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Abstract 
 
This paper firstly summarizes some aspects of the early development of numerical techniques as applied 
to Fluid Dynamics, emphasizing work done in the last forty years. This is done in relation to nuclear 
installations or integral test facility experiments aimed at validating numerical models and techniques. 
Secondly, some theoretical aspects on numerical techniques formulation are introduced, aimed at giving a 
basis to the discussion of their application to natural circulation (NC) flow stability. Finally, a somewhat 
detailed introduction to the application of numerical techniques and computational fluid dynamics (CFD) 
in NC flows is presented in relation to installations of interest for Nuclear Energy. 
 
Keywords: natural circulation, unstable flows, upwind differencing, stability, numerical diffusion and 
discretization 
 
 
1. INTRODUCTION 
 
This presentation is aimed at considering several aspects of numerical techniques giving the background 
to the computation of Fluid Dynamics as applied to the CFD of NC. It will be shown that there is plenty 
of consolidated literature and concepts on numerical methods since 30 years ago and that CFD is not a 
new activity in relation to NC and the thermal hydraulics of Nuclear Safety. In fact, many outstanding 
people contributed to this subject in the last decades. To justify this assertion, a brief account of early 
contributions is also presented. The present boom of CFD activity in NC and on separate effects in 
nuclear installations is a consequence of the needs of a re-emerging activity. In this way, Nuclear Safety 
benefits from well-developed techniques in other areas of computational mechanics. Although some 
spectacular CFD results may be found at thermal-hydraulics fora and in open (www) sources, not so 
many are already published in regular journals. Most publications deal with the needs and challenges 
posed by the physics and with clarifying the degree of detail required by nuclear safety.  
 
It is useful to introduce two possible definitions in this context:  

a) A numerical technique is an incremental (or discrete) way of representing a differential equation 
(that is part of a physical model in NC and,  

b) CFD is a discipline that allows solving conservation equations using adequate discrete 
representations at a desired level of resolution, implying more than a numerical technique. CFD 
implies pre-processing to define the representation of the computational domain in discrete 
volumes and post-processing of the results obtained from the numerical technique adopted to 
show in different graphical ways the flow patterns and the scalar fields (like temperature and 
pressure).  

 
Obviously, numerical techniques applications are not a new activity in relation to the thermal-hydraulics 
of all the flow stages of transients in nuclear installations (NC among others). In Authors´ view, it was the 
work at Los Alamos Scientific Laboratory, which, now more than 30 years ago in those days of “open” 
exchange of scientific information, opened the way to “widespread” numerical modeling in Fluid 
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Dynamics. See, e.g. [1], summarizing work done up to 1981 at LANL. Many outstanding people 
contributed to this activity in the last forty years, however, again in Authors view, LANL pioneered in 
this subject and its most relevant people were: Francis H. Harlow, J. Fromm, C.W. Hirt, D.L. Liles, J. 
Mahaffy, A.A. Amsdem, J.R. Travis, J.P. Shanon, J. Pryor and B.J. Daly, among others. Perhaps, codes 
like PIC, MAC, SMAC, SOLA, SOLA-SURF, SOLA-DF, SOLA-VOF, SALE-3D, SOLALOOP, K-FIX, 
along with their detailed documentation, permitted some other people abroad the USA to contribute to the 
art. Freshpersons may be tempted to consider that the state of the art forty years ago was rather crude 
(instead of this, computers were not powerful enough), however contributions like the one by P. Roache 
[[2]] giving an important and comprehensive review and recommendations on numerical techniques and 
CFD by 1972, may solve this question. People at LLNL also contributed significantly by these years; see 
e.g. the papers by Noh [3] and Schulz [4]. Interested readers should browse the late 60´s and the 70´s 
issues of the Journal of Computational Physics. At the same time, other people pioneered in Europe, like 
B. Spalding, M. Wolfshtein and S. Patankar at Imperial College, R. Peiret at ONERA and many others. 
Some people that contributed to the development from the numerical analysis side will be mentioned in 
what follows, because the list is too long. The names of R. Courant, K.O. Friedrichs, D. Hilbert, J. von 
Neumann, P.D. Lax, R.D. Richtmyer, G.I. Marchuk (in Russia) and W.F. Ames must also be mentioned. 
It must be stressed that the Finite Element Method was starting to be applied to solve the Navier-Stokes 
equations. From the physical point of view, the Drift-Flux theory of two-phase flow, as developed by 
Zuber and Findlay in 1956 and by M. Ishii in his 1975 book, was the two-phase fluid model that allowed 
generating results of Nuclear Safety significance through its implementation in the TRAC code and other 
hydrodynamics codes at LASL. Many other people contributed significantly in this field, like J.M. 
Delhaye, N. Zuber, R. Lahey, M. Giot, F.H Moody, G.B. Wallis, R.E. Henry, J.A. Bouré, D.C. 
Groeneveld, G. Yadigaroglu and simply too many others to be cited here.  
 
Before continuing, an appropriate conceptual excerpt from [[5]] may be introduced here: “In as much as 
we can simulate reality, we can use the computer to make predictions about what will occur in a certain 
set of circumstances…  …Finite-difference techniques can create an artificial laboratory for examining 
situations which would be impossible to observe otherwise, but we must always remain critical of our 
results...  …Finite differencing can be an extremely powerful tool, but only when it is firmly set in a basis 
of physical meaning. In order for a finite-difference code to be successful, we must start from the 
beginning, dealing with simple cases and examining our logic each step of the way.” The importance of 
this assertion must be emphasized today, given the advancement of CFD applications and the relatively 
easy access to sophisticated CFD tools. The philosophy of merging physical intuition and numerical 
properties has been always inspiring for CFD practitioner and code developers. This tradition still persists 
and a recent example may be found in [6]. 
 
Two examples of different scales of space and time scale resolution, published more than 25 year ago, 
will be shown in what follows, aimed at demonstrating the origin of the techniques and its propagation. 
The first one is taken from [7], showing the results of a LBLOCA, computed using 13500 computing cells 
and a two-fluid model, as implemented in the SALE-3D code. The second one is taken from [8], 
considering NC flow in a container partially filled with a solid and computed with far more modest 
resources that allowed 1331 fluid computing cells with an in-house developed code that was a SOLA 
extension to 3D.  
 
In the following paragraphs it will be evident that the main interest will be on one-dimensional (1D) NC 
flows. Then, it is on interest pointing out the need of making efforts in the appropriate modelling of 1D 
flows fluid dynamics. This may seem a somewhat old-fashioned proposal at this time, when 
multidimensional CFD modelling governs the trends in the analysis of NC and separate effects in Nuclear 
Safety related issues. It also seems that the application of CFD to NC has at least two decades of delay 
with regard to other fields in computational mechanics.  
The reason for this delay may be because: 

a) Scaling laws usually “force” to almost 1D integral test facilities representations of real life 
installations, with pre-established flow patterns;  

b) A huge effort was focused on the development of a representative physical data base (amenable 
to 1D analysis) and separate effects on the other side (like plume analysis, non-symmetric flow 
distribution, particular aspects of reactor components behavior, etc.) affordable through detailed 
computational techniques;  
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c) Code assessment for safety analysis also imposed and still imposes a great effort for 1D;  
d) Time scales to solve problems in realistic way (as a compromise between cell Courant number 

limitation for fast transients using semi-implicit methods and time inaccuracies, i.e. damping, for 
implicit methods impose large number of time steps to span long time transients (e.g. in 
SBLOCAs); 

e)  Ill-posedness of the governing equations “precluded” the search for detailed convergence of 
solutions, leading to coarse grid computations and stabilization of flow solvers solutions by 
numerical means;  

f) Computers were not fast, cheap and widely available and not too many were interested in paying 
for detailed analyses, neither were asking too much for them, given the nuclear industry 
stagnation. 

 
There is another aspect that is somewhat redundant with the previous paragraph. As stated in [9], 
“Sometimes, scaling leads to the adoption of the 1-D approximation; this may, in turn, hide important 
aspects of the system physics. A simple example of this situation consists in keeping the height of the 
system unchanged to get the same buoyancy; then, if the system is scaled accordingly to the 
power/volume ratio, the cross section area of the volume will be reduced; this leads to a much smaller 
pipe diameter that makes the 1-D representation reasonable, at the cost of eliminating the possibility of 
fluid internal recirculation...  ...A workaround for this situation is providing paths for recirculation, in the 
form of additional, interconnected components; however, this solution may impose the flow pattern in the 
system and the balance between these aspects is a challenge to any practitioner in natural circulation 
modelling”.  
 
In the Authors´ opinion 1D, thermal hydraulics system codes will be used at least for a decade or more, 
coupled with 3D modules for the core and/or for some specific components where separate effects 
analysis is the goal. Then, in the following paragraphs, some basic aspects of numerical techniques as 
applied to simple 1D problems of physical significance will be reviewed.  
 
 
2. THE BASIS OF DISCRETE FORMULATIONS FOR CONSERVATION EQUATIONS 
 
It is important to start with a general formulation of a discrete approximation of a parabolic problem, 
because it gives the basis for almost all discrete formulations of the Navier-Stokes equations. The 
approach to be followed is the classic one, as may be found in Marchuk [10] and in Mitchell and Griffiths 
[11]. The theory related to operators (linear ones, to be strict) may be found in classic books.  
 
Let us assume that L is a linear differential operator relating a dependent variable u to the space 
coordinate x and time t. The linearity of L does not pose an essential limitation, due to the possibility of 
linearizing the problem. Considering a 1D problem is just for convenience. 
 
Then, the differential problem may be formulated as follows:  

K,1k,u)
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If u is expanded in terms a Taylor series around t in terms of a time increment Δt, then: 
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where HOT means terms of higher order in Δt. This is a two-level time discrete formulation, implying 
also that L is independent of t, a reasonable assumption for many practical applications.  
Now, equation (2) may be written in operator form as: 
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Although typical of the finite differences method, equation (3) opens the way to all the different 
approximations for two-level time discretizations. For example, by a suitable operator pre-multiplication 
of equation (3), leads to: 

)x,t(u)L
2
texp()tt(u)L

2
texp( ⋅

Δ
=Δ+⋅

Δ
−  (4) 

which is a time centered (Crank-Nicholson) approximation.  
 
A fully implicit approximation may be obtained again by pre-multiplication of equation (3), in the form: 

)x,t(u)tt(u)Ltexp( =Δ+⋅Δ−  (5) 
 
Another important aspect of the formulation shown as equation (3), is that it allows for considering 
problems in multidimensional space coordinates as a succession of 1D problems. Suppose for the moment 
that the space operator L may be written as the sum of three operators L1, L2, L3, each one depending on 
x, y, z. Then, taking for example equation (5), it may be written that: 

)x,t(u)tt(u)3Ltexp()Ltexp()Ltexp( 21 =Δ+⋅Δ−⋅Δ−⋅Δ−  (6) 
 
Equation (6)  may be split by suitable definitions, in the sequence of 1D problems as follows: 
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This approach, of fully implicit type in time is known as D´Yakonov splitting technique and this and 
many other of similar types have been used since the mid of the 60´s. What is important to understand is 
that intermediate values do not necessarily coincide with the time interpolation of u at intermediate times. 
This subject will be resumed later when be considering general types of operators. 
 
Now it becomes necessary to fix some ideas on the approximation of L. To accomplish this task, the 
approximations of [11] to space derivatives are in order. 
 
Considering the expansion: 
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and the definition of the centered space operator 
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it follows that: 
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Then, considering now that (Δt, Δx) are constant along the plane (t, x) and t=n⋅Δt; x = i⋅ Δx, equation (1) 
may be written in exact difference form as: 

n
i

2
x1x11n

i u,)
2

(sinh
x

2),
2

(sinh
x

2,tn,xiLtexpu
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⋅⋅⋅⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ δ

⋅
Δ

δ
⋅

Δ
Δ⋅Δ⋅⋅Δ= −−+  (7) 

 
Please note that the power of an operator is understood as its iterative application. In equation (7), n

iu  is 
the exact value of u(t+Δt, x+). All finite difference equations come from truncation of this expression. 
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Figure 1 Early CFD results, relevant to LBLOCA studies, from [7] 

 

 
Figure 2 Early CFD results, relevant to NC in a heated container, from [8] 
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In order to get practical working approximations in a computational plane, subdivided in a finite grid, 
equation (7) must be truncated to different orders of approximation. As Mitchell and Griffiths [11] point 
out, that there is no best way to obtain a difference equation. Many times the ones used are based on 
intuition and a desired property of the resulting scheme. A simple equation to illustrate the process of 
approximation is the heat transport equation. In this case, it may be written that: 
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Then, equation (7) becomes: 
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Truncating this equation to first order, results: 
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Finally, 
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This is the simplest approximation to the heat diffusion equation, explicit in time and space, known as the 
finite difference Euler´s approximation to equation (8). 
 
 
3. THE ORDER OF DISCRETE APPROXIMATIONS 
 
In this paragraph, the concept of numerical (or artificial) viscosity will be introduced. The need to 
stabilize numerical solutions by artificial, numerical means was introduced by Von Neumann and 
Richtmyer in 1950 [12]. Many papers in the 60´s refer to this pioneering contribution as its sole reference. 
This implies both the originality of the papers themselves and the importance of [12]. In dealing with the 
problem of shock waves, said Authors introduced a non-physical, numerically dissipative term 
proportional to the gradients of the velocity, using it at the zones of large gradients and setting it to zero at 
“normal” zones.  
 
The linear, 1D scalar advection-diffusion equation is paradigmatic in showing the effects of appropriate 
control of the truncation error of a discrete approximation. In coping with truncation error, it must be 
remembered that it is a necessary consequence of getting useful working approximations to conservation 
equations. Truncation error cannot be avoided in real life. For example, considering again Equation (9), it 
may be shown by Taylor´s series expansion around t=n.Δt, x=n.Δx that it is an O(Δt, Δx2) approximation 
to the original differential equation (8). Perhaps one of the more influencing papers in the clarification of 
the effects of truncation error is due to Hirt [13] in 1968. He introduced the concept that the equation 
really solved by the numerical scheme is the one obtained by adding the terms arising from the truncation 
error. The lowest order terms of the Taylor´s expansion must be the original differential equations. The 
remaining ones are the truncation error. Numerical consistency forces these additional terms tend to zero 
when the discretization intervals tend to zero in some way. Hirt was able to show how the additional 
terms of even order in Δx could lead to unphysical behavior, by assimilating these terms to the so-called 
“artificial viscosity” or “numerical viscosity” because they were proportional to some power of the space 
and time intervals. It is now interesting to consider explicitly the example of [13]. 
The linear advection-advection equation is: 
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If centered approximations are used for the space derivatives, then: 
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This is a hyperbolic equation, instead of the original parabolic one. The analysis of its domain of 
dependence and the need to keep a positive diffusion coefficient leads to the conditions needed to keep 
the solution stable, namely: 
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Perhaps, the most interesting result for this equation comes from considering α=0 and using a non 
centered approximation for the space derivative. In this case: 
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Following the same procedure as before, it may be found that: 
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where: 

x
tCCOU Δ

Δ⋅
=   

is the cell Courant number. As may be observed in Equation (13), the diffusion coefficient comes directly 
from the discretization parameters and the advection velocity. Keeping this coefficient positive implies 
keeping the cell Courant number less or equal to unity. COU>1 implies that the fluid transverses more that 
a space interval (a computing cell) in one time interval. This is not allowed on physical grounds. 
Violating this condition leads to growing oscillations (physically sound growing oscillations!). In [13], 
the more important case of non-linear problems is analyzed in the same way. Some aspects of the two-
dimensional case will be considered later. 
 
The explicit time, centred space approximation given by (12) constitutes the “Forward time, upwind 
space” approximation to the scalar wave equation or, in short, the FTUS method. This is the simplest way 
to construct solutions in CFD. This is the usual approximation used in the CFD codes to stabilize 
calculations or to regularize ill-posed models like in RELAP5 [14], through the introduction of controlled 
numerical diffusion. Many other, quite sophisticated methods have been developed with this philosophy. 
The interested reader may consider the book by Laney [15]. Adequate discretization permits keeping low 
truncation error and allowing the computation of unstable flows.  
 
The adequate treatment of truncation error has been show to allow the computation of solutions. It will be 
shown in what follows, this is a useful methodology to get linearized forms of the non-linear governing 
equations, with controlled truncation error. Important examples of this assertion may be found in [10]. In 
a practical case of direct application to Nuclear Safety, the SETS (for Stability-Enhanced, Two-Step) 
methodology [16] was developed to eliminate the COU limit restriction. On the same ground, one of the 
Authors (JCF and former collaborators) developed and applied a similar procedure to incompressible 
flows. 
   
In what follows this will be exemplified, simply by showing how use this concept to linearize Burger´s 
like operators. Let: 

0)u(N)u(L
t
u

1 =++
∂
∂   

be the equation under analysis, where L1 is a linear operator and N is a nonlinear operator.  
 
Let us assume that N is restricted to the form: 

)u(A)u(L)u(N 2 ⋅=   
where L2(u) is linear in u and A is such that the algebraic problem resulting from the discrete 
approximation of the previous equations is also linear.  
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Burger's equation is a useful example; in this case: 

x
L,

x
L,uA 22

2

1 ∂
∂

=
∂
∂

=≡   

 
A Crank-Nicholson approximation may be written as: 
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where I is the identity operator and A* is an operator independent of time and a suitable approximation to 
A to be defined in what follows. 
 
Expanding this expression in a Taylor series around n, we get: 
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In order to obtain an estimation for we now ask: under which conditions is this equation an "exact", i.e., 
an O(Δt2, Δx2) approximation to the solution of the original equation? The answer comes from subtracting 
the previous equation from the original one: 
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Derivation of the original differential equation and replacement leads to: 
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Then, 

( )2
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which is the O(2,2) expression searched. The numerical approximation to the intermediate time step may 
be obtained in different linear ways. Because of the CN formulation, terms involving additional diffusion 
terms do not arise. If A* is evaluated as shown, then, the technique coincides with a predictor-corrector 
scheme based on the evaluation of "non-linear" coefficients evaluated at t = nΔ+Δt/2. This result is well 
known. As may be observed from the above derivation, truncation error was used again in a convenient 
way. 
 
 
4. THERE IS MORE THAN TRUNCATION ERROR… 
 
In the previous paragraph, the order of some discrete approximations has been discussed. There is another 
aspect that deserves attention when the coupling and type of dependent variables perturbations governs 
the dynamics of the solution. Depending on the type of perturbation, the wave velocity of a given 
numerical scheme must be considered. The discrete wave velocity is the velocity that a wave packet 
moves with, in relation to the fluid velocity. It is well known that the degree or delay of density (or 
temperature) perturbations with respect to fluid velocity is key to the appearance of instabilities. One of 
the most important references in this subject is the review by Threfethen [17], who showed how this 
property of a numerical scheme affects the transport velocity of a signal as a function of wave number 
and the discrete (finite-differences) approximation. Figure 1 is an illustration considering the linear 
advection of a scalar with two different waveforms, namely a wave packet and a smooth Gaussian. In 
both cases, the transport velocity is C = 1, the space interval is Δx = 1./160, the Courant number is COU = 
0.4 and the total time of integration is t = 2. The numerical scheme is LEAPFROG, defined by -perhaps- 
the simplest numerical scheme of order O(2,2), i.e. 
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The analysis for this behavior is simple and comes from considering that numerical schemes transports 
waves packets composed of waves of different frequency and wavelength with different velocities. The 
speed of propagation of the waves is dependent of κ., where κ is the wave number. Define ω as the 
angular wave frequency. If λ is the wavelength, the resolution is defined as m=λ/Δx. Additionally, by 
definition: θ = 2π / m. 
 
Defining the group velocity as: 

κ
ω

=
d
dCG   

and replacing each term of (14) by )xtexp( κ−ω , e.g.: 
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Using Equation (15) and the above mentioned discretization, the waves should be transported from x = 
0.5 to x = 2.5. As it may be observed, this is fairly confirmed for the Gaussian wave perturbation (in 
Figure 2, the transport of a smooth Gaussian is not affected by the group velocity) and not for the same 
signal modulated by a sine wave having wave number 125.7 and a wave resolution of 8 points per 
wavelength. In this case, the group velocity is nearly 0.74, what results in the wave packet transport from 
x = 0.5 to x = 2. This property is valid also for multidimensional systems.  
 

LEAPFROG SCHEME
 U=1, C=0.4, Wave-No=125.7, Res=8, 0<t<2, Cg=0.74
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Figure 1 The transport of a wave packet under LEAPFROG 
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LEAPFROG SCHEME
 U=1, C=0.4, 0<t<2, Cg=0.74
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Figure 2  The transport of a smooth Gaussian wave under LEAPFROG 

 
The above means that there is more than truncation error to be considered in assessing the quality of a 
solution. In fact, a simple conclusion is that the transport of the wave packet is correct, but its velocity 
(the group velocity) lags the phase velocity (that is also different from the fluid velocity) by 25%. Then, 
depending on the type of perturbations, there is a possibility of getting unexpected results regarding the 
computation of onset of instabilities of NC flows.  
 
 
5. THE MEANING AND CONTROL OF NUMERICAL, NON-PHYSICAL SOLUTION  
    OSCILLATIONS 
 
In many cases of practical significance, the computed solution is stable but shows oscillations. Not 
necessarily, this is due to some intrinsic (physical) properties of the solution but, apart from being 
unexpected, these oscillations are spurious. The 1-D, linear, steady-state, advection-diffusion equation 
solution is another paradigmatic example of this. This equation may be written as: 

1U(1)0U(0)

02dx

U2d
dx
dU

eP

==

=−⋅   

were Pe is the Peclet number, defined as: Pe = C.L/α, where C is the advection velocity, L the length of 
the 1D domain and α is the mass diffusion coefficient. This equation constituted the so-called “though 
problem”. Figure 5 shows the solution using centered differences for different Peclet numbers. Solid 
points indicate the exact solution. Hollow points indicate the exact, numerical, stable solution with non-
growing oscillations. The oscillations (wiggles) are due to the non-appropriate boundary layer resolution 
at high Peclet numbers. Asymptotic analysis [18] or, more simply, introduction of upwinding eliminates 
the problem. 
 
The existence of spurious oscillations in the solution of conservation equations may be the consequence 
of non-appropriate resolution of the boundary layer behavior of the solution, like in this case. Then, 
suppressing the oscillations may be non-conservative or, equivalently, allow computing a solution not 
showing all the important aspects of the physics. Work done in the 80´s served to clarify these aspects. P. 
Gresho at the LLNL contributed significantly to this subject. Perhaps, the most relevant reference in this 
subject was due to said Author [19]. However, an early discussion on the effects of discretization may be 
also be found in [13]. This last reference shows the effects of Δt in the incompressible flow of water 
under a sluice gate using the Marker and Cell (MAC) method and it is shown that the oscillations in the 
direction of the fluid velocity vectors can be attributed to the non-linear coupling of the momentum 
equations, particularly due to truncation errors involving velocity gradients. No upwinding was applied. 
Figure 6, taken from [13], illustrates these effects. 
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Figure 5   Spurious oscillations in the solution of the 

1-D, linear, steady-state, advection-diffusion equation [18] 
 
To conclude this paragraph it may be stated that non-growing oscillations in a computed solution may be 
an indication of non-appropriate discretization. Forcing their elimination may be a cause of losing 
information on the physics and at the same time, of making possible the calculation  
 
 

 

Figure 6a    t=0.28 s, Δt = 0.002 s Figure 6b t=0.28 s, Δt = 0.0001 s 
 

Figure 6 The effects of non-linear coupling in the solution of Navier-Stokes equations [13] 
 
 
6. ONE-DIMENSIONAL vs MULTIDIMENSIONAL SIMULATIONS 
 
In this paragraph, it will be considered why it is worth considering CFD approaches for CN, even in 
simple cases. This will be done through an example of how using well established, “natural” 1D laws in 
1D TH loops leads to get non-conservative, wrong results. Later, it will be shown how to circumvent 
some difficulties associated with the use of 1D codes. The balance between pros and cons is left to the 
reader. 
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Let us consider the NC flow in a simple TH loop in unstable flow conditions, as analyzed in [20]. The 
loop [21], consists of a 23.2 mm I.D. glass pipe with rectangular layout see Figure 7, having 2.1 m 
vertical legs and equipped with 0.8 m long electrically heated and fluid cooled sections. The latter 
consists of a pipe-in-pipe heat exchanger, fed by relatively cold water, at prescribed flow rates. 
 
The unstable test with a 420 W heater power will be consider for the sake of this paragraph purpose and 
the results were simulated using an in-house developed code and the thermal-hydraulics system code 
RELAP5. Based on previous experience, theoretical and experiments were expected to show the same 
trends. In order to assure coherence with the results obtained by the Authors of [21], the same friction 
relationship adopted in [22] was implemented in the in-house developed code TRANLOOP. It consists in 
taking the maximum out of the Poiseuille and the Colebrook-White relationships, resulting in a 
monotonous decreasing trend of the friction factor over the whole range of Reynolds numbers. In 
particular, in the case of smooth pipes, it results in assuming the transition from laminar to turbulent 
friction factor at a Reynolds number as low as about 1100. 

 
The results obtained by TRANLOOP compared well with both the experimental measurements and the 
results of [22] using the ATHLET [23]code. In particular, the test case with 420 W heater power was 
found unstable with a period of flow reversal and amplitude of oscillations in temperatures similar to the 
ones observed in the experiment. This result was obtained making use of the low diffusion numerical 
scheme of [20] using both the “fine” and the “coarse” nodalization. On the other hand, in agreement with 
ATHLET, with the first order numerical scheme only the fine nodalization led to the prediction of 
unstable behavior, while the coarse one resulted in the calculation of stable conditions; this effect could 
be explained as a result of numerical diffusion. Figure 7 reports the trend calculated by TRANLOOP for 
loop flow, starting from a condition close to the steady-state and assigning an initial perturbation to flow 
rate.  
 
In view of the good agreement obtained, it was decided to simulate the experiment using RELAP5. A 
somewhat detailed nodalization was set up. However, surprisingly enough, RELAP5 predicted a stable 
behavior for this condition. Given the similarity between the first order numerical method adopted in 
TRANLOOP and the semi-implicit scheme of RELAP5, when used for single-phase flow, it was not 
considered likely that the reason for such discrepancy could be a difference in the numerical diffusion 
introduced by the (similar) discretization. It was therefore hypothesized that this difference could be the 
result of the adoption of different friction laws in the two programs. 
 
In order to verify this assumption, a calculation for the case with 420 W power was performed with 
TRANLOOP making use of the Churchill correlation [24], which has a more strict resemblance with the 
relationship adopted in RELAP5. In agreement with what was suspected, stable flow behavior was 
obtained just as it was observed in the corresponding RELAP5 calculation. This preliminary result 
stimulated a more systematic and in depth analysis of the problem, whose details may be found in [20].  
 
Then, it was concluded that using the standard friction correlation, which considers in detail the transition 
from laminar to turbulent flow conditions, lead to stable NC flow conditions for this case operating in the 
transition Reynolds number regime. This result is non-conservative. Using the friction law as deduced 
from the experiments, lead to a correct prediction of flow conditions. Using appropriate closure 
correlations in NC simulations is a basic tenet. However, changing them may be not possible or not 
considered necessary. This is particularly true when there are not experiments to rely on or, more 
frequently, when designing a new experiment or installation.  
 
Because of the above results, it was decided to apply a CFD approximation to predict the flow. It must be 
noted that, in this case, no macroscopic friction law is used in the CFD calculation. The CFD code chosen 
was FLUENT 6.0. A cross section of the grid adopted is shown in Figure 8. In total, the number of 
computing cells was in the order of 50000. The results obtained for this case are shown in Figure 9, that 
show the unstable behavior expected. In this sense, the use of the CFD approximation was rewarding.  
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Figure 7   Results of a TRANLOOP calculation with the fine nodalization and the first order, FTUS 

scheme for the case with 420 W heater power, friction law as in [22] 
 
It must be noted, nevertheless, that going from a simple 1D code to the CFD approximation implied using 
a three days of CPU time of CPU time in comparison with few minutes on the same PC. Figure 10 shows 
another evident advantage of the CFD approach: the degree of detail that can be obtained for the analysis 
of flow patterns. In this case, levels of flow velocity exemplify it. Relatively slow flow regions are shown 
in green following pipe bends. 
 
In the case analyzed above, it is evident that the CFD code allowed recovering the physics, in the sense 
that instability is driven by fluid stratification in the horizontal heated pipe and it was correctly described. 
 
Now it will be shown that this can be simulated using a 1D approximation too. In the penultimate 
paragraph of the introduction, it was suggested how to circumvent a situation like the one mentioned 
above using 1D codes. In [26], a detailed analysis of the behavior of NC loops with various heater-cooler 
configurations but similar in layout to the one in [20]. In this case, the different loop configurations were 
investigated, aimed at determining the stability behavior of the loop for different heating powers. In this 
case, the question of appropriate friction closure correlation was out of question. Figure 11 shows the 
comparison of the results from the experiment and the ones obtained using RELAP5 and TRANLOOP 
with converged discretizations in the particular case of 105 W of heating power. This Figure includes an 
insert showing the long term behavior of the solution as predicted by RELAP5, to be further discussed in 
what follows. 
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Figure 8   Sketch of the grid adopted in the FLUENT 6.0 calculations for  

loop cross section discretization 
 
 

 
Figure 9   Transient results obtained by the FLUENT 6.0 code  

for the 420 W heater power case 
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Figure 10   The distribution of steady-state velocity vectors magnitude, 420 W 

 
As may be observed, after an initial correct trend prediction, the simulated cases lead to flow stagnation. 
Again, using a CFD approach, unstable behavior was recovered. In [26], this was discussed in the 
following terms: The phenomenon of plug formation and attraction to zero-flow condition can be 
identified in the predictions of both codes at low power. In fact, even if the calculations were performed 
starting from conditions relatively close to steady state ones in both cases, the flow stagnation sometimes 
observed after some of the flow reversals, due to the formation of the very hot plug of fluid when the flow 
vanishes, which will condition all the subsequent transient. In fact, while in TRANLOOP results, once 
reached the zero-flow condition, the loop circulation is not able to restart, in RELAP5 predictions 
subsequent flow pulses, much sharper than in the experimental data are observed. This difference was 
related only to the absence in TRANLOOP of any allowance for the simulation of voiding, occurring 
when the still fluid in the heater is heated up to the saturation temperature. It was also found that the 
pulses predicted by RELAP5 are due to void generation in the heater, not possible to be predicted if a 
Boussinesq fluid is assumed as in TRANLOOP. However, this pulsating mechanism shown by RELAP5 
has nothing to do with the actually observed phenomenon; in fact, sub-cooled boiling at the heater surface 
was observed in this configuration at powers beyond 408 W.  
 
The phenomenon of the attraction by the zero-flow condition occurred randomly in the one-dimensional 
simulations, showing that the mechanism for hot plug formation can be correctly predicted by one-
dimensional codes, though the additional phenomena that restore flow conditions are not conveniently 
modelled. Occasionally, it was observed in some calculation cases that the flow stagnation could be 
avoided by fluid inertia, which maintained sufficient flow in the heater to avoid a too strong heating of the 
fluid plug. This was also suspected to be the reason for the incorrect prediction by TRANLOOP [20], 
leaving open the question of how to simulate it in a realistic way such oscillatory behaviour. Anyway, the 
question of attraction to fixed points in non-linear problems is complicated and out of the scope of the 
present discussion. 
 
Using again a CFD approach, with detailed nodalizations of the heating zone (see Figure 12) the unstable 
flow condition was correctly simulated, as shown in Figure 13.  
 
When possible, some intuitive remediation to the question of stratification and flow pattern may be 
considered. Figure 14 is an alternative nodalization of the heater pipe in the loop. As may be observed, 
the possibility of stratification and recirculation is allowed via cross-junctions between two parallel pipes 
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with half of the power in each one. The results obtained using RELAP5 are shown in Figure 15, where the 
unstable condition is recovered, even for less power. The evolution of fluid temperature shows how 
stratification and cross flows are correctly coupled. There is no claim here that all problems may be 
solved in this way, but experimental pool reactors have been also simulated in this way. It is left to the 
Safety Analyst to decide which level of detail is appropriate for a given specific problem. However, 
Engineering Judgment is mandatory in these cases and must carefully exercised. This aspect will be 
considered in what follows. 
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Figure 11 Comparison of experimental and simulated trends using RELAP5 and TRANLOOP [26] 
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Figure 12 The nodalization adopted for the CFD simulations 
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Figure 13 CFD simulation of the 105 W heating power case using FLUENT 6.0 
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Figure 14 An alternative nodalization for the horizontal heater 
 
 

Figure 15 Time variation of mass flow-rate and temperature using the modified nodalization 
 
 
Perhaps, one way of looking all the above mentioned results is in the light of the search for convergence 
of results. This is, perhaps, the easiest step in computational analysis of engineering problems but only 
conceptually. In fact, it means that grid size, as measured by some suitable norm, is compatible with the 
accuracy of resolution of some type of boundary layer. This may be a momentum boundary layer as in the 
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vicinity of a wall, the depth of heat penetration in a solid or the time history of some suitable dependent 
variable as a function of its time scale, among many other possible examples. What must be considered is 
that a given boundary layer behavior must be solved accurately enough. Searching for grid convergence is 
not a too costly activity in simple integration domains, like the 1D cases herein considered. In multi-
dimensional domains, the use of multiple scale calculations tends to keep detail and accuracy at an 
appropriate level in the entire integration domain. Shape and size variation of computational cells affect 
the global accuracy. 
 
In the case of natural circulation in unstable flow conditions analyzed using this type of time domain 
computer codes; the problem consists in using a spatial discretization fine enough as to minimize the 
amount of numerical diffusion. It is added in the process of solution as a consequence of the inherent 
properties of the discrete scheme (the advantage of its control will be evident in paragraph 7). This 
diffusion is usually associated with first-order spatial discretization. It may be argued that using O(1) 
numerical schemes should not be recommended in general. However, most engineering thermal-hydraulic 
systems codes use this approximation to circumvent a worse limitation: the ill-posedness of governing 
equations.  
 
The interaction of flow stabilization and discretization may be exemplified resorting again to results in 
[9], as shown in Figure 16, where the flow rate in a toroidal loop was obtained using the FTUS scheme,  
1000 spatial nodes and COU=0.8. The results are compared with the ones obtained using a modal 
expansion- it is free of numerical diffusion- with 500 modes and adding the numerical diffusion 
corresponding to the previous approximation. It may be observed that the results are nearly the same. 
Then, it may be concluded that the usual interaction between the numerics and physics persists in this 
non-linear case. 
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Figure 16      The flow rate for the FTUS scheme using 1000 nodes and its simulation using a modal 
                      expansion of 500 modes and adding the numerical viscosity corresponding to 1000 nodes. 
 
 
7. NUMERICAL SOLUTION TECHNIQUES FOR 1D, NC FLOWS 
 
The analysis of the stability of natural circulation (NC) based on numerical techniques will be presented 
in this restricted context, namely nominally 1D flows in single phase. As already mentioned, This limited 
context may be, at least, justified due to its own importance, the common kind of problems regarding the 
numerical techniques between single and two-phase phenomena (interface tracking included) and the 
huge experimental database associated to volume scaled, almost 1D configurations (ITFs).  
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7.1 A Measure for Instability in NC Flows 
 
In previous work [27], a methodology was developed for studying the linear stability behaviour of steady-
state conditions in single-phase thermosyphon loops "as predicted" by a given numerical method. This 
methodology involved the explicit differentiation of numerically discretized equations around the 
addressed steady-state condition obtaining Jacobian matrices to be used in producing a matrix, identified 
as A, embedding the linear dynamics of the system. In particular, if  

( ) 0p,y,yF n1n =+  (16) 
 

represents the numerical scheme, relating the (2N+1)-vector of system state variables, y, (N fluid 
temperatures, N wall temperatures and the loop flow rate) at two subsequent time levels (tn and tn+1 ) and 
p is a vector of physical and numerical parameters, it is: 
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in which the superscript s identifies the considered steady-state conditions. Discussion of the eigenvalues 
of A allows getting information about stability. In particular, the spectral radius of the matrix, ρA, can be 
used to define the following useful quantity 

( )AρΔ
= ln

t
1zR  (18) 

where n1n ttt −=Δ +  is the adopted time increment. This quantity takes negative or positive values for 
stable or unstable behaviour, respectively; discussion the value of ZR for different values of the 
independent physical or numerical parameters allows setting up quantitative stability maps. Similarly, 
other useful information can be obtained, e.g., on the frequency of the fastest growing (or least damped) 
oscillations [27].  
 
The approach based on the calculation of Jacobian matrices turned out useful for automatic sensitivity 
analyses, as reported in [28] and will be discussed in some detail in Paragraph 9. A different approach has 
been also utilised [31] that has the advantage to avoid the cumbersome algebra (this was not the case in 
[28] because of the automatic differentiation procedure implemented) involved in getting the Jacobians 
and is more computationally oriented. This methodology makes direct use of the transient solution 
algorithm, introducing small perturbations in the components of vector yn to construct the matrix A by 
repeatedly advancing the transient algorithm. This procedure assures complete coherence between the 
results of the linear stability analysis and those of the transient non-linear calculations. As a further 
advantage, the same methodology could be applied to complex codes whose models are very complicated 
or even completely unknown. However, as mentioned also in [31], numerical differentiation has also 
drawbacks related to the optimum choice of perturbations in variables, whose values must be carefully 
selected to avoid obtaining inaccurate data. 
The decay ratio or the quantity 

1−ρ=ρΔ A  (19) 
can be used in place of Rz , if considered preferable for any reason. The stability criterion takes therefore 
the following equivalent forms 

⎩
⎨
⎧

>ρΔ>
<ρΔ<

systemunstable0or0z
systemstable0or0z

R

R  (20) 

 
Figure 17 shows how both quantities vary in a case of theoretical interest to be considered later, i.e. the 
loop described by P. Welander [32], when the number of nodes changes. In this figure, α is a measure of 
the driving force and ε the corresponding to the friction in the loop. 
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Figure 17 The trends of ZR and ρA with nodes number (N) variation 

 
 

7.2 Governing Equations 
 
Having defined the variables that may measure the stability of the NC system as given by Equations (16) 
to (20), it seems obvious that now the goal consists in defining the governing equations and their discrete 
representation. Then, in what follows, the governing equations for 1D, single-phase flow for a loop will 
be firstly considered. Secondly, the definition and use of the discrete technique will be stated. This will be 
done following the analysis of [33]. Finally, the paragraph will be closed with a survey of the effects of 
numerical diffusion on stability boundary predictions as discussed in [27]. 
 
Let us consider a single-phase closed loop with assigned geometry. With the usual assumption of a 
Boussinesq fluid and considering an arbitrary distribution of heat sources and sinks, the equations 
governing the dynamics of the flow are: 
 
Energy balance:   
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Momentum balance: 
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Where, despite of the use of spatial derivatives it has been implicitly assumed in the notation that the loop 
is discretized by nodes (control volumes as in Figure 18) having a uniform flow area i,fA  and a 

length isΔ , wetted and heated perimeters identified by frict
i,fΠ  and in

i,wΠ . In the above relationships, the 

mass flow rate is W , velocity is iw , the reference fluid density is fρ  (at the reference temperature 0
fT ), 

the specific heat at constant pressure f,pC , the isobaric expansion coefficient fβ  and the local fluid 
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temperature i,fT , while the temperature of the facing wall is i,wT . The overall conductance between the 

middle of the heat structure thickness and the fluid is represented by in
i,wĥ , accounting for both heat 

conduction within the wall and convection at its surface. Distributed and singular pressure drops are 
considered by the related Fanning factor ( )iRef ′ , function of the Reynolds number through assigned laws, 
and the singular pressure drop coefficients iK . Finally, ig  is the gravity component along the node axis 
and acc,ipΔ  and ipΔ  are the pressure drop due to acceleration and the total pressure drop across the node.  
 
Making use of the definitions  
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the energy balance equation takes the form 
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On the other hand, taking the summation of both sides of the momentum equation over the node index 
and considering that integration of the terms acc,ipΔ  and ipΔ  along a closed loop is zero, it is found: 
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As it can be seen, it is assumed that singular pressure drops are not assigned in each node but at gsinN  
specified locations, characterized only by a reference area k,fA . 
 
Finally, a lumped parameter approach is used for representing heat structure behaviour, leading to the 
following energy balance equation: 
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in which the temperature of the outer fluid out

i,fT  and the outer structure surface conductance out
i,wĥ  appear 

together with structure density i,wρ , specific heat i,pwC , cross section area i,wA  and outer perimeter 
out

i,wΠ . Moreover, i,wq ′′′  is the specific power per unit volume possibly generated in the structure material 
by electrical heating or any other means. As mentioned, the evaluation of the inner and outer surface 
conductances in

i,wĥ  and out
i,wĥ  involves to calculate (or impose) inner and outer fluid heat transfer 

coefficients and appropriate conductive resistances between the middle of the structure thickness and the 
two surfaces; this is made accepting conventional heat transfer correlations for forced internal flow (e.g., 
the Colburn correlation) and assuming cylindrical structure shells. 
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7.3 Discretization of Governing Equations 
 
Only the results of [33] will be given here. The interested reader may find the details in said reference. 
The equations expressing energy balance in the fluid and in the structures and momentum balance in the 
fluid are combined to calculate the transient behavior of the system. In what follows reference will be 
made to Figure 18. 
 

 
Figure 18  Definition of the discretized integration domain 

 
Momentum equation is discretized in time giving 
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On the other hand, the relationship to advance in time heat structure temperature is obtained making use 
of the analytical solution of the related energy balance equation: 
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The corresponding time-averaged heat structure temperature during the time-step is 
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The discretization of the energy equation deserves special attention, since is it the one governing the 
advection of perturbations which, in turn, drive the flow instabilities. The concept adopted in [33] was 
keeping the desirable transportive5 properties of the upwind approximations and, at the same time, having 
full control of the numerical diffusion and the effects of heat sources.  
 

                                                 
5 The transportive property of a numerical scheme consists in its ability for propagating information only in the 
domain of dependence of the (hyperbolic) partial differential equation. 
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The corresponding relationships, extended to the case of non-uniform space discretization and duct flow 
area also are a function of flow direction.  In such a case, considering the occurrence of forward or 
reverse flow and the periodic flow boundary conditions, it is: 
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It is interesting to note that, putting 0i,w =ξ  and 1n

i =α  in each node, i.e. letting zero the weighting 
coefficients for upwinding of advection and the balancing of heat sources effects on the computing cell, 
the low diffusion scheme reverts to the classical first order upwind scheme with pointwise evaluation of 
the source. On the other hand, putting 0i,w =ξ  and assuming n

iα  as given above allows obtaining a first 
order method having a similar advantage in evaluating steady-state conditions as obtained by appropriate 
correction factors in [27].  
 

7.3 Some Selected Results from [33] 
 
The results to be shown are selected purposely to exemplify why it is worth considering schemes with 
controlled numerical diffusion. The loop of [22] will be considered again. Three discretizations have been 
chosen, namely: “very coarse - 10 nodes per vertical leg”, “coarse - 21 nodes” and “fine - 90 nodes”. The 
very coarse nodalization implies roughly a 20:1 grid aspect ratio. In all cases the horizontal pipes have 
been discretized using 12 nodes.  
 
Figure 19 shows the results obtained using the conventional FTUS method and the one herein reviewed. 
Remarkably, the physically unstable behavior of the loop is well represented in the second case for all the 
nodalizations. This is not the case with the conventional FTUS method. Many other calculations have 
been performed in relation with the results in [32], constructing stability maps almost free from numerical 
diffusion effects. 
 
The above advantages clearly appeared in the application to one-dimensional single-phase flow; a further 
study is needed for assessing the feasibility of the application of a similar scheme in two-phase flow 
problems. A major difficulty in this respect is that some two-fluid codes are based on a differential 
problem having an ill-posed mathematical character, which discourages any attempt to increase the level 
of accuracy of the numerical method, possibly leading to the prediction of unexpected unstable behaviour. 
However, when single-phase stability problems are addressed the low diffusion scheme showed to be 
capable of very good performances. This suggests that the method could be considered in codes as an 
option to be activated at least when dealing with single-phase flow to get dissipation-free results, strongly 
improving the reliability of their stability predictions. 
 
7.4 Systematic Application to Stability Analysis [20], [27], [33] 
 
The above methodology and some conventional methods [27] have been applied systematically to 
investigate the stability of 1D, NC flows. These applications lead also to emphasize the effect of closure 
correlations in stability maps. The results of [20], may be summarized considering Figure 20. The 
calculations correspond to the friction law given by the continuous, experimental one. The results of [27] 
are related to the application of discrete schemes of different truncation errors to the Welander´s loop. In 
this way, the Authors analyzed said case and determined quantitatively how the stability map are 
influenced by numerical diffusion. As shown above, for the discrete schemes herein considered, 
numerical diffusion can be directly related to the space increment. Then, the number of nodes per leg 
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determines the degree of damping. Figure 21 [27] is an example of how, for the loop illustrated in Figure 
17, the neutral stability curve is affected by discretization, in this case usng the FTUS method considering 
turbulent flow.. The working point selected is unstable and damping the solution leads, again, to non-
conservative results. Using second order methods, leads to much less affected results, even for a very 
small (10) number of nodes. This is illustrated in Figure 22. The need for controlled diffusion lead to the 
developments of [33]. 
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Figure 19 Comparison of unstable NC flow prediction using the FTUS method and the low diffusion 

method of [33]. Flow corresponds to the simulation of one experiment from [22].   
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Figure 20 Linear stability map obtained by LINELOOP using the friction law suggested in [22] with the 
fine nodalization and the first order scheme 
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Figure 21 Linear stability maps for the upwind explicit scheme with various numbers of nodes 
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Figure 22 Linear stability maps for the MacCormack and the Warming-Beam explicit schemes 
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9. INTRODUCING SENSITIVITY ANALYSIS [28] 
 
In previous paragraphs, it was shown how a methodology of analysis based on the numerical 
discretization of partial differential equations governing fluid-dynamic problems is key to get information 
on the capabilities of numerical methods in accurately predicting stability. An essential point of this 
methodology is the evaluation of the derivatives of the Jacobean matrices of the algebraic relationships 
that define the numerical method and the related boundary conditions. It is in this perspective that the use 
of automatic code differentiation tools may play an interesting role. 
 
The sensitivity of stability results to physical and discretization parameters will be analyzed using a tool 
for the automatic differentiation of FORTRAN codes. This is due because FORTRAN is the 
programming language usually used for programming thermal-hydraulic system codes. ADIFOR 
(meaning Automatic DIfferentiation of FORtran) [29] is the adopted tool that allows for evaluating the 
derivatives of model variables with respect to model parameters.  
 
It will only be mentioned here that ADIFOR is a pre-processor code which, given a FORTRAN 77 code 
that computes a function, automatically generates another, augmented, FORTRAN 77 code. It must be 
considered that any code may be put in the form of a function, simply by introducing a call to a main 
routine after setting parameter values. The latter computes the function and the derivatives with respect to 
a list of variables. The user must specify the list of dependent and independent variables. After generating 
the augmented code that calculates the specified derivatives via ADIFOR, the user must provide a new 
driving FORTRAN 77 code that takes into account the new set of variables. Some hints to help on the 
very first use of ADIFOR may be readily found in the original documentation. Many references document 
the accuracy of the derivatives calculated in this way. This is neither the only way to apply ADIFOR, nor 
ADIFOR is the only tool: the reader is referred to the available literature.  
 
The results reported in this section deal again with the Welander’s loop, because the stability properties of 
this prototypical problem have been the subject of the previous analysis.  
 
Then the analysis will be applied in a limited context, namely: natural circulation in a simple system, 
amenable of analytical steady-state treatment. Results have been obtained using implicit coupling of the 
momentum and energy equations and the forward time, upwind-space finite-difference method (FTUS) 
for the energy equation. Numerical analysis shows that the consequences of using this approximation on 
the results are well known, i.e. an O(1,1) solution in the space and time increments. However, the 
combined effects of these errors and those of the variables coupling and their quantification are not 
simple, at least in the field of the stability limits of natural circulation systems.  
 
9.1 Algorithm 
 
This paragraph presents an alternative procedure to the one developed in [9] for the calculation of the 
margin to neutral stability (Δρ) sensitivity to system parameters, as will be explained later. In what 
follows the analysis leading to its definition will be sketched. 
 
As told before, Δρ is used as a measure of the margin in excess to neutral stability and to quantify the 
degree of damping or amplification. It takes negative values for stable conditions and positive ones for 
unstable conditions. In [9], the sensitivity of Δρ was simply obtained by calculating its derivative with 
respect to p using the original code that allowed the calculation of Δρ itself. This implied obtaining the 
derivatives of the classical EISPACK path for the eigenvalues and eigenvectors of a general matrix. It, in 
turn, imposed a non-trivial computational effort when N was several hundreds. 
 
Here, the calculation of the sensitivity of Δρ to parameters is based on the following algorithm: 
• Define A and AT, respectively as the matrix relating perturbations at time steps n and n+1 and its 

transpose. This matrix may also be specified using ADIFOR. However, second order derivation to 
get derivatives of A with respect to pi is beyond the objective of this paper, but may done by 
calculating Hessians with ADIFOR3, from the same software originators. Consequently, A will be 
specified analytically. 

• Use of ADIFOR to automatically calculate the derivative of A with respect to system parameters 
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• Calculation of the eigenvalues of A and its eigenvectors, λi, x. 
• Calculation of the eigenvectors of AT, v. 
• Determination of  i, the index of the eigenvalue that corresponds to the spectral radius of A and the 

corresponding eigenvectors of A and AT. 
• Calculation of the sensitivity of λi with respect to system parameters. 
• Calculation of the spectral radius sensitivity with respect to system parameters. 

 
In what follows, the above-mentioned steps will be expanded, specifying some details of the different 
procedures.  
 
9.1.a Calculation of A and its transpose 
 
The algebraic expressions leading to A come from the standard Finite-difference method, as defined by 
(1-2). It must be emphasized that the previous algorithm is general. No particular assumptions are made 
with respect to A, except being real, that is always the case in finite-differences models in Fluid 
Dynamics. Parameters are considered to be independent of time in this analysis; however, this condition 
may be released at the price of feasible, more laborious analysis. Given A, its transpose is also 
determined.  
 
9.1.b Use of ADIFOR to automatically calculate the derivatives of A 
  
ADIFOR 2.0D has been used to generate the augmented FORTRAN code to calculate the derivatives of 
A with respect to system parameters. In a general system, there are several parameters pk. In this paper, 
only two scalar parameters, namely COU = 0.8 and ξ =1.75 (≡2-θ, where θ is the exponent in the friction 
law), will be considered. A is a real matrix, non-symmetrical and almost sparse. However, the momentum 
equation is a full row, relating node temperatures, flow-rate and heat transfer boundary conditions.  

 
9.1.c Calculation of the eigenvalues of A and its eigenvectors, λi, x 
 
The vector of complex eigenvalues of A has been obtained using the classical EISPACK routines in their 
complex variable version. It may be argued that A is real but, to avoid problems of de-packing complex 
eigenvalues, the complex version was the adopted package. Simultaneously, the complete set of 
eigenvectors, x, was calculated. 

 
9.1.d Calculation of the eigenvectors of AT, v 
 
In order to calculate the eigenvectors of AT, it was necessary to perform once again the complete 
calculation of eigenvalues + eigenvectors, since no path in EISPACK (and LAPACK also) is available -to 
authors’ knowledge- to perform the simultaneous calculation for a matrix and its transpose. It did not pose 
problems in practice, because convergence of calculations was quite fast. 
 
9.1.e Determination of the eigenvalue corresponding to the spectral radius of A, λi, and the 
corresponding eigenvectors of A and AT 
 
The calculation of the spectral radius of A is quite obvious: it was a simple search for the maximum 
modulus of the eigenvalues vector. The interest of this search is also finding the index of the eigenvalue, 
denoted by i. The corresponding eigenvector, xi, was found by simple correspondence of index. The 
corresponding eigenvector of AT was found by an ad hoc routine performing the scalar product of the 
eigenvectors of A and those of AT. It used the well-known property of their eigenvectors, namely:  

jiji if0vx λ≠λ=⋅  

This procedure was needed because the eigenvalues of AT are not necessarily calculated in the same order 
as those of A. In this way, computing the scalar products and letting the zero to almost machine precision, 
the corresponding eigenvector of AT has been found without any trouble. 
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9.1.f Calculation of the sensitivity of λi with respect to system parameters 
 
This sensitivity is measured by the derivative of λi with respect to system parameters. It may be obtained 
from the following expression [30]: 
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where ℜ(λi) and  ℑ(λi) are the real and imaginary part of the eigenvalue corresponding to the spectral 
radius, 

k∂
ℜ  and  k∂

ℑ are the real and imaginary part of the derivative of λi with respect to the k-th 
parameter and (a, b) indicates the scalar product between complex vectors. This formula may be deduced 
by application of the chain rule of derivation to the definition of the eigenvalue problem and a suitable 
permutation coming from the definition of the left eigenvalue problem. It constitutes a faster alternative to 
the direct calculation of 

k∂
ℜ  and k∂

ℑ  by automatic differentiation of the program calculating the 
eigenvalue. The latter was the approach adopted by the Authors in previous work [9]. 
 
9.1.g Calculation of the sensitivity of the spectral radius with respect to system parameters 
 
The sensitivity of the spectral radius of A (coincident with the sensitivity of the margin to instability) is 
calculated from: 
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This expression comes from the definition of the spectral radius and considering that the eigenvalues of A 
are generally complex. 
 
9.2 RESULTS AND DISCUSSION 
 
Figure 23 shows the stability map in the plane of α and ε, the system physical parameters. They measure, 
as told before, respectively the buoyancy and friction resistance in the loop. This map has been obtained 
using 31 nodes (dimensionless space increment Δs = 1/30), Courant number COU = 0.8 and the exponent 
of flow rate in the friction term of momentum equation given by ξ =1.75. The selection of these values for 
COU and ξ was not arbitrary: despite the low number of nodes, they ensure low numerical diffusivity 
while keeping the calculations stable, on one hand, and impose turbulent flow friction, on the other. The 
theoretical neutral stability boundary corresponds to Welander’s analysis and is shown as a reference. 
 
The interest in the analysis to follow is showing how the solution depends on the cell Courant number 
(COU) and ξ (≡2-b), where b is the exponent in the friction law). This has been quantified by calculating 
the following derivatives: ξ∂ρΔ∂∂ρΔ∂    and  COU . One of the maps, giving the variation of 

OUC∂ρΔ∂ is shown in Figure 24.  
 
The results obtained were coincident with the ones in [9]. However, the computational cost was one-third 
the original one, confirming that the present algorithm leads to a much faster code than using ADIFOR to 
get the derivative of Δρ by direct derivation of the original code. This conclusion depends on the relative 
cost of calculating twice the eigenvectors vs. the cost of applying the chain rule to the whole EISPACK 
set.  
 
To conclude this introduction to sensitivity analysis, it may be stated that this new algorithm was 
developed to permit the calculation of the sensitivity of the margin to instability (Δρ) to system 
parameters. It is based on the use of ADIFOR to evaluate the derivatives of the matrix of perturbations 
(A) and a formula relating this derivative and the eigenvalues and eigenvectors of this matrix and its 
transpose. The results so obtained are coincident with the ones previously reported by the authors [9] 
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obtained with a more massive and, then, time-consuming use of ADIFOR. The procedure is now much 
faster and general. It may be stated that it may be applied to linear stability analysis based on the behavior 
of Δρ in a general case. 
 

 

Figure 23 Map of Δρ for the first-order, explicit momentum, implicit temperature coupling, 
COU=0.8 and ξ=1.75, Δs = 1/30  

 

Figure 24 Sensitivity map of Δρ to cell Courant number (∂Δρ/∂COU) for the first-order, explicit 
momentum and implicit temperature coupling. [COU=0.8, ξ=1.75 and Δs=1/30] 
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10. CFD ISSUES RELATED TO NUMERICAL PREDICTIONS OF NC AND NUCLEAR  
      REACTOR SAFETY RELATED FLOWS 
 
Given the level of advancement of CFD in the Computational Mechanics arena, it seems evident that the 
re-emerging of Nuclear Energy generation activities and constrains imposed by international Nuclear 
Safety guidelines and standards and improved physical models, will imply an increment of CFD activities 
in the field. The time to come will surely show an avalanche of works dealing with separate effects and 
multi-field, multiple domain computational methods that might provide a fertile ground for integral 
analysis.  
 
Some collaborative efforts to elucidate the needs on CFD in relation to Nuclear Safety evaluations have 
been established, notably the “Evaluation of CFD methods for reactor safety analysis - ECORA” project, 
that involved twelve partner institutions, see [34]. The project outcome was aimed to show to end-users, 
utilities and regulators to which extent CFD can enhance the accuracy of safety analysis, that it implies 
“addressing the lack of certainty on CFD results and defining related Best Practice Guidelines (BPGs) to 
evaluate these results”. 
 
The objectives reached, according to authors, have been: 
a) The establishment of BPGs for ensuring high-quality results and for the formalized judgment of CFD 
calculations and experimental data.  
b) The assessment of the potential and of current limitations of CFD methods for flows in the primary 
system and in LWR containments, with special emphasis on pressurized thermal shocks 
c) The definition of experimental requirements for the verification and validation of CFD software for 
flows in the primary system and in LWR containments  
d) The identification of improvements and extensions to the current CFD packages needed for primary 
loop and containment flow analysis.  
e) The implementation and validation of improved turbulence and two-phase flow models for the 
simulation of PTS phenomena in PWR primary systems. 
 
The BPGs are a valuable contribution for any CFD practitioner and are closely related to many aspects 
considered in this paper. They are documented in [35].  
This report contains detailed information on:  
a) The formalized judgment of results obtained with different CFD software packages. This includes the 
definition and quantification of round-off, iteration and discretization errors, and the assessment of 
modeling errors. 
b) The consistent use of CFD methods for reactor safety problems. These guidelines relate to geometry 
and grid generation, boundary and initial condition specification, selection of suitable physical models, 
and handling of solution algorithms. 
c) The judgment of experiments regarding their use for verification and validation of CFD methods. 
 
The guidelines include criteria for checking global mass, momentum, and energy balances, consistency 
checks for field data, and plausibility checks. Experiments are grouped in a hierarchy ranging from 
laboratory studies to industrial field tests. The BPGs report is intended to be a living document. 
 
Evaluation of results validity beyond the known experimental data base range has always been one 
objective and an obvious difficulty of safety evaluations.  Perhaps, whenever possible, designing separate 
effects tests to allow interpolation between extreme conditions should be a major goal to achieve from the 
validation point of view. The interested reader may also consult the experience reported in [36]. It may 
also be argued that written best practice guides are not enough. Personal exercise of them through hard 
working is needed. This implies the issue of user qualification, which deserved detailed discussion at 
these lectures. Perhaps emphasizing on the need of a discipline of analysis in depth and to promote 
pursuing well-founded Engineering Judgment at the Academia should be enough. Anyway, BPGs 
constitute a valid way to consolidate Engineering Judgment traditions.  
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More recently, BPGs have been updated and given a more general scope in the OECD document 
NEA/CSNI/R(2007)5, under the authorship of 17 specialists leaded by John Mahaffy (PSU) and an 
additional group of experts, whose opinions have been considered, either verbally or by e-mail. 
 
The guidelines include (in 164 pages) 
• A historical introduction, based on institutional and country contributions (most activities are reported 

starting in the 80’s) 
• Gives an account of all the aspects to be considered in setting up and applying criteria CFD methods 

to Nuclear Reactor Safety, including problem definitions, ranking of phenomena, gridding, 
verification and validation of codes. Opinions are stated in many cases and practical advises are 
given.  

• Appropriate consideration is given to the fact that “computer simulation is much more than 
generating an input and observing results” 

• A “check list for a calculation” is also included 
 
Verification and validation (V&V) of CFD codes is perhaps the major present challenge for their 
application in NRS. A special number appeared in NED (vol. 238, 2008), edited by Prof. Y. Hassan and 
B. Smith, showing outcomes from “Benchmarking of CFD Codes for Application to Nuclear Safety 
(CFD4NRS)”, 5–7 September 2006, Garching, Munich, Germany 
 Conclusions emerging from the meeting were: 
• Best Practice Guidelines should be followed as far as practical to ensure that CFD simulation results 

are free of numerical errors, and that the physical models employed are well validated against data 
appropriate to the flow regimes and physical phenomena being investigated. 

• Experimental data used for code validation should include estimates of measurement uncertainties, 
and should include detailed information concerning initial and boundary conditions. 

• Experimenters involved in producing data for validating CFD models and/or applications should 
collaborate actively with CFD practitioners in advance of setting up their instrumentation. This 
interface is vital in ensuring that the information needed to set up the CFD simulation will actually be 
available, the selection of “target variables” (i.e. the most significant measurements against which to 
compare code predictions) is optimal, and the frequency of data acquisition is appropriate to the time-
scale(s) of significant fluid-dynamic/heat-transfer/phase-exchange events. 

 
Advanced computational tools are needed (see also [37], [38]) for, at least: 
a) To implement further developments of existing physical models of two-phase flows, and the advanced, 
new ones proposed by the school of Ishii at Purdue and Lahey-Drew at RPI to deal with the smooth 
transitions in two-phase regimes, as opposed to fluid flow regime maps 
b) To further develop and implement 3D, two-phase modules in commercial CFD software packages 
using friendly graphical user interfaces for the generation of grids and the visualization of results.  
c) To develop multiple-field, multiple-scale, multi-dimensional analysis tools 
d) To verify and validate all the previously mentioned theories and implementations. 
 
In relation with d) above, it took more that thirty years to design, support, develop, consolidate and 
assimilate as working experience the huge mass of results associated with ITFs. Now these results are 
ready to be transmitted to the young generation of researchers and safety analysts. Arriving to this status 
by use of CFD is a present and hard future challenge to people belonging to the Nuclear Engineering 
community. 
 
Another huge effort is the NEPTUNE Project, launched at the end of 2001 by EDF and CEA, considering 
interalia that 
a) The major underlying stakes for the nuclear industry partners are the competitiveness of the reactors 
and the safety of Nuclear Power Plants. 
b) The industrial situations which were identified as priority needs are all closely connected to these two 
major items  
They consider as examples of these items:  

a) The improved prediction of Departure from Nucleate Boiling (DNB) ranks among the high 
priority needs since it is directly linked to fuel performance;  
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b) the estimation of the fluid temperature field on the Reactor Pressure Vessel (RPV) in case of a 
Pressurized Thermal Shock (PTS) for controlling the lifespan of critical components and,  

c) The prediction of the maximum cladding temperature during a Large-Break LOCA. 
 
It seems now assured that the next generation of flow solvers will be based on different scales of solution: 
a)  “System” scale: dedicated to the overall description of the circuits of the reactor 
b)  “Component” scale, often referred to as sub channel analysis or CFD in porous media 
c)  “CFD or CMFD (Computational Multi-Fluid Dynamics)” where the average scale is the millimeter or 
less and  
d) “DNS” (Direct Numerical Simulation), where the characteristic length is less than the micrometer 
 
The needs on numerical methods (models) development include: FEM and Finite Volume methods with 
unstructured meshes, interface calculation and tracking, domain decomposition to deal with computation 
of large scale simulations, systematic application of discrete techniques in multiple thermodynamic 
conditions, proper treatment of interphase exchange and smooth transitions for different two-phase flow 
conditions and enhanced two-fluid models 
 
Some aspects on the needs of computing resources may be summarized as follows: nowadays PCs 
clusters allow considering very detailed nodalizations (up to 300 106 FEM 3D elements grids are a 
feasible but a still not too common practice with 200 PCs clusters) in the Computational Fluid Mechanics 
arena. This allows computing the fluid flow distribution around a car in single-phase flow in a night or 
less starting from drawings. For a NPP, in a two loop geometry, 100 m3 discretized at 1 cm3 scale implies 
considering 108 elements. Then, steady state in single phase seems reachable within today computing 
possibilities if a multiple-scale method is used. However, it must be recalled that this implies having 
verified and validated parallelized algorithms as well as models amenable to this treatment.  
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11. CONCLUSIONS 
 
It has been shown that CFD is not a new activity in relation to unstable flow NC computations and in 
Nuclear Safety. A brief historical account and some background material have been presented as an 
introduction to the development and use of industrial and in-house codes. It was intended to take into 
account the experience gained by the Authors in the simulation of experiments in rather simple 1D 
geometrical configurations, in single-phase flows. Comparison with experiments has been considered 
whenever possible and some examples of potential problems arising from closure correlations have been 
exemplified. In an attempt to summarize the present emphasis on the needs of an ordered transition from 
the use of systems codes to CFD approaches in Nuclear Safety, it may be stated that the experience 
gained in thirty years of using almost 1D system codes must be carefully considered. Experimentation 
seems considered at present to specify needs in physical and numerical models. Collaborative efforts are 
under way for the benefit of the whole community. Finally, it was also mentioned why a discipline of 
analysis in depth and to promote well-founded Engineering Judgment at the Academia would be 
worthwhile. 
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