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I. Background material

I.A. Mumford-Tate groups and domains.

Notations:

• V is a Q-vector space
• Q : V ⊗ V → Q is a non-degenerate form with Q(v, w) =
(−1)nQ(w, v)

• G = Aut(V,Q) ⊂ GL(V )
• S = ResC/R Gm,C, viewed as real Lie group
• S1 ⊂ S is the maximal compact subgroup {z ∈ C : |z| = 1}

Talk given June 30, 2010 at the ICTP Conference on Hodge theory, and based
in part on joint work with Mark Green and Matt Kerr. The speculations at the
end are the author’s responsibility.

1The terminology and notations are the same as those in the lectures in the
summer school. These lectures are available at http://cdsagenda5.ictp.trieste.it/
full−display.php?ida=a09153.
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2 PHILLIP GRIFFITHS

Definitions. (i) A Hodge structure (V, ϕ̃) is given by

ϕ̃ : S→ GL(VR) .

(ii) A polarized Hodge structure of weight n (V,Q, ϕ) is given by

ϕ : S1 → G(R)

such that the characters of ϕ lie in [−n, n].
Remarks. In (i) we have that over Q

V = ⊕V (n)

where ϕ̃
∣∣
Q∗ acts on V (n) by ϕ̃(r) = rn idV (n) where n is the weight. In

this talk we will only deal with pure Hodge structures of weight n.
In (ii) we have that VC = ⊕

p+q=n
V p,q
ϕ where the V p,q

ϕ are eigenspaces

for ϕ(S1) where for v ∈ V p,q
ϕ , ϕ(z)v = zp−qv (= zpz̄qv).

Definitions. (i) TheMumford-Tate groupMϕ̃ is the smallestQ-algebraic
subgroup of GL(V ) such that ϕ̃(S) ⊂ Mϕ̃(R). (ii) The Mumford-
Tate group Mϕ is the smallest Q-algebraic subgroup of G such that
ϕ(S1) ⊂ G(R).

Remarks. Mϕ̃ is usually called the Mumford-Tate group and Mϕ the
restricted Mumford-Tate group. In this talk we shall be concerned
exclusively with Mϕ and shall refer to it as the Mumford-Tate group.

In the tensor algebra T •,• = ⊕
k,l�0

V ⊗
k⊗V̌ ⊗l

it is defined by the condition

to fix pointwise the algebra of Hodge tensors Hg•,•ϕ ⊂ T •,•.
Let D be the period domain consisting of all polarized Hodge struc-

tures (V,Q, ϕ) with given Hodge numbers hp,q = dimV p,q
ϕ . Fixing a

reference point ϕ ∈ D, we have

D ∼= G(R)/Hϕ

where Hϕ is the compact isotropy group of ϕ.

Definition. The Mumford-Tate domain

DMϕ ⊂ D

is the Mϕ(R)-orbit of ϕ.

Remarks. The component Do
Mϕ

of DMϕ through ϕ consists of the

component through ϕ of the set of all ϕ′ ∈ D with Hg•,•ϕ′ ⊇ Hg•,•ϕ . It is
a homogeneous complex manifold

DMϕ
∼= Mϕ(R)/HMϕ

where HMϕ = Hϕ ∩ H(R) is the compact centralizer of the circle
ϕ(S1) ⊂Mϕ(R).
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I.B. The structure theorem for global variations of Hodge struc-
ture. We assume that V = VZ ⊗Q and let

Φ : S → Γ\D
be a global variation of Hodge structure. This means

• S is a smooth, quasi-projective variety;
• Φ is a local liftable, holomorphic mapping that satisfies the
infinitesimal period relation;

• ρ : π1(S, s0) → GZ is the monodromy representation with im-
age the monodromy group Γ.

The Mumford-Tate group MΦ of the variation of Hodge structure
may be defined as follows: Suppose that s0 ∈ S is a very general

point and identify the fibre of the flat bundle VC = S̃ ×π1(S,s0) VC at s0
with VC. ThenMΦ ⊂ G is the subgroup fixing the subspace Hg•,•s0 (Vs0),
this being the algebra of Hodge tensors at s0 that as a subspace gives
a sub-variation of Hodge structure. Then monodromy acts on this
subspace as a finite group, and by passing to a finite covering of S and
taking the induced variation of Hodge structure we may assume that
Hg•,•s0 (Vs0) is pointwise fixed by monodromy. This gives the inclusion

Γ ⊂MΦ, and then denoting by Γ
Q
the Q-Zariski closure of Γ we have

Γ
Q ⊆MΦ .

Being reductive, MΦ splits into an almost direct product

MΦ = M1 × · · · ×Ml × A

of Q-simple factors Mi and an abelian part A. We denote by Di ⊂ D

theMi(R)-orbit of a lift Φ̃(s0) ∈ D of Φ(s0). Since Φ̃(s0) is a fixed point
of A(R) we will ignore the A-factor. We set Γi = Γ ∩Mi and assume
that Γi is non-trivial for 1 � i � k and is trivial for k + 1 � i � l.

Structure Theorem. The Di are homogeneous complex submanifolds
of D and the variation of Hodge structure factors as

Φ : Γ1\D1 × · · · × Γk\Dk︸ ︷︷ ︸×Dk+1 × · · · ×Dl︸ ︷︷ ︸ .
Φ is constant in the second set of factors, and for 1 � i � k

Γ
Q

i = Mi .

Remark. Although it seems not to be known whether or not Γi is of
finite index in Mi,Z, their tensor invariants are the same. Because of
the structure theorem we may say that Mumford-Tate domains are the
basic objects as target spaces of period mappings.
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I.C. Hodge groups and domains. A reductive Q-algebraic groupM
may appear in different ways as a Mumford-Tate group. This suggests
the following

Definitions. (i) A Hodge representation (V, ρ, ϕ) is given by a repre-
sentation ρ : M → Aut(V,Q) together with a circle ϕ : S1 → M(R)
such that, setting ϕρ = ρ ◦ϕ, (V,Q, ϕρ) gives a polarized Hodge struc-
ture. (ii) A Hodge group is a pair (M,ϕ) for which there is a Hodge
representation (V, ρ, ϕ).

Remarks. For simplicity, we assume that M is semi-simple and ρ is
faithful. Then Hodge representations and Hodge groups have been
classified (cf. the lecture notes).
For a Hodge representation (V, ρ, ϕ) we denote by DMϕρ

the corre-
sponding Mumford-Tate domain. We note that (m, B,Adϕ) is also a
Hodge representation where m ⊂ g ⊂ gl(V ) and the Cartan-Killing
form B : m ⊗ m → Q is induced by Q on gl(V ). We denote the
corresponding Mumford-Tate domain simply by Dm,ϕ.

Theorem. As homogeneous complex manifolds, together with the ex-
terior differential system given by the infinitesimal period relation,

DMϕρ
= Dm,ϕ .

Definition. Dm,ϕ will be called a Hodge domain.

Because of the theorem, Hodge domains are the universal objects
parametrizing families of polarized Hodge structures whose algebra of
Hodge tensors contain a given algebra; namely the ρ(M)-invariants in

T •,• = ⊕
k,l�0

V ⊗
k ⊗ V̌ ⊗

l
. The Hodge domain is determined by the data

(M,ϕ). It is a homogeneous complex manifold

Dm,ϕ = M(R)/Hϕ

where Hϕ = ZM(R)(ϕ(S
1)) is the compact centralizer of the circle ϕ(S1)

in M(R). If we denote

m−k,k =

{
eigenspaces in mC where

ϕ(z) acts by z−2k

}
then the (1, 0) tangent space to Dm,ϕ at the identity coset is identified
as (cf. the lecture notes)

TeDm,ϕ = ⊕
k>0

m−k,k .

The infinitesimal period relation corresponds to m−1,1, and the bracket

[ , ] : Λ2m−1,1 → m−2,2
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gives the integrability conditions. We note that

Many different ϕ’s may give the same homogeneous
complex structures. Thus a Hodge domain is a ho-
mogeneous complex manifold with additional struc-
ture.

II. General context

Hodge representations, Hodge groups and Hodge domains occur in
three contexts

• Algebraic geometry (variation of Hodge structure)
• Representation theory (discrete series and cuspidal automor-
phic representations)

• Arithmetic (L functions, Galois representations)

In the classical case of weight one Hodge structures, there is an exten-
sive and rich interaction among these (theory of Shimura varieties). In
higher weights the understanding of what this interaction might pos-
sibly be is in its very earliest stage. In this section we shall briefly
summarize the role Hodge-theoretic data plays.

II.A. Algebro-geometric. Given a Hodge group (M,ϕ) with associ-
ated Hodge domainDm,ϕ, thenDm,ϕ has an invariant complex structure
with an invariant exterior differential system and associated integral
manifolds

(II.A.1) Φ : S → Γ\Dm,ϕ

as explained above. Given a Hodge representation (V, ρ, ϕ), there is
over Γ\Dm,ϕ an associated local system V and Hodge bundles Fp ⊂
V⊗ODm,ϕ . From this one may construct cohomology both of the local
system and the Hodge bundles (coherent cohomology). This cohomol-
ogy may be pulled back under (II.A.1) where now the natural target
space is the Mumford-Tate domain DMϕρ

. The natural objects for this
are the characteristic cohomology of V and the Penrose-Radon trans-
forms of the cohomology of the Fp (cf. section IV).
On the arithmetic side, in Γ\DMϕρ

there are defined the dense set
of CM polarized Hodge structures and, more generally, the Noether-
Lefschetz loci (cf. [GGK] and the lecture notes).
Assuming that Γ = ΓZ, there is also an “adelification” of (II.A.1),

obtained on the RHS by taking the inverse system over the congruence
subgroups of finite index in Γ. On the LHS one takes the corresponding
family of finite covering spaces of S and induced global variations of
Hodge structure.
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II.B. Representation-theoretic. The basic reference here is [Schm].
Because of the notations used in the lecture notes we will not be able
to use Schmid’s notation here. For our purposes the main point is that

The real, non-compact semi-simple Lie groups that have
non-trivial discrete series representations are exactly
the real Lie groups M(R) associated to Hodge groups (M,ϕ).

Schmid proved that these discrete series representations may be real-
ized as L2-cohomology of homogeneous line bundles Lρλ → Dm,ϕ over
Hodge domains of the form M(R)/T where T is a compact maximal
torus in M(R). The notation means this: Associated to a weight λ
there is Harish-Chandra’s character Θλ. A suitable choice of Weyl
chamber Dλ then defines a complex structure on M(R)/T , together
with a character ρλ of T that defines the above holomorphic line bun-
dle over Dm,ϕ. The discrete series with character Θλ is then realized as
L2-cohomology

Hd
(2)(Dm,ϕ,Lρλ)

where d = dimC K/T . The other L2-cohomology groups vanish.
We shall say that ϕ is compatible with λ if the invariant complex

structure associated to ϕ coincides with that given by Dλ as described
above. We note that in order to have that T = ZM(R) (ϕ(S

1)) we must
assume that ϕ(S1) acts non-trivially on all the root spaces. For each λ
there are many ϕ’s that are compatible with it; different ϕ’s will give
different Hodge theoretic data. However, for each ϕ, a power of Lρλ

will be a Hodge bundle but which Hodge bundle it is depends on the ϕ.
A possibly important point is that associated to λ there is a natural
choice of a ϕλ that is compatible with λ.

II.C. Arithmetic. The assumption that M(R) is the group of real
points of a Q-algebraic group M plays no role in the discussion of the
discrete series in the section immediately preceding this. This assump-
tion enters in that with it one may define the notion of a cuspidal
automorphic representation in L2(M(Q)\M(A)), where A are the ade-
les. We refer to [CK], especially the introduction, and to the references
cited therein for the important role that these may play in the arith-
metic theory of automorphic forms. Another useful reference, especially
to the cohomological aspects of local systems, is [Schm]. In the rich
classical theory (Shimura varieties) the choice of a ϕ is canonical and
very special. This is to insure that there is a Hodge representation
(V, ρ, ϕ) of weight one, which is in fact essentially unique.
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III. Cycle spaces and their enlargements

III.A. General definitions and some properties. The general ref-
erence for this section is [FHW]. We letDm,ϕ = M(R)/HMϕ be a Hodge
domain. For the time being, it is only the invariant complex structure,
and not the particular ϕ that gives rise to it, that will be of interest. In
a slight departure from the terminology in [GGK], we will refer to the
non-classical case as meaning that Dm,ϕ does not fibre holomorphically
over an Hermitian symmetric domain. It may happen that there is
a different circle ϕ′ : S1 → M(R) such that HMϕ = HMϕ′ and Dm,ϕ′

does fibre holomorphically over an Hermitian symmetric domain (see
example 2 below).
Since the ϕ will not play a role in this discussion, for notational

simplicity we set D = Dm,ϕ.
Cycle spaces arose from the following considerations. First, in the

non-classical case one cannot expect to have automorphic forms in the
classical sense. Instead, one expects to have “automorphic cohomol-
ogy” in degree d = dimC K/H (see below). In particular, one cannot
say that “an automorphic cohomology class vanishes at a point of D”,
or that it is defined over a number field. Secondly a cohomology class
can be evaluated on a d-dimensional compact, complex analytic sub-
manifold of Γ\D. This suggests considering automorphic cohomology
classes as sections of a bundle over the space of d-dimensional compact,
complex analytic subvarieties of Γ\D. For this we let Y = K/HMϕ ,
which is a smooth, projective, algebraic subvariety in D.

Definition. We define the cycle space U to be the set of translates gY
by those g ∈M(C) such that gY remains in D.

Remarks. The compact dual Ď of D is a rational, homogeneous
projective variety defined over Q

Ď = M(C)/P

where P is a parabolic subgroup of M(C). Then

Y = K(C)/P ∩K(C)

is also a rational homogeneous variety. It may be shown that the set Ǔ
of M(C)-translates of Y in Ď is given by the affine algebraic variety

Ǔ = M(C)/K(C)

and is a Zariski open set in the Hilbert scheme of Y in Ď. For u ∈ Ǔ ,
we denote by Yu ⊂ Ď the corresponding subvariety of Ď.
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There is a standard incidence diagram

(III.A.1) I
πU

����
��

��
�� πD

���
��

��
��

�

U D

⊂ U ×D

with fibres {
π−1U (u) = {(u, ϕ) : ϕ ∈ Yu} ∼= Y

π−1D (ϕ) = {(u, ϕ) : Yu passes through ϕ}.
We denote by Z a typical fibre π−1D (ϕ). The main results concerning
(III.A.1) are

Theorem ([FHW]). (i) U is a Stein manifold.
(ii) Z is a contractible Stein manifold.

See the remark below for a group-theoretic description of U .
We will verify these results in two examples.

III.B. Two examples.

Example 1:2 Here D is the period domain for polarized Hodge struc-
tures of weight two and Hodge numbers h2,0 = 2, h1,1 = 1. Then

D ∼= SO(4, 1)/U(2) .

Here, SO(4, 1) will denote the real Lie group acting on VR = R5 pre-
serving the quadratic form x2

1 + · · ·+ x2
4 − x2

5. We denote by Q ⊂ PVC

the corresponding complex quadric; then

(i) Ď is the set of lines in Q.

Proof. For F ∈ Gr(2, VC) a 2-plane in VC, we denote by [F ] ∈ PVQ

the corresponding line. The first Hodge-Riemann bilinear relation
Q(F, F ) = 0 is equivalent to [F ] ⊂ Q.
The condition that F ∈ D, i.e., it satisfies the second bilinear rela-

tion, will be written as Q(F, F ) > 0.

(ii) D has two components corresponding to the two orientations
of VR given by a Hodge frame associated to F ∈ D.

A Hodge frame is e1, e2, f, ē1, ē2 where f = f̄ and i2Q(eα, ēβ) = δαβ
and Q(f, f) = −1. The orientation is given by ( i

2
)2e1 ∧ ē1 ∧ e2 ∧ ē2 ∧ f .

(iii) The boundary ∂D is smooth (it is a single SO(4, 1)-orbit), and
is given by

{F ∈ Ď : Q(F, F ) has rank one}.
2Based on correspondence with Mark Green.
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(iv) The Hilbert scheme of Y is a 2-sheeted covering of PV̌C branched
along the dual quadric Q̌ to Q.

Proof. For a hyperplane E ⊂ VC we denote by [E] ∈ PV̌C the cor-
responding point. If we set QE = Q

∣∣
E
, then for [E] ∈ PV̌C\Q̌ the

corresponding quadric QE ⊂ PE is non-singular and has two rulings.
The SO(4, 1)(C)-translates of a Y ⊂ D are the sets of lines in one of
the two rulings of QE. Thus Ǔ is identified with the sets of rulings on
non-singular quadrics QE for [E] ∈ PV̌ \Q̌.
In case QE is singluar with one double point, the two sets of rulings

coincide and give the remaining points in the Hilbert scheme of Y .

(v) U = {E ∈ PV̌C : Q(E,E) > 0}.

Proof. Using the above description of Ǔ , the condition that E ∈ U is
that Q(F, F ) > 0 for all 2-planes F ⊂ E. Note that

U is unit ball in PV̌C
∼= P4.

In particular, it is Stein.

(vi) In (III.A.1), the fibre π−1D (F0) is biholomorphic to a unit ball
in C2.

Proof. We have

π−1D (F0) =

{
(E,F0) : F0 ⊂ E

and Q(E,E) > 0

}
.

There is an inclusion

π−1D (F0) ↪→ P(VC/F0)
∨ ∼= P2 ,

and the constraint Q(E,E) > 0 defines a unit ball in P2.

Remark. Fixing a reference maximal compact subvariety Y0 ⊂ D,
we recall that in general U is defined to be the set of translates gY0,
g ∈ M(C), that remain in U . A natural question is whether there is
an explicit group-theoretic description of what these translates are. A
very nice answer is given in [FHW]. To state this we letM(R) = KAN
be the Iwasawa decomposition of the real Lie groupM(R) where A is a
maximal, R-split Cartan subgroup. In the Lie algebra a of A denote by
ω the interior of intersection of the half-spaces {X ∈ a : 〈α,X〉 � π/2}
where α runs over the roots of a. Then

U = M(R) exp(iω) · Y0 .
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Example 1 (continued). We choose a reference point F0 ∈ D where

F0 = span

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
v1 =

⎛⎜⎜⎜⎜⎜⎜⎝
1

i

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ , v2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

1

i

0

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
and set E0 = F0+F 0. (This is our Y0 for the example at hand.) Thus,
E0 = R4 ⊗ C for the standard R4 ⊂ R5. Then

K =

{(
A 0

0 1

)
: A ∈ SO(4)

}
and any A is one-dimensional with Lie algebra

a = R

(
0 v
tv 0

)
, 0 �= v ∈ R4.

A convenient choice is v0 =
t(0 0 0 1 0). Then

exp(iω) =

{(
I3 0

0 cos t i sin t

i sin t cos t

)
: |t| < π/2

}
.

We let Et ∈ U be the corresponding element of exp(iω) · E0.
Now in general, points E ∈ U are classified into two types:

Type I: E = E ⇐⇒ dim(E ∩ E) = 4 ⇐⇒ E + E �= C5.
Type II: E �= E ⇐⇒ dim(E ∩ E) = 3 ⇐⇒ E + E = C5.

The action of M(R) on U preserves type. Above, E0 is of type I
and for t �= 0, Et is of type II. The orbits of M(R) acting on U are
parametrized by −π/2 < t < π/2 and have stability group SO(4) for
t = 0 and SO(3)× SO(1, 1) for t �= 0.

Example 2 (cf. [EGW] and [C]). In this case

D = SU(2, 1)/T ,

where as above SU(2, 1) = SU(2, 1)(R) for the standard diagonal Her-
mitian form of signature (2, 1) on C3. The compact dual is the flag
manifold

Ď = {(P, L) : P ∈ L} ⊂ P2 × P̌2 .

Up to conjugation, there are three open orbits of SU(2, 1) acting on Ď.
Here we take the one non-classical case where D has the picture
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L

Δ
P

Figure 1

where Δ is the unit ball in C2 ⊂ P2. Then
(i) U may be identified with the product of unit balls B and B̌ in P2

and P̌2.

Proof. In the picture

Q

L

P

λ

Figure 2

for fixed Q ∈ B and λ ∈ B̌ varying (P, L) gives a P1 in D.

(ii) In (III.A.1) the fibres Z of πD are biholomorphic to a disc
bundle over a disc.

Proof. In Figure 2 we have a map

Z → L\L ∩Δ

given by (Q, λ;P, L) ∈ I mapping to Q. The fibre of this map consists
of all lines λ in Figure 2 that pass through P .
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III.C. Enlargements of cycle spaces. For Hodge-theoretic purposes
it seems desirable to have a spaceW that fits in a holomorphic diagram

(III.C.1) W
π

����
��

�� π′

���
��

��
�

D D

where the fibres are contractible Stein manifolds, and where there also
is a fibering

(III.C.2) W→ U

with Stein fibres. We will give the construction in the two above exam-
ples; we do not know in what generality such a construction is possible.

Example 1 (continued). We define W ⊂ D ×D to be

W =
{
(F, F ′) : F ∩ F ′ = (0) and Q(F + F ′, F + F

′
> 0
}
.

(i) the fibres in (III.C.1) are contractible Stein manifolds.

Proof. We map

(III.C.3) π−1(F ) �� P(VC/F )
∨ ∼= P2

∪| ∪|

(F, F ′) �� [F ′] := projection of F ′ in VC/F.

It may be shown that the image is a ball, and we claim that the fibre
of this map in C = P1\{point}. To see this, we set E = F + F ′ ∈ PV̌C

and observe that [E] = [F ′] ∈ P(VC/F )
∨. The fibre of (III.C.3) over

[E] consists of all lines in the quadric QE that do not meet the ruling
given by F . Since F ∩ F ′ = (0) the ruling given by F ′ must be in the
same family as that given by F and distinct from F .
There is a mapping

ω̃ : W �� U

∪| ∪|

(F, F ′) �� E = F + F ′.

(ii) The fibres of ω̃ are bi-holomorphic to two copies of P1×P1\{diagonal}.
Proof. The lines [F ], [F ′] must be distinct and in the same family of
rulings of QE.
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Example 2 (continued). Here we define W ⊂ D×D to be given by the
picture

Δ

P

Q

Q′
L′

L

λ

Figure 3

That is

W =
{
(Q,L;Q′, L′) : L �= L′;L ∩ L′ ∈ Δ; and QQ′ ∩Δ = ∅} .

(i) The fibres in (III.C.1) are contractible Stein manifolds.

Proof. There is a surjective submersion

π−1(Q,L) �� Δ

∪| ∪|

(Q,L;Q′, L′) �� L ∩ L′.

The fibre of this map consists of all lines QQ′ through Q that do not
meet Δ, which is a disc in C.
There is a surjective map

(III.C.4) ω̃ : W→ U

given by
(P, L;P ′, L′)→ QQ′

in Figure 3.

(ii) The fibres of (III.C.4) are Stein.

Proof. There is a surjective submersion

ω̃−1(λ)→ Δ

sending Figure 3 to P ∈ Δ. FIxing P , Q and Q′ are arbitrary distinct
points of λ ∼= P1.
One potential advantage of (III.C.1) over the cycle space diagram

(III.A.1) is the following: In the next sections we shall see that in
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the diagram (III.A.1) cohomology on D, and on quotients Γ\D, will
map to holomorphic data on I and on Γ\I and then by a push-down
to holomorphic data on U and Γ\U .3 The same is also true for the
diagram (III.C.1). The latter has the advantage that, given a global
variation of Hodge structure

Φ : S → Γ\D ,

there is an associated map

ΦW : SW → Γ\W
where SW is constructed as follows. There is a diagram

S̃
˜Φ ��

π1

��

D

��

S
Φ �� Γ\D

where S̃ is the universal covering of S = π1\S̃. We then have the

S̃ × S̃
˜Φ×˜Φ−−−→ D ×D ,

and we set
S̃W = (Φ̃× Φ̃)−1W

and
SW = π1\S̃W .4

We note that there is a holomorphic submersion

SW → S

whose fibres are of the form S̃\Z where Z is a proper analytic sub-

variety of S̃. As will be explained below, automorphic cohomology
in Hd(Γ\D,Lρλ) will be mapped to holomorphic data over Γ\W and
then pulled back to SW. In particular, we may say that a class ξ ∈
Hd(Γ\D,Lρλ) vanishes at a point of SW.

5

3We note that Γ acts equivariantly in both diagrams (III.A.1) and (III.C.1).
4Here, π1 acts diagonally as deck-transformations on S̃ × S̃; the same is meant

by Γ\D ×D.
5The space SW is a strange object. If we assume that Φ is an immersion and

that no Ti = I where Ti are the unipotent monodromies around the branches of
the normal crossing divisor S\S, then a folk result is that

S̃ is a bounded domain of holomorphy in CN .

Consequently, the fibres of SW → S are of the form “bounded domain of holomor-
phy minus a closed analytic subvariety”. Thus, SW is a complex manifold that
although not an algebraic variety, does have some algebro-geometric aspects.
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The nature of this pullback map has yet to be investigated. Whatever
it is, it seems that it will be something rather non-standard for the
following reason. First, by passing to a subgroup of finite index if
necessary we may assume that Γ ∩K = {e}. In particular, Γ will act
without fixed points on D,U and W . It follows that no γ �= e maps
a fibre to itself in either (III.A.1) or (III.C.1). In particular, although
U and W are Stein, neither quotient Γ\U or Γ\W will be an algebraic
variety, at least in any natural way and, as noted above, the same will
be true of SW

IV. Penrose-Radon transforms

IV.A. Work of Eastwood-Gindikin-Wong [EGW]. In algebraic ge-
ometry diagrams of the sort

X
πY

����
��

�� πY

		�
��

��
�

Y Z

where X, Y, Z are algebraic varieties and πX , πY are proper morphisms
have been used since classical times (correspondences), and more re-
cently have been used to relate cohomology on Y to that on Z, and vice
versa. The work referred to above is of a somewhat different character.
It seems to have at least in part been motivated by representation the-
ory in the circumstances where one wants to realize a representation
geometrically on a space of functions (or sections of a vector bundle)
rather than on higher cohomology. It deals with the situation{

π : X → Y

E → Y

where X and Y are complex manfolds, π is a holomorphic submersion
and E→ Y is a holomorphic vector bundle. One of their results is

Theorem. Suppose that X is Stein and that the fibres of π are Stein.
Then there is a canonical isomorphism

(IV.A.1) Hr(Y,E) ∼= Hr
DR

(
Γ
(
Ω•X/Y (Eπ), dπ

))
.

Here the RHS is the de-Rham cohomology of the complex Γ(Ω•X/Y (Eπ), dπ)
of global, relative holomorphic forms on X with coefficients in Eπ :=
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π−1(E).6 For E = OY the idea behind (IV.A.1) is to consider the hy-
percohomology associated to the exact sheaf sequence on X

0→ π−1(OY )
dπ−→ ΩX/Y

dπ−→ Ω2
X/Y → .

Using the stated assumptions, the two spectral sequences degenerate to
give the result. For E one tensors the above sequence by ⊗

π−1(OY )
OX(π

−1(E)).

The above result can be used to realize representation spaces ofM(R)
by holomorphic data. In [EGW] it is shown that in certain situations in
which there are group actions, including the case W→ D in example 2
above, and for certain homogeneous bundles, including in that example

(IV.A.2) Lρλ = OP2(r)� OP̌2(t), r + t � −2
there are canonical representations of the cohomology classes in the
RHS of (IV.A.1) (what [EGW] call “holomorphic, harmonic forms” —
cf. Theorem 2.13 there). This then gives a geometric realization of the
Harish-Chandra module H1(D,Lρλ), for D as in example 2 and Lρλ as
in (IV.A.2), by holomorphic data.

Note. In general, for a homogeneous bundle Lρλ → D over a Hodge
domain, there is a L2-cohomology Hr

(2)(D,Lρλ) and ordinary coherent

cohomology Hr(D,Lρλ). There is an obvious map

Hr
(2)(D,Lρλ)→ Hr(D,Lρλ) ,

and only in certain cases, including the one above, is this map injective
with a dense image (cf. [Schm]).

An alternative method of realizing representation spaces by holomor-
phic data is based on the diagram (III.A.1). Recognizing that the dis-
crete series representation is realized as Hd

(2)(D,Lρλ) where d = dimC Y

for a maximal compact subvariety, and that the condition |λ| � 0 im-
plies that Lρλ⊗OY is “very negative” and hence Hd(Lρλ⊗OY ) is “very
big”, suggests mapping Hd

(2)(D,Lρλ) to holomorphic sections of a vec-

tor bundle Eλ → U over the cycle space discussed above (cf. [G],§11).
The basic result here is Corollary 14.5.3 in [FHW], which informally
may be stated as follows:

Under suitable conditions on λ the Penrose-Radon trans-
form

P : Hd(D,Lρλ)→ H0(U,Eλ)

is injective.

6We are using Γ to denote both a discrete sub-group of M and global sections;
we hope that the context will make clear which use is intended.
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IV.B. Work of Carayol [C]. The preceding section was concerned
with transforming cohomology on Hodge domains to holomorphic data
on an associated space. In this section we will discuss the situation
when we factor by a discrete group Γ ⊂ M , which we shall assume to
be co-compact in M(R) and to operate without fixed points on D,U
and W. Then for a suitable choice of λ with |λ| � 0 we have

(IV.B.1) dimHq(Γ\D,Lρλ) =

{
0 q �= d

∼ C|λ|dimD, c > 0 when q = d .

Thus there is a lot of automorphic cohomology.

Remark. When Γ is an arithmetic group, by analogy with the classical
case a natural group to consider is Hd

(2)(Γ\D,Lρλ). In [WW] there is
constructed a Poincaré series map

Hd
(2;1)(D,Lρλ)→ Hd

(2)(Γ\D,Lρλ)

where the LHS are the L2-cohomology classes represented by an L1-
form. It seems not to be known if the vanishing result in (IV.B.1) and
finite dimensionality of Hd

(2)(Γ\D,Lρλ) are valid.

In [C] a slightly modified situation in example 2 is analyzed. Namely,
the action of SU(2, 1)(R) on the compact dual Ď realized as the flag
manifold

Ď = {(P, L) : P ∈ L} ⊂ P2 × P̌2 ,

has six open orbits corresponding to three distinct complex structures
on SU(2, 1)(R)/T and their conjugates. These complex structures la-
belled as D,D′ and D′′, may be pictured as

P ′

P

L′′

L′

L

P ′′

Figure 4



18 PHILLIP GRIFFITHS

The same space W ⊂ D × D as pictured in Figure 3 now fibres
holomorphically in the diagram

W
πD



�
��

��
��

�
πD′

��		
		

		
		

D D′

where, in the notation of Figure 3,{
πD(Q,L;Q′, L′) = (Q,L)

πD′(Q,L,Q′, L′) = (P, L) .

A modification of (IV.A.1), based on explicit calculations special to
the situation at hand, enables Carayol to relate an H1 on D to an H0

on the Hermitian symmetric space D′. Specifically, setting L(r, t) =
OP2(r)� OP̌2(t), he constructs an isomorphism

H0(D′,L(r, t)) ∼−→ H1(D,L(−r − 2, r + t+ 1)

with a similar one for D′′.
In order to be able to pass to the quotients by Γ, the following result,

which seems to be special to example 2, is used:

The space Γ\W is Stein.

Using this the above drops down to give an isomorphism

H0(Γ\D′,L(r, t))→ H1(Γ\D,L(r + t+ 1,−t− 2)

for (r, t) �= (0,−3), explicitly exhibiting — for the first time to my
knowledge — automorphic cohomology in a non-classical case.
As noted in lecture VI there is exactly one circle ϕ : S1 → SU(2, 1)(R)

for which the infinitesimal period relation is non-trivial and non-integrable.
One can imagine the existence of a global variation of Hodge structure

Φ : S → Γ\D
where S is an algebraic curve. The construction in section III.C leads
to a map

ΦW : SW → Γ\W
where SW is a surface that fibres over the curve S. The automorphic
cohomology above then gives holomorphic sections of a line bundle
LW → SW that may be explicitly written out using the formulae in [C].
What its’ interpretation — either algebro-geometric or arithmetic —
may be is not clear.
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Hodge-theoretic reprise: A Hodge group (M,ϕ) and Hodge do-
main Dm,ϕ has finer data than just an invariant complex structure on
M(R)/H. This is due to

(a) the Q-algebraic group M whose real points are M(R);
(b) the choice of a circle ϕ : S1 →M(R).

One may ask what role this refined data might play? As mentioned
before, given λ and a compatible ϕ, a power of Lρλ is a Hodge bundle,
but which Hodge bundle it is depends on ϕ. Additionally, we note that

• From (a) and (b), we have Dm,ϕ ⊂ Ďm,ϕ where Ďm,ϕ is a ho-
mogeneous rational, projective variety defined over Q. Hence,
points of Dm,ϕ have a Γ-invariant field of definition.

• There are special Γ-invariant arithmetically defined points in
Dm,ϕ; e.g., those for which the polarized Hodge structure on
(m, B, ϕ) are of CM type. These induce special points on

Γ\W ⊂ Γ\Dm,ϕ ×Dm,ϕ .

The above data is only present if we have (a) and (b).
To conclude we will use this to very loosely formulate a specific specu-

lation. First, from sections of bundles one may construct meromorphic
functions in the well known way (e.g., ratios of sections of a line bundle,
taking determinants of vector bundles to get line bundles, etc.).
Secondly, we consider a space of eigenfunctions for the Hecke algebra

H operating on the right H-module L2(M(Q)\M(A)) and whose part
over the place ν = ∞ corresponds to Hd

(2)(Γ\Dm,ϕ,Lρλ) as discussed
above. Let f be a meromorphic function constructed from the image
of that space in H0(Γ\W,Eρλ).

Question. Does the value of a suitably normalized f at a CM point lie
in a field constructed from the CM field?

The point is not so much the question itself, but rather that the
introduction of enlarged cycle spaces enables one to formulate it.
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