
proaches 0. Comment on the relation between what you find and the
asymptotic form in (1.1.12).

Let S be a Riemann surface, and let A C S be a nonempty finite set.
Show that there is an exact sequence

0— HY(S) — H'(S\A) = H%A) — H’(S) — 0.

Note that elements of H°(A) are linear functionals on the vector
space spanned by the points of A. They can be viewed as the point-
wise residue as defined previously, and they can be combined to form
the globally defined map “res”. Your argument should show that the
above sequence is defined on the level of integral cohomology.
Consider the degeneration of elliptic curves &; defined by y? = x*® — t.
Find all values of ¢ for which & is singular. By drawing a series of
pictures of branch cuts, show that the monodromy transformation for
t = 0 has order six, and find the corresponding matrix.

Let {&;} be a family of elliptic curves with just two singular fibers,
one at t = 0, the other at # = oco. Show that the complex structure of
&, does not vary.

Let F be the free group with two generators a and b. Assign a graph
T (F) to this group by letting the vertices be the elements of F,i.e., the
words in a and b. We connect the vertices represented by w and wa
by an edge, and we likewise draw an edge between w and wa~!,
between w and wb, and between w and wb~!. No other vertices are
connected. This defines also an action of F on 7 (F). Show that 7 (F)
is a tree (compare the graph with the tree of Fig. 14). Show that the
action of F on 7 (F) is free and faithful, i.e., if some word w € F
fixes a vertex, then w = 1.

1.2 Riemann Surfaces of Higher Genus

now consider the Hodge theory and period mapping for Riemann

surfaces of genus bigger than 1, as illustrated in Fig. 15. The cycles §; and y;
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Figure 15. Riemann surface of genus 3.

form a “standard basis” for the first homology. For such a basis the intersection
matrix has the form
0 1
J = £,
< - ]lg 0 )

where 1, is the g x g identity matrix. One can define a Riemann surface §
of this kind by the equation

V= —1)x — 1) (x — 1), (1.2.1)

where n = 2g 4+ 2. However, for g > 2, there are Riemann surfaces which
are not given by such equations (see Problem 1.2.1). Those which have an
equation (1.2.1) are called hyperelliptic Riemann surfaces.

So far we have used a topological definition of the genus — the number
of handles, which we can compute from the Euler characteristic. For another
point of view, consider the vector space €2(S) of holomorphic one-forms.
These, which we have encountered already in the case of elliptic curves,
are differentials which can be written locally as f(z)dz where f(z) is a
holomorphic function. Riemann’s contribution to the Riemann—Roch theorem
can be succinctly written as

dim Q(S) = g(S). (1.2.2)

This formula implies, as in the case of an elliptic curve, that the complex
1-cohomology of § decomposes as discussed in Theorem 1.1.5:

H'(S;C)=H" @ H"'.
The first summand is the space of holomorphic differentials, and

HO,I = H1.0
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is the complex conjugate space, where the conjugation comes from the iso-
morphism

H'(S:C)=H'(S,R) ® C.

Formally this means that H' carries a Hodge structure of weight 1, and the
above decomposition is the Hodge decomposition.
Coming back to the equality (1.2.2), we note that it is not at all obvious
in general. What is easy (see Problem 1.2.2) is the inclusion Q(S) @ Q(S) C
H»(S; C), whence comes an inequality. However, for hyperelliptic Riemann
surfaces the 1-forms
xidx )
w; = Y i=0,...,g—1 (1.2.3)

are independent. Indeed, given any polynomial p(x) = v; + v2x + v3x?
+ -+ + vox8~! of degree < (g — 1), the one-form p(x)dx/y is 0 if and only
if p is the zero polynomial. So, in view of the preceding, the forms (1.2.3)
give a basis for Q(S). In this case the Hodge decomposition for H' therefore
follows.

Let us now consider the period map for the Riemann surfaces S = §; given
by Eq. (1.2.1), where t = (11, ..., t,). To this end we fix a standard basis, and
we denote the elements of the dual basis by §°, y*. Thus §'(§;) = 8%, where
the last symbol is Kronecker’s §, equal to O if i # j and equal to 1 if i = j.
This basis, or “marking,” gives an isomorphism

H'(S;7) > 72
which extends to an isomorphism
H'(S;C) > C*.
Then the subspace
m(H"(S)) c C* (1.2.4)

defines a point in the Grassmannian of g-planes in 2g-space. It depends on
both § and the marking.
Let

U:{(t],,tn)lh#tj}

be the parameter space for the nonsingular Riemann surfaces S. It has the
form

U=C"A,
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where the discriminant hypersurface A is the union of hyperplanes #; = ¢;.
The set of cohomology groups H'(S,;Z) for u in U forms a local system
of Z-modules of rank 2g which we denote by H}. Let U be the universal
cover of U, and consider the pullback of the local system, which we denote
by Hfll7 Because U is simply connected, this system is trivial. Thus there is
an isomorphism m from it to the trivial local system Z?¢ x U. Let

m(i) : H'(S;) — 7% x {ia) — 7%

denote the isomorphism of the fibers over iz, composed with the projection to
the first factor. Thus m(i) is an isomorphism of H'(S;, Z) with Z?¢. Since
H L], is a local system, one has the relation

m(y - it) = p(y)m(it),

where p is the monodromy representation and y - i is the action of 7 (U, uo)
on U by covering transformations. It follows that formula (1.2.4) defines a
map

P:U— Grass(g, 2g)
which satisfies the equivariance condition

Ply - it) = p(y)P(@). (1.2.5)

Our aim is to understand this map in the same way that we understood the
period map for elliptic curves. The first result is both important and easy to
prove.

Theorem 1.2.6 The period map is holomorphic.

Proof. Observe that 75(5, m) is the same as the row space of the g x 2g matrix
(A, B), where

Aij=/a)j

8;

B,-j:/a)j.
Vi

Thus P will be holomorphic if the integrals A;; and B;; are holomorphic
functions of t = (11, ..., t,). We leave the proof of this fact as an exercise.
The reader should adapt the argument used for elliptic curves to the hyperel-
liptic case. Q.E.D.

and
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Let us now consider the values of the period map. We claim first, in analogy
with the proof of Theorem 1.1.5, that A, the first half of the period matrix, is
nonsingular. To see that this is so, consider a vector v such that vA = 0. Let
® = Viw] + - - + Vyw,, and observe that

/Sja) = ZI:/(SJ Viw; = zi:viA,‘j = (UA)]

Thus, v is a null vector of A if and only if all the integrals of w over the §;
vanish. Consequently the cohomology class of w is a linear combination of
the y/ if v is a null vector,

[w] =) w;y’
J
for some coefficients w;. Then
[w] = Z w;y.
J
However,

VIUVJ :Oforalliandj’

and so [w] U [w] = 0. As in the case of elliptic curves,

(01 UTais) =i [ 0nd =0

s

Moreover, the integral is identically O if and only if @ is O as a one-form. In
the case of a hyperelliptic Riemann surface,

p(x)dx
y

’

where p(x) = v; 4+ vox + v3x2 4+ -+ + vgxg_l. We have seen that such a
holomorphic differential is O if and only if p is the zero polynomial, that is,
if and only if v is the zero vector. Thus, if vA = 0, then v = 0, as required to
prove the claim.

Now let

C?)i: E A’fa)j,
J

where A" is the ij component of the inverse of the matrix A. With the basis
{®;} in place of the basis {w;}, the matrix of A-periods is the identity. The
nature of the matrix of B-periods is given by the following.
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Theorem 1.2.7 If the matrix of A-periods is the identity, then the matrix of
B-periods is symmetric and has a positive definite imaginary part.

Proof. The positivity assertion of the theorem mirrors the corresponding re-
sult (1.1.6) for elliptic curves; the symmetry statement is a new phenomenon.
To prove symmetry, note that the two-form @; A @; vanishes identically be-
cause it has the local form f(z)dz A g(z)dz for some holomorphic functions
f and g. Therefore,

/d)i/\d)j:()
S

for all i and j. Now write @; in terms of the standard cohomology basis:
[@] =8 + ) _ Buv*.
k

Because of our integral formula above, the cup product [@; ] U [@;] vanishes.
However,

(@] U [®;] = <6i +ZBiky") U (8,- +ZB,-M> = (Bij — B;)IS].
k ¢

It follows that B is symmetric. For the positivity assertion, consider the abelian
differential ® = vi®; + - - - + v,@,. Then

/Sao A& = (1@ UTEDIS].

On one hand, the integral on the left is positive for nonzero @. On the other
hand, the expression on the right can be evaluated by evaluating the cup
product

i <Z U,’8,’ + Z UiB,'k)/k> U (Z 1_)]'5]' + Z ngl_)j)/z> .
i ik i Jjt
One obtains the identity
2) v, Im(B;)) = 2vIm(B)'0[S].
ij
Here v is a row vector and ‘v denotes its transpose. Thus B has a positive
definite imaginary part, as claimed. Q.E.D.

Let b, denote the Siegel upper half-space of genus g: the set of symmetric
complex matrices with a positive definite imaginary part. Then the period
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map takes values in this space viewed as a subset of the Grassmanian via the
map

Z + row space of (I, Z),

where 1, is the g x g identity matrix. The period map for the family (1.2.1)
of hyperelliptic Riemann surfaces takes the form

75:l7—>bg.

Since a monodromy diffeomorphism associated with the path y preserves
the cup-product form, the monodromy matrices p(y) preserve the skew-
symmetric form J. Thus the monodromy representation takes values in the

group
Sp(g,Z) = {M € GL(2g,Z) | 'MJM = J}.

This is the integer symplectic group. One may also consider Sp(g, R), the
symplectic group with real coefficients. A matrix in the symplectic group can
be decomposed into g x g blocks as

r=(h %)

Such matrices operate on g x 2g matrices (A, B) via multiplication on the
right,

(A, B)— (A, B)T,

and there is a corresponding action on the row spaces. One checks (Problem
1.2.4) that a symplectic matrix preserves the set of row spaces corresponding
to matrices (1, Z), where Z is symmetric with a positive definite imaginary
part. Thus the symplectic group also acts on b,, namely, via

def

Z+— T(Z) = (K+ZM)" (L + ZN).

This is a kind of generalized fractional linear transformation which in the
case of g = 1 reduces to the standard action of SL(2, R) on the upper half-
plane.

We want to establish some basic facts about this action. To begin, it acts
transitively. This we can see by looking at the image of i1, under the map

I, X\ /'W 0
T:(dg 11g>(o W_1>. (1.2.8)
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We find 7'(ill,) = X + i'WW. Since every positive definite Hermitian matrix
Y can be written as Y = ‘W W, this shows that the action is indeed transitive.
Consider next the orbit map

m:Sp(g, R) — b,
T — T(il,).

We claim that this map is proper: any sequence M,, € Sp(g) whose m-images
X, + 1Y, converge in b, has a convergent subsequence. From this it quite easy
(see Problem 1.2.5) to show that Sp(g, Z) acts properly discontinuously on b,
i.e., for any two compact sets K, K» C b,, there are at most finitely many
elements y € Sp(g, Z) such that K| Ny K, # (. Then a standard general
result [35] asserts that the quotient of a complex manifold by a proper action
action of a group is an analytic space: a (possibly singular) space on which
is defined the notion of holomorphic function.

For the proof of the properness assertion, define 7, according to (1.2.8)
so that 7, = M, U,, with U,, € U(g) N Sp(g), a compact group. Passing to a
subsequence, we may assume that the U,, converge, and so it suffices to see that
{T,} has a convergent subsequence. Since by assumption X, + 1Y, converges
to a point in b, the X,, converge and so it suffices to see that {'W,} and
{ Wn_l} have convergent subsequences. The first is clear since ‘W, W, =Y,
converges and so {W,} is a bounded set. Replacing {W,} by a converging
subsequence, put W = lim,,_, oo W,,. Then ‘'WW > 0 by assumption and so
W is invertible; it follows that W~! = lim,_, . W,~!, which completes the
proof of our assertion.

The functional equation (1.2.5) asserts that the period map is equivariant
as a map of U to h. Therefore, in light of the previous two paragraphs, there
1S a quotient map

P:U — b,/Sp(g, 2), (1.2.9)

where, as noted, the right-hand side is an analytic space. It is definitely not
a complex manifold because of the presence of fixed points of the action
of Sp(g, Z) on b,: see Problem 1.2.5. Indeed, the quotient has codimension
two singularities, as in the model example of the quotient of C? the group
of transformations (x, y) — (%x, £y). See Problem 1.2.6. Nonetheless, the
notion of holomorphic function makes sense, and we have the following.

Theorem 1.2.10 The period map (1.2.9) is a holomorphic map of analytic
spaces.
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) — =

Figure 16. Degeneration.

Degenerations

Consider now the family of genus 2 Riemann surfaces S; given by

Y= —ap)---(x —as)(x —1).

The normalized period matrix of the fibers S, has the form

Z Z
7 — ( 11 12 )
Zn Zn
where all entries are multivalued holomorphic functions of ¢. Let us suppose
that a; = 0, and let us examine the behavior of the period matrix for ¢ near

t = 0.If we use the standard bases illustrated in Fig. 16, then §; is the vanishing
cycle and the local monodromy transformation is given by

T(x)=x—2(x-61)8;.

The factor of 2 comes from the fact that as ¢ travels around a small circle
centered at the origin, the branch slit connecting 7 to O makes a full turn: twice
a half-turn, so twice the contribution of the vanishing cycle to monodromy.
Following the same line of argument as used to establish (1.1.12), we find
that

1
Z1(t) = - logz + h(z),

where Ah(t) is a holomorphic function, and where the remaining entries of the
period matrix are holomorphic functions of #. Thus the multivaluedness of Z
is of a very controlled sort.

Consider the linear transformation defined by N(x) = (x - §;)8;. Itis nilpo-
tent and satisfies T = 1 4+ 2N. The results of the previous paragraph may be
restated by saying that the matrix

Z(t) = exp (—“OTgtN> Z(t) (1.2.11)
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is single-valued and holomorphic in the punctured disk 0 < |¢| < €, and in
fact is holomorphic in the disk |¢| < €. Thus the period matrix itself can be
written as

ilogt A
Z(t) = exp <TN> Z(1), (1.2.12)

where Z(r) is holomorphic. This equation, which expresses the period ma-
trix in terms of an exponential involving log ¢, the logarithm of the Picard—
Lefschetz transformation, and a holomorphic matrix, is a very special case
of the nilpotent orbit theorem of Wilfried Schmid [201]. It is equivalent to
the statement that in general the Picard—Fuchs equation has regular singular
points.

Let us now inquire into the meaning of the entries of Z(0). Note first that
if we replace the parameter ¢ by cf, some nonzero constant ¢, we replace
211(0) by 211(0) +ilogc/m. Thus the value of Z;;(0) has no significance.
The remaining entries, Z;;(0) for (i, j) # (1, 1), however, are well defined
and equal to Z; ;(0). To interpret them, write the elements of the basis for the
space of abelian differentials as

dx
a)l(t) = \/X(X —_ Z)(X — a)(x — b)(x — C)(X - d)
and
w) (1) = =

V=D —a)x = b)(x —o)x —d)

For t = 0 these expressions become

©0) = dx
O G —aG b — 0k —d)
and
@2(0) = dx

V& —a)x =D)x —)x —d)’

Note that they make sense as possibly meromorphic differentials on the elliptic
curve € defined by y2 = (x — a)(x — b)(x — ¢)(x — d). The Riemann surface
£ is the normalization of the algebraic curve £ = S, defined by y> = x?(x —
a)(x — b)(x — ¢)(x — d) (see Problem 1.2.7).

The differential w;(0) is a differential of the third kind: it has simple poles at
the two points corresponding to x = 0. Now consider the normalization of Sy,
as illustrated in Fig. 17, and let @ be the normalized differential corresponding
to w,(0): it is w,(0) divided by the integral of w,(0) over §,. We observe the
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following. First, the integral Z,,(0) is a normalized period of w,(0):

h®=4@

Second, the integral Z,,(0) = Z,;(0) is the normalized abelian integral for

the divisor p — ¢g:
q
Z17(0) = / @.
P

Each of these integrals, we emphasize, may be viewed as an integral on
£. Thus the limiting values of entries of the period map can be interpreted
as integrals on the normalization of the singular fiber of the degeneration,
where that normalization has been marked in such a way that we “remember”
what the singular fiber was. Indeed, if we glue p and ¢ in &, the result is
biholomorphic to Sp.

The integral Z1,(0) is just the Abel-Jacobi class associated to the divisor
p — q. This class determines the location of p and g on g up to translation,
and so determines S, glven £. Note also that Z55(0) is the normalized period
of £, and so it determines &. Therefore the limit period matrix determines the
singular fiber Sp.

Generalizing Hodge Theory

Our study of the period map for a degeneration of Riemann surfaces {S; } leads
us to ask whether it makes sense to take a limit of the Hodge structure H!(S,),
and whether it is possible to define a (suitably generalized) Hodge structure
for the singular variety Sy. The answer to both questions is “yes.” We shall
take up the question of generalizing Hodge theory to singular varieties first,
and then consider limits of Hodge structures.

Let us begin with an easy observation. Since the cohomology of Sy (see
Fig. 17) has rank 3, it cannot carry a Hodge structure of weight 1: these
have even dimension in view of the relation H1.0 = HO!, Nonetheless, the
cohomology of S carries considerable structure, both topological and com-
plex analytic. To understand the topology, consider the normalization map
p: Eo — Sp and its induced map on cohomology,

H'(So) 5 H'(Sy).

It is easy to see that p* is surjective, for example by showing that the cor-
responding map p, on homology is injective (simply look at Fig. 17). Thus



