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LECTURE OBJECTIVES 
 
The scholar will understand the meaning and the importance of stability in fluid-dynamics and mainly 
in natural circulation conditions. The scholar shall be able to perform the design of a natural 
circulation system accounting for stability, namely providing that the system is stable and, possibly, 
far from stability boundaries for the various conditions foreseen within the operational life. 
 
 
1. INTRODUCTION 
Stability of natural circulation flow is very challenging for scientists and investigators and of utmost 
importance for industrial applications. What means ‘stability’ within the context of natural 
circulation? One intuitive definition can be taken from Misale et al. (1999). <<If the flow of the 
system in question (a simple loop, the atmosphere, a nuclear reactor, etc.) is stationary in respect to 
the temperature, and the velocity, it can be called “stable”. If the flow and the temperature show some 
oscillations, but the amplitude of the oscillations and the sign of the velocity stay constant in time, the 
system can be called “neutral”. If, finally, the system shows oscillations which grow in time and lead 
to flow reversal, the system can be called “unstable”>>. 
 
Why is it useful to still study instability? This question is best answered by pointing out the wide 
range of applications. Natural circulation phenomena are utilized in areas like solar heaters, 
geothermal energy production, space travel, cooling of engines, and of course for cooling nuclear 
reactors. Some reactors and reactor designs also utilize natural circulation primary source for the heat 
transfer during normal operation, like the Dodewaard reactor in Netherlands (shutdown in 1999 
following around 30 years of operation). It is obvious that for applications like this the engineer must 
have the theoretical tools available to study the regions of stability and instability and must have 
knowledge which parameters will influence the behavior of the system. 
 
This lecture aims at providing an overview over stability in natural circulation. Relevant definitions 
are introduced together with the presentation of different kinds of instability modes and of parameters 
which influence the stability. Reference is made to recent developments in the field. A top-down 
approach is pursued. In the first part of the paper data measured in a complex (Boiling Water Reactor) 
and in a simple (rectangular loop for space applications) natural circulation system are provided to 
show the features of single and two-phase thermal-hydraulic instabilities: Furthermore, the  
objectives and the results of a reliability study for passive systems are discussed to show the industrial 
relevance of the stability. In the second part of the paper, theoretical models are presented for the 
simulation of unstable systems and, in general, aimed at the solution of stability problems. 
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1.1 The LaSalle Event 
On March 9 1988, the unit 2 of LaSalle Nuclear Power Plant (NPP) underwent a dual recirculation 
pump trip, following which the unit experienced excessive neutron flux oscillations while it was in 
natural circulation (Ambrosini et al., 1995). LaSalle-2 is a 930 MWe BWR designed by General 
Electric. 
 
The unit had been operating at 84% power with 76% flow when an instrument technician, performing 
surveillance on the initiation logic for the reactor core isolation cooling, opened a wrong valve. The 
resulting perturbation on the switches for anticipated transient without scram resulted in a trip of both 
recirculation pumps. This caused a reduction in flow from forced to natural circulation, while the 
control rods remained in the 99% flow control line position. The resultant power-to-flow condition 
(about 40% power with natural circulation, i.e. around 30% core flow) after the pump trip was known 
to be a condition susceptible to instability. In addition, as a result of the rapid power reduction due to 
the loss of the recirculation pumps, there was a perturbation in the feed-water heaters causing a loss of 
various feed-water pre-heaters. This resulted in an insertion of positive reactivity as cooler feed-water 
was supplied to the reactor. The net effect was an increase in power that further reduced the margin to 
instability. Approximately 5 minutes after the recirculation pump trip, the operators noted that the 
Average Power Range Monitor (APRM) indications were oscillating between 25 and 50% power 
every 2 to 3 seconds, and the Local Power Range Monitor (LPRM) alarms began to annunciate and 
clear. The operators unsuccessfully attempted to restart the recirculation pumps to re-establish the 
forced flow. Nearly 7 minutes after the pump trip, another attempt to restore the forced flow was 
unsuccessful and, while operators were preparing for a manual scram, the reactor automatically 
scrammed on high flux (118% trip). The plant was taken to cold shutdown. The oscillations were “in-
phase”. 
 
A picture of the plant performance before the power excursion that caused the scram, can be derived 
from Fig. 1. Power oscillations in NC conditions, measured by three APRM systems, having the 
typical 0.5 Hz frequency, can be noted.  

 FIG. 1. Natural Circulation stability in a (BWR) complex system: LaSalle-2 NPP event, 1988, 
available plant measurements from STARTREC (STARtup Transient data RECorder) system. 
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1.2 Instability in a loop   
 
An experimental research has been completed in relation to the possibility to design a natural 
circulation system in the absence of gravity (or in microgravity conditions), Fig. 2.   
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 FIG. 2. Natural Circulation stability in a simple system, space application: a) picture of the loop 
installed in movable frame; b) measured temperature difference across the heater when the angle of 
the frame is varied; c) typical oscillations measured and calculated for the vertical position of the 

frame (‘0’ vertical angle). 

a) 

b) 

c) 
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To this aim Petruzzi et al., (2002) installed a NC rectangular loop (heater and cooler in the bottom and 
in the top horizontal legs, respectively) on a rotating frame, Fig. 2a: when the loop is in the vertical 
position the gravitational forces drive the natural circulation phenomena; the same force reduces to 
(nearly) ‘zero’ when the supporting frame is rotated to the horizontal position. Natural circulation 
flow-rates as a function of the gravity angle can be deduced from the diagram in Fig. 2b (the ‘0’ and 
the ‘90’ angles corresponds to vertical and the horizontal plane, respectively). Instability remains a 
problem for any angle of the frame as depicted in Fig. 2c (Petruzzi et al., 2001). 
 
1.3 Reliability evaluation of a NC System 
J. Jafari et al. (2003) investigated the reliability of a natural circulation system, namely the TTL-1 
loop, working in single and two-phase conditions, Fig. 3. The term reliability (of a passive system), 
within the context of NC was defined first and failure criteria for the loop performance were fixed. 
Loop design parameters affecting the transient NC performance were selected with related variation 
ranges. The loop model suitable by a thermal-hydraulic code was built and care was taken in 
demonstrating the compliance of code results with experimental. Then, around one hundred 
calculations by the qualified code-model were run with results from about twenty of the calculations 
shown in Fig. 3a).  
 

 

  

  
FIG.. 3. Reliability of the TTL-1 natural circulation system: a) power exchanged in the cooler as a 

function of time in different design conditions; b) reliability of TTL-1 NC system <present study> and 
comparison with the results from the analysis of a different NC system. 

P (w *10-4)  

  0.0               0.4             0.8                1.2     
P/P

Probability 

a) 

b) 



IAEA Course on Natural Circulation 
ICTP, Trieste, Italy 
May 17-21, 2010, Paper ID T-7 

5 

The comparison between the target power transferred from the heater to the cooler (e.g. failure criteria 
above) and the actual power (e.g. diagram in Fig. 3a), constituted the basis for evaluating the 
reliability of the NC system (TTL-1 loop). The results, reported in Fig. 3b in terms of failure 
probability versus the ‘amount of failure’ (indicated by the ratio “power exchanged / target power”)     
show that the instability is the key factor in causing system unreliability. 
 
 
2. FUNDAMENTALS 
2.1 Definition of stability in fluid dynamics 
It seems worthwhile to introduce hereafter some definitions that are common to the stability analyses 
in fluid-dynamics, see also D’Auria et al. 1997. 
 
• Acoustic instability: this occurs when standing waves are excited in a single or two phase 
system with a frequency in the acoustic range (steam line resonance and acoustic instabilities in the 
steam dome and upper plenum regions of BWR have been observed). 
 
• Decay ratio: the DR is defined as the ratio of two consecutive maxima of the impulse response. 
Two methods for extracting the DR value from neutron noise signal are commonly in use: a) utilizing 
the autocorrelation function ; b) from the impulse response which can be obtain by autoregressive 
modeling  of the neutron noise. Either A1/A2 (ratio of two consecutive maxima related to the 
horizontal time axis) either B1/B2 (ratio of distances between two consecutive peaks and a line 
connecting the “opposite peaks”) can be taken to obtain the DR value. 
 
• Density wave: a density wave is a perturbation in the density of the fluid mixture, which travels 
along the heated channel with a characteristic speed depending on local conditions. Density wave 
oscillations (DWO) are the basic mechanism credited for triggering and sustaining the relevant 
oscillation phenomena in boiling water reactor cores. In other words, the observed instability 
phenomena have been explained making reference to the delays involved in density wave propagation. 
 
• Dynamic instabilities: these terms characterize the wider class of instabilities that can be 
studied only through the use of time-dependent balance equations. 
 
• Flow excursion (Ledinegg) instability: this is a type of static instability that is determined by 
the relationship between the pressure drop characteristic of a boiling channel and the pressure drop 
characteristic imposed by an external system. 
 
• Flow regime induced instability: the periodicity of some flow regime (e.g. slug flow) excite 
this instability mode. 
 
• Flow regime “relaxation” instability: this is a static instability due to flow regime changes. 
 
• Limit cycle: limit cycle is a particular long term periodic solution of the differential equations 
describing a non-linear system, which is encountered studying the system behavior beyond the linear 
stability threshold. Limit cycles are named “stable”, if they attract system trajectories starting from 
nearby states, or “unstable”, if they repel them. Stable limit cycles have been observed in BWR and 
other boiling systems during instabilities and are ideally characterized by a periodic oscillatory 
behavior with constant amplitude and frequency. As a matter of fact, limit cycles observed in BWR 
during tests or inadvertent occurrences are not so ideal, showing gradual changes in amplitude and 
frequency of oscillations as a result of drift in system parameters. 
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• Pressure drop oscillations (PDO): in this case a Ledinegg type instability and a compressible 
volume in the boiling system interact. It might be noted that PDO is a dynamic type of oscillations 
and Ledinegg is a static one. 
 
• Stability boundary: A stability boundary is represented by a relationship between the 
parameters describing a system status which defines the conditions in which the system shows 
marginal (or neutral) stability, i.e. in which perturbations are neither amplified nor damped. In a two-
dimensional parameter space, this relationship can be represented as a curve separating areas of stable 
and unstable behavior. Hyper-surfaces separating stable and unstable multidimensional domains are 
obtained in the case of systems described by several parameters. 
 
• Stability margin: a stability margin is a properly defined measure of the distance of a system 
status from the stability boundary. For instance, control theory suggests the use of “gain” and “phase” 
margins as a measure of the stability of a linear system. 
 
• Static instability: these terms identify a class of instabilities that can be theoretically explained 
without the use of time-dependent conservation equations. 
 
• Thermal-hydraulic instabilities: These are identified by periodic time oscillations of various 
quantities in a boiling system (either single channel either parallel channels). Excursion of heated wall 
surface temperature may result from thermal-hydraulic instabilities. This includes the entire class of 
instabilities discussed. 
 
• Thermal oscillations: Are oscillations heavily involving the heater dynamics in a boiling 
channel. Cyclic dry-out and rewet phenomena may be involved at a frequency lower than DWO. 
 
2.2 Relevant stability related parameters 
A classification of the thermal-hydraulic instabilities, summarized in table 1, can be explained 
considering two main groups: the so-called ‘static’ instabilities, that are explainable in terms of steady 
state laws, and the ‘dynamic’ instabilities, that requires the use of the time dependent conservation 
equations and, in case, the adoption of concepts and techniques developed in the frame of control 
theory. 
 
Parameters through which stability shows up (flow rate, pressure, density, temperature) 
 
LEDINEGG INSTABILITIES 
Ledinegg instabilities are due to the particular S-shape that the flow rate versus pressure drop 
characteristic of a boiling channel often exhibits, Fig. 4. The analyses performed in a simplified loop 
(representing an helical coil steam generator) has shown that the effect of the energy loss coefficient 
in the two-phase zone has a destabilizing effect, while the large inlet pressure drop due to orifice has a 
general stabilizing effect against the “Ledinegg” instability (Ambrosini et al., 2004). 
 
FUNDAMENTAL RELAXATION INSTABILITY 
Flow pattern transition instabilities have been postulated as occurring when the flow conditions are 
close to the point of transition between bubbly flow and annular flow. A temporary reduction in flow 
rate may cause the increase of the bubble population and the change of the flow pattern to annular 
flow (characterized by low pressure drop). The consequence is that with the flow rate increase, the 
vapor generated is not sufficient to maintain the annular flow and the flow pattern then reverts to that 
of the bubbly-slug flow. The cycle can be repeated. Length, inlet temperature, mass velocity, and 
pressure are related to the large scale fluctuations characteristic of the slug flow regime that can be 
viewed as a transition from bubbly to annular flow, in particular related to a low pressure diabatic 
flow (Boure, 1973). 
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TABLE 1.  CLASSIFICATION OF FLOW INSTABILITIES 
Class Type Mechanism Characteristic 

Static instabilities 
Fundamental (or 
pure) static 
instabilities 

Flow excursion or 
Ledinegg instabilities 
 
 
 
Boiling crisis 

extG
p
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p

∂
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Ineffective removal of heat from 
heated surface 

Flow undergoes sudden, 
large amplitude excursion to 
a new, stable condition 
 
Wall temperature excursion 
and flow oscillation 

Fundamental 
relaxation instability 

Flow pattern transition 
instability 

Bubbly flow has less void but 
higher ∆P than that of annular flow 

Cyclic flow pattern 
transitions and flow rate 
variations 

Compound relaxation 
instability 

Bumping, geysering, or 
chugging 

Periodic adjustment of metastable 
condition, usually due to lack of 
nucleation sites 

Period process of super-heat 
and violent evaporation with 
possible expulsion and 
refilling 

Dynamic instabilities 
Fundamental (or 
pure) dynamic 
instabilities 

Acoustic oscillations 
 
 
 
 
Density wave oscillations 

Resonance of pressure waves 
 
 
 
 
Delay and feedback effects in 
relationship between flow rate, 
density, and pressure drop 

High frequencies (10-100 
Hz) related to the time 
required for pressure wave 
propagation in system 
 
Low frequencies (1 Hz) 
related to transit time of a 
continuity wave 

Compound dynamic 
instabilities 

Thermal oscillations 
 
 
 
BWR instability 
 
 
Parallel channel instability 

Interaction of variable heat transfer 
coefficient with flow dynamics 
 
Interaction of void reactivity 
coupling with flow dynamics and 
heat transfer 
 
Interaction among small number of 
parallel channels 

Occurs in film boiling 
 
 
Strong only for small fuel 
time constant and under low 
pressures 
 
Various modes of flow 
redistribution 

Compound dynamic 
instability as 
secondary phenomena 

Pressure drop oscillations Flow excursion initiates dynamic 
interaction between channel and 
compressible volume 

Very low frequency periodic 
process (0.1 Hz) 
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FIG. 4.  Calculation of the static SG characteristics with Relap5 code; effect of the energy loss 

coefficient (in two phase zone) on the pressure drop characteristic. 
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COMPOUND RELAXATION INSTABILITY 
Bumping, geysering and chugging involve static phenomena which are coupled so as to produce a 
repetitive behavior which is not necessarily periodic. 
 
Bumping is exhibited in boiling of the alkali metals at low pressure. It has been postulated that it is 
due to the presence of gas in certain cavities. 
 
Geysering has been observed in a variety of closed end, vertical columns of liquid which are heated at 
the base. In low pressure systems this is suddenly increased vapor generation due to reduction in 
hydrostatic head, and usually an expulsion of vapor from the channel. The liquid then returns, the sub-
cooled non-boiling condition is restored, and the cycle starts over again. 
 
The term chugging is usually reserved for the cycle phenomenon characterized by a periodic 
expulsion of coolant from the flow channel. The expulsion may range from simple transitory 
variations of the inlet and outlet flow rates to violent ejections of coolant, usually through both ends 
of the channel (Boure, 1973). It may be noted that the term chugging is also used to characterize the 
pressure and flow oscillations that may occur following the blow-down period in a Pressure 
Suppression Pool (PSP) type of containment. In the PSP systems, typically adopted for BWR, the air 
present in the drywell is discharged into the wet-well free space passing through the liquid pool. At 
some time during the transient (i.e. a few tens of seconds after the transient start in case of large break 
LOCA), only two-phase steam-liquid mixture is present in the dry-well and all the non-condensable 
gas is accumulated in the wet-well. At this time, also triggered by pressure oscillations caused by 
steam condensing in the pool, a sudden steam condensation may occur in the drywell that causes large 
amplitude oscillation and consequent flow reversal from wet-well to dry-well and mechanical loads 
on the walls separating wet-well and dry-well.      
 
DENSITY WAVE OSCILLATION (DWO) 
Density-wave oscillations occur on the boiling positive slope branch of the pressure drop versus flow 
rate curve. Disturbances in gas-liquid two phase flows may be transported by different mechanisms 
among which are density wave resulting from fluctuations in void fraction (DWO), P. Carey, 1992. 
 
DWO are most often observed in flow boiling processes in which the flow enters as sub-cooled liquid. 
The time scale associated with DWO is about the time required for a fluid particle to travel through 
the channel. The relevance of this phenomenon is due to the possibility that it could affect the 
operation and the safety characteristics of the system. DWO may cause undesired problems such as 
mechanical and thermal fatigue damage of the components through the mechanical vibration and 
thermal wave. The DWO and their consequences require proper attention at the level of system design, 
e.g. Guanghui et al., 2001, Kakac et al., 1991. 
 
The main parameters that influence the DWO are Crowley et al., 1969, and Ishii, 1976. 
 
• Increase in mass flow rate increases stability. 
• Increase in heater power decreases stability. 
• Increase in overall density ratio decreases stability. 
• Increase in power input to the channel increases frequency. 
• Increase of inlet sub-cooling increases stability at high sub-cooling. 
• Increase in system pressure for a given power input increases stability. 
• Decrease of the heated length increases the flow stability in forced. 
 
PRESSURE DROP OSCILLATION (PDO) 
Pressure-drop oscillations occur on the negative slope branch of the pressure drop versus flow rate 
curves. The name is referred to flow oscillations due to a multi-valued (S-shape) flow rate versus 
pressure drop characteristic. Flow oscillations, rather then one time excursion, can occur if there are a 
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sufficient interaction and delay feedbacks between flow rate and mass accumulation (i.e. 
compressibility) in the heated section or in the system. The required compressible volume may be 
situated outside the heated section or can be provided by the internal compressibility of long heated 
sections. Parameter effects connected with PDO can be summarized as follows, e.g. Yadigaroglu and 
Chan 1979: 
 
• Increase in negative slope decreases stability. 
• Increase in heater power decreases stability. 
• Increase in exit pressure drop decreases stability. 
• Increase in inlet pressure drop decreases stability. 
• Period of pressure-drop oscillations increases with decrease in flow rate. 
• Superimposed density-wave oscillations appear on low flow part of the pressure-drop type 

oscillation cycle. 
• Boiling upward flows are more stable than horizontal flows. 
 
THERMAL HYDRAULIC OSCILLATION (THO) 
Thermal oscillations occur in a domain located within density-wave and pressure-drop oscillation 
regions where there is film boiling. During part of the cycle there are always superimposed density-
wave oscillations. Typically, both the period and the amplitude are nearly inversely proportional to 
inlet mass flow rate. Additional parameter effects associated with THO can be summarized as follows, 
e.g. D’Auria et al. 1997: 
 
• The amplitude increases with heat input, and the period increases linearly with heat input. 
• In certain operation regions, both the period and the amplitude increase with decreasing inlet 

liquid temperature. 
• Increase in inlet pressure drop increases stability. 
 
Parameters affecting stability – mechanical and heat transfer interactions 
Parameters which affect stability in natural circulations and were not mentioned above are mainly 
mechanical interactions and heat transfer interactions. Mechanical interactions comprise for example 
the propagation of pressure waves through the piping caused by the rapid closure of a valve (water-
hammer). Mechanical interactions which are affecting stability are beyond the scope of this lecture 
and are only mentioned for completeness. 
 
The influence of the thermal properties of the materials on the stability has been studied by M. Misale 
et al., 1999. A rectangular natural circulation loop was considered (i.e. the “Welander problem” 
discussed in detail in chapter 3). A natural circulation loop is a simple rectangular loop of pipes, which 
is subjected to gravity, heated at the bottom and cooled at the top. The fluid in the loop will be heated 
at the bottom, expand, and due to the buoyancy rise to the top, where it will be cooled again and will 
sink to the bottom. By this, natural circulation is established. The first one who presented an analysis 
of this problem was Welander, 1967. 
 
As will be shown later, even a simple system as just described can show regions of instability. Even 
more surprisingly, the regions of stability and the behavior of the loop depend on the heat capacity of 
the piping which was demonstrated numerically by the cited paper (Misale et al., 1999, see also 
D’Auria et al. 1997a and Frogheri et al., 1998) and experimentally by Vijayan and Austregesilo, 1994. 
The data reported in Tab. 2, Misale et al. 1999, are the results of three different series of simulations 
where the piper thermal capacity has been changed. The thermal capacity is assumed equal in all the 
pipes that constitute the three considered loops that are different due to materials: copper, steel and 
plexiglas, respectively. The influence of the thermal capacity can be noticed from the Reynolds 
number. If the thermal capacity (and the conductivity) of the hot section pipe decreases, e.g. when 
changing material from copper to plexiglas, at constant heat flux, the average temperature of the pipe 
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increases and a higher buoyancy force is established in the fluid. The loop considered in Tab. 2 is the 
same loop shown in Fig. 2a), and other than the standard symbolisms used for non dimensional 
groups (i.e. Reynolds, Prandtl and Nusselt numbers), ‘f’ is the friction coefficient.   
 

TABLE 2. THE DIFFERENT BEHAVIOR OF THE NC LOOP PREDICTED WITH THREE 
DIFFERENT PIPING MATERIALS 

 
 Heat flux (w) 100 150 200 250 
Copper Nu 8.8 10.1 11.1 11.9 
 Re 342 452 559 664 
 Pr 8.2 7.9 7.7 7.5 
 fRe 20.8 23.2 25.1 26.6 
Steel Nu 9.1 10.4 11.4 12.3 
 Re 347 461 571 680 
 Pr 8.2 7.9 7.6 7.4 
 fRe 20.9 23.3 25.1 26.6 
Plexiglass Nu 13.2 15.4 16.9 18.1 
 Re 563 865 1219 1622 
 Pr 6.8 6.0 5.4 4.8 
 fRe 24.6 28.1 30.9 33.1 

 
 
 
3. THE SINGLE PHASE STABILITY: THE WELANDER PROBLEM  
In 1967 Pierre Welander (Welander, 1967) published a paper in the Journal of Fluid Mechanics about 
a surprisingly simple problem, which still keeps the scientific community interested. Consider a 
closed loop, subjected to gravity, which is heated at the bottom and cooled at the top, Fig. 5. The 
vertical tubes of the loop are insulated, the diameter of the loop is the same over the whole loop. The 
fluid motion will be driven by the buoyancy force, eq. (1): the fluid will heat up at the bottom, expand 
with the expansion coefficient α and will be driven to the top due to gravity, where it will be cooled 
again. The motion is affected by frictional forces. Welander assumed that in first approximation 
frictional forces are linear related to the flow eq. (2). 

         
FIG. 5.  A simple closed loop with a heater at the bottom and a heat sink at the top. It is filled with 

liquid in sub-cooled conditions 
 

Tcooler 

Theater 

s=0, L 

s=L/2 

s 

A point heat source and sink are assumed – this means that the heat transfer coefficient k 
tends towards infinity while the heated length ∆s tends towards zero. The product k ∆s stays 
finite (which is a boundary condition). The point of origin of the temperature is chosen to be 
the mean of TCOOLER and THEATER, so that 

COOLERHEATER TT −=  

 
The following assumptions are made: 
 
1. the Boussinesq approximation is valid; 
2. the wall friction force on the fluid is proportional to the instantaneous flow rate q; 
3. the temperature of the fluid is uniform over each cross-section; 
4. the heat flux between the fluid is uniform over each cross section. 
 
An anti-symmetric initial temperature distribution is assumed (anti-symmetric with respect to 
the center of the loop). This is physically plausible and can be shown that the anti-symmetry is 
preserved over the time. Therefore it is possible to restrict the analysis to one half of the loop. 

Antisymmetric 
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The Welander equations are (symbols provided at the end of the document): 
 

(1) ∫= TdzAgB 0αρ  

(2) qF ∝  
If the equations (1) and (2) are used, the equation of motion can be written as: 
 

(3) RqTdzgL
Aq −= ∫•

α  

For the heat transfer from the point source and sink to the fluid the model-assumptions defined by eq. 
(4) are used. Welander assumes that the increase (decrease) in temperature of the fluid when the fluid 
passes the heat source (sink) is proportional to the difference between the heater temperature and the 
fluid upstream of the heater. The factor (1-ek∆t) accounts for the time in which the fluid passes the 
heater. If the fluid velocity is high the factor will be close to zero and TOUT will be almost equal to TIN. 
On the other hand, if the fluid velocity is small, the factor will be close to one and TOUT will be almost 
equal to THEATER. 

(4) ( ) ( ) ( ) 



 −⋅−=−⋅−=− q

skA

INHEATER
tk

INHEATERINOUT e1TTe1TTTT
∆

∆  

Dimensionless coordinates were introduced (5). 
(5) 

2
Lss = , 

sk2
Ltt
∆

= , skAqq ∆= , HEATERTTT =  

The form of the differential equations is now, 
(6) ∫=⋅+

• 1

0

sdTaqq ε  

(7) 0TsqTt =
∂
∂+

∂
∂  

(8) ( ) 0q,e1T1TT q
1

1s1s0s >



 −+=+

−

===
 

(9) ( ) 0q,e1T1TT q
1

0s1s0s <



 −+−=+

−

===
 

where use is made of the following dimensionless parameters, 

(10) ( )
sk2

RL
sk2

LTga 2
HEATER

∆
ε

∆
α

=

⋅

⋅⋅⋅
=

 

Some comments should be made on equation (8) and (9). S = 0 denotes the bottom of the loop 
(heater) in the dimensionless coordinates, s = 1 the top (sink). In left hand side of equation (4) in 
dimensionless coordinates for q>0, TOUT can be written as TOUT = Ts=0+∆s, while TIN=Ts=0- ∆s. Using 
the anti-symmetry of the problem Ts=0- ∆s = -Ts=1- ∆s. In the limit ∆s→0 the left hand side of (4) 
becomes Ts=0 + Ts=1. Same considerations can be made when q<0.  
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3.1 The steady motion solution 
For simplicity, coordinates without bars designate dimensionless quantities from now on. If we 
assume the system in steady state condition, we can consider that q and T are constant. For q>0, The 
equation (6) then takes the form: 
  

(11)  SSss Taq ⋅=⋅ε . 
 
Equation (8) takes the form: 

(12) )e1)(T1(T2 SSq
1

SSSS

−

−+=  
 
If TSS is eliminated equations (11) and (12) finally yield the solution: 
 

(13) SSq
1

SS

SS e1
qa

q2 −−=
+



ε

 

 
Equation (13) has one solution for a given (a/ε). The solution for selected ratios of (a/ε) is provided by 
Welander in table format. One can see that for a small (a/ε) qSS is small, therefore TSS is near to one: 
This implies that the temperature of the upward flow has almost the same value of the temperature of 
the heater. For larger values of (a/ε), qSS increases, while TSS decreases. 
 
3.2 The stability of the steady motion solution 
The concept which was used by Welander to analyze the stability of the solutions of the model 
presented in the previous section is referred to as linear stability analysis. Basically one considers 
small deviations in the input to the model and analyses how the deviations in the solution develop. 
Consider a system of differential equations (14) and its solution SOLY . Consider also a small 
perturbation εv  of the solution. The equation for the perturbation ε

v

+SOLY , (15) can be expanded 
(linearized) when only small perturbations are considered. One should notice that by doing so 
information is lost. The results of the analysis only indicate the qualitative behavior of the solution, 
stable or unstable and no conclusions about the magnitude of the change can be made. If more 
information is wanted a non linear stability analysis should be made (examples where a non linear 
stability analysis was applied can be found in the papers by Suslov and Paolucci, 1999 and 1999a). 
 

(14) ( ) ( )( )tYFtY =&  

(15) ( ) ( ) εεε
vv

&
v

& ⋅
∂
∂+≈+=+

SOLY
SOLSOLSOL Y

FYFYFY  

By using the fact that SOLY  is a solution of (14) the equation (15) can be simplified to (16). This 
equation can be solved using the model given as eq. (17). Substituting (17) in (16) leads to the eq. 
(18). If any eigenvalues 0Re i >λ  exist the perturbation will grow in time and the solution is 
unstable. 
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(16) εε
v

&
v ⋅

∂
∂=

SOLYY
F  

(17) t
i

ie ⋅
=

λξε v

v  

(18) 0
Y
F1 i

Y
i

SOL

=





∂
∂−⋅ ξλ  

Welander assumed the solution T,q  with the derivatives T,q ′′ . Then the linearized form of the 
differential equation looks like eqs. (19), while the boundary conditions take the form of the eqs. (20) 
below. 

(19) 
0TsqTt

dsTaqq
1

0

=′
∂
∂+′

∂
∂

′=′⋅+′ ∫ε&

 

 

(20) 

2
q
1

2

q
1

1s0s

q
T1eq

T1n
T1
T1em

0qnTmT

−=+=

+
−==

=′+′+′

−

==

 

 
Exponential functions (21) were used to satisfy equation (20) and (19):  
 

(21) ( ) tr

tr

esT̂T
eq̂q

⋅

⋅

⋅=′
⋅=′  

 
Substituting (21) in equation (19) and (20) leads to equations 

(22)  

( )

( ) ( ) 0q̂n1T̂m0T̂
0T̂ds

dqT̂r

dsT̂aq̂r
1

0

=++

=+

=+ ∫ε

 

 
The solution ( )q/rsexpCT̂ −=  can be found from the second of the equations (22) which can be 
used to find, together with the first of the equations (22), a solution for ( ) ( ))r(r/)q/rexp(1qCaq̂ ε+−−⋅= . By considering the third of the equations of (22), the 
characteristic equation can be derived: 
 

(23)  0e1)r(r
qanem1 q

r
q
r

=



 −+

⋅⋅+⋅+
−−

ε
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By looking on the left hand side of equation one can see that no real solutions with r>0 exists, since 
for r>0 every term on the LHS is positive. So Welander investigated whether oscillatory unstable 
solutions exist, which means r is complex and Re r >0. For this investigation, the following new 
parameters (24) are introduced: 
 

(24) 

q/~
q/~
q/naa~

ir

ωω

εε

ω

=

=

=

=

 

In this case, the characteristic equation takes the form of eq. (25) 
 

(25)  
( )
( ) ( ) 0~~i~i

a~
1e
me

~i

~i

=
+

+
−

+

εωωω

ω

 

 
By separating equation (25) in real and imaginary part and utilizing proper algebraic relationships, 
Welander, 1967, the equation can be written in the form of eq. (26): 
. 

(26) 

( ) 



+
−−=







=




=


 −+

T1
T1ln

T
T1TA

~
2
1cot~

T
1~

A
2
1A

2
1~~

2

2

22
2

ωωε

εω

 

For a given T  the first equation of  represents a circle with radius A
2
1  in the ωε ~/~  plane. The 

curves one and two of equation (26) are shown for two different values of T  in Fig. 6. 
 
By looking at the asymptotic behavior it is possible to construct a region of stability/instability for the 
parameters ε  and q . For large values of ε  the region of stability and instability is separated by 

24q∝ε , while for large values of ε  the stability margin is proportional to 4
2πε ∝ .  

 
Welander numerically investigated the behavior of the loop in several regions of stability. The results 
are shown in Figs. 7 and 8. For small values of ε  the flow grows steadily to a steady state value. If 
the value of ε  is increased a little bit, some instabilities begin to show up. With a further increase a 
“stable” oscillatory behavior can be observed. Finally, growing oscillations in the flow rate show up 
with a regularly occurring inversion of the flow. 
 
3.3 Numerical aspects of the Welander Loop 
W. Ambrosini and J.C. Ferreri, 1997, investigated the effect of the truncation error on the stability of 
the numerical results for natural circulation of the Welander loop. One interesting result was that the 
region of stability changes dramatically with the length of the nodes which was chosen for the 
numerical calculation. In other words, if a very crude (coarse) nodalization was chosen, instabilities 
would not show up at all. Since the numerical treatment is not a topic of this lecture, only one figure 
with the major results is presented, Fig. 9 below. 
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FIG. 6.  Solutions to the characteristic equation for oscillatory instabilities. If the two curves 

intersect, the solution is oscillatory unstable. One can see that for T=0.2 the solution is 
oscillatory unstable, while this is not true for T=0.5(Welander, 1967). 
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 FIG. 7.  Stability map calculated by Welander, 1967. 

 
FIG. 8.  Numerical solution for four cases: (a) 4.0a = , 2.0=ε  (b) 0.2a = , 0.2=ε ,  

(c) 0.20a = , 0.20=ε  (d) 0.40a = , 0.6=ε  (Welander 1967). 

)sk2/(RL ∆ε = ; ε increases when the friction 
increases, and decreases when the quantity of heat 
transferred to the heat sink and source increases. 
 
q   indicates the flow rate of the steady state solution 
°  stable numerical solution 
• unstable numerical solution 
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 FIG. 9.  Dependence of the stable and unstable region of the numerical results on the truncation 
error, compared to the theoretical boundary of stability (Theoretical SB). One can see the effect of the 
truncation error: at 10 nodes for the loop, the behavior seems stable for the whole epsilon/alpha 
plane. Only a nodalization with 100 nodes seems to adequately describe the problem. “Test case” 

refers to the selected case in the paper (Ambrosini and Ferreri, 1997). 
 

 
4. THE TWO PHASE STABILITY MECHANISMS  
Boiling natural circulation is a relevant cooling mechanism for the nuclear reactor systems as already 
mentioned. This relevance increased with the 3rd generation NPP and the studies of the 4th generation 
of the NPP (JPSR, AP600, SBWR, IRIS). In these reactors (i.e. AP600, IRIS, etc) the natural 
circulation is used for the emergency heat removal system (called “passive”), or is the major cooling 
mechanism (SBWR), see refs. ANS 2001 and IAEA 2005. 
 
Flow in natural circulation system is induced by the difference of fluid density, and in two phase flow 
the heat input and its removal induces a large volumetric change owing to phase changes (boiling and 
condensation), thus the system easily becomes unstable. Flow instabilities are undesirable in boiling, 
condensing, and other two phase flow processes for several reasons. Sustained flow may cause forced 
mechanical vibration of component or system control problems, as already discussed in the case of 
single phase flows. Flow oscillations affect the local heat transfer characteristic and may induce 
boiling crisis (critical heat flux, DNB, burnout, dryout,…). 
 
The mathematical model is based on the flow description and its boundary conditions. The flow 
description is based on the conservation equations (mass, momentum, energy) and the constitutive 
relationships that define the properties of the system with a certain degree of idealization, 
simplification, or empiricism. These include: the equation of state, the steam tables, the friction factor 
correlation, the heat transfer correlation, etc. 
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4.1 Structure and application of system codes 
 
In general, the conservation principles yield three equations for each phase, plus three interface 
relationships. Using a six conservation equation model, such as the system codes (Relap5, Cathare2, 
etc…), it has been possible to take into account interfacial phenomena which result in slip and lack of 
thermal equilibrium, US NRC 1999. An outline of these equations is reported below in relation to 
one-dimensional flow inside a constant cross section duct. 
 
The conservation equations (mass, momentum, energy) are: 
 

(27) ( ) ( )
k

kkkkk Mz
jA

t
A =

∂
∂+

∂
∂ ρρ  

(28) ( ) ( )
kwkikkk

kkkkkk FFgAz
pAz

jA
t
jA −−−=

∂
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∂
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∂
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(29) ( ) ( )
kwkikkk

kkkkkkk QQz
pjAt

pAz
hjA

t
HA −−

∂
∂−

∂
∂=

∂
∂+

∂
∂ ρρ  

while the interfacial relations are: 
 

(30) 0=∑k kM  

(31) 0=∑k kiF  

(32) 0=∑k kiQ  
 
Considering the conservation equations of the mass and the momentum it is possible to derive the slip 
equation for the two phases, by the elimination of the z

p
∂
∂  term, assuming: constAk = , α=gA  

and α−=1lA . 
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Making the difference between the two equations for the liquid and the vapor phases, the result 
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constitutes the so-called ‘slip equation’. 
 
The equations (27), (28) and (29), the interfacial relations (30), (31) and (32) and the interfacial 
energy transfers, the interfacial momentum transfer, and the transport equation for non-condensable 
gas (not reported here), represent the “basic module” equations for thermal-hydraulic system codes 
like Relap5 (see above) and Cathare. Those time domain codes have been extensively used for the 
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instability analyses either in two phase conditions, e.g., D’Auria and Pellicoro, 1996, D’Auria et al., 
1996, or in single phase conditions, e.g. D’Auria et al., 1999, Misale et al., 1999. 
 
The application of system codes in single and two phase conditions shows that predictive capabilities 
are available to reproduce existing experimental conditions (see also D’Auria et al., 1996a, and Mori 
et al., 2000), see also Fig. 10 related to single phase conditions. However, the capability to predict 
unknown system conditions remains questionable.   

 FIG. 10.  Application of system codes to the prediction of stability in single phase conditions 
(D’Auria et al., 1996). 

 
 
4.2 Structure and application of simplified models 
 
Without entering the frequency domain codes, related details can be found in D’Auria et al. 1997, 
another computational approach is based upon the utilization of simplified models in order to gain 
physical understanding of the phenomena. 
 
This section is focused on the work performed by W. Ambrosini et al., 1999 related to the stability of 
the thermo-siphon loop and in particular on the linear analyses and non-linear analyses, discussing 
some of the basic mechanisms involved in density wave instabilities. The considered physical model 
is quite simple and involves a boiling channel with constant pressure drop and inlet sub-cooling 
boundary conditions. An arbitrary axial distribution of heat flux is allowed and both distributed and 
singular pressure drop are included. Heater dynamics is modeled making use of a radial lumped heat 
structure model, which is axially discretized coherently with the hydraulic channel. 
 
The two phases are assumed in thermal and mechanical equilibrium according to the HEM. In order to 
analyze the flow in the system, simplified equation (HEM approximation) are derived from the set of 
eqs. (27) to (29) with the following definitions and hypotheses: 
 

• constAk = , α=gA  and α−=1lA . 

• The terms t
p
∂
∂  and z

p
∂
∂  are neglected in the energy equation in order to have the 

pressure only in momentum equation. 
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• '''qQ
k kw =∑  where '''q  is the heat input per unit of volume. 

 
• TPk kw FF =∑  where TPF  is the two phase friction pressure drop. 

 
The equations are reduced to a set of three partial differential equations, where frictional dissipation 
and pressure energy are neglected. 
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The homogeneous equilibrium model (HEM) is characterized by the assumption that the two phase 
flow is an emulsion (i.e. a continuous fluid with small and evenly distributed bubbles or droplets) in 
thermal and mechanical equilibrium. The resulting boiling channel equations are: 
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where δd is a dimensional Dirac’s delta function [m-1]. 
 
The energy equations have been written for two different situations analyzed by Ambrosini: the 
former considers only the imposed heat flux given to the fluid, the latter takes into account also the 
heat capacity of the heater. 
 
The balance equation can be assumed in dimensionless form assuming a reference pressure to 
evaluate the saturated fluid properties, which are considered independent of the local value of the 
pressure. The main dimensionless groups useful for this analysis are able to take into account the fluid 
properties, the gravity, the pressure, the inlet velocity, the inlet enthalpy, and the heat flux: 
 

- Npch, i.e., the phase change number involving the reciprocal flow rate versus heating power 
ratio and includes the specific volume ratio; 

- Nsub, i.e. the sub-cooling number, that includes the specific volume ratio (Ishii, 1970);  
- Fr, i.e. the Froude number, that represents the ratio of inertia to buoyancy (Latrofa, 2000). 
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The resulting dimensionless equations are  
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where δ* and fq* are respectively a dimensionless Dirac’s delta function and the heat flux distribution 
function. 
 
In the case of forward flow at both the inlet and the outlet sections, constant values of dimensionless 
pressure in the plena and h*in=-Nsub and are assumed as boundary conditions for transient analysis. 
The boiling channel in Fig. 11 is considered that is sub-divided into Nn nodes of equal size that are 
connected by junctions. 

 FIG. 11. Boiling channel discretization (Ambrosini et al., 1999) 
 

Mass and energy balance equations are solved within each node and momentum equations are solved 
at junctions, resulting in a classical staggered mesh scheme. Conservative and non-conservative forms 
of balance equations are adopted in order to impose basic conservation principles and obtain an 
implicit treatment of the coupling between pressure and flow. 
 
Dimensionless mass and energy balances in conservative form turn out to be: 
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where )( **
iq zf  is an appropriate average over the i-th node of the flux distribution factor and 

quantities n
ih
*  and n

ih
*
1+  are the “donored” junction enthalpies. 

 
The momentum equation is discretized in space and time in the form: 
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where *δ̂  is a Dirac’s delta function operating over a discretized domain and n

iG
*
1−  and n

iG
*  are 

node average mass fluxes. When the heater dynamics is taken into consideration, the following 
dimensionless equations are solved in closed form to provide the new time step values of heater 
temperature: 
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Once the heat input to the channel nodes is known (with or without heater dynamics), linearized (non-
conservative) forms of mass and energy balance equations and the momentum balance equations are 
combined resulting in a three point standard algorithm. Momentum equations is then used again to 
update dimensionless function mass fluxes on the basis of the new time step dimensionless nodal 
pressures; mass and energy balances in conservative form are then used to evaluate 1* +n

iρ  and 1* +n
ih . 

 
To solve the ambiguity in the definition of nodal density as calculated by mass balance, the state 
relationship value of the nodal dimensionless density at the new time-step is assumed equal to the one 
corresponding to the new dimensionless enthalpy, as it is justified by the fact that the mass error at 
each time step is very small. 
 
For each assigned set of dimensionless parameters, steady-state conditions are calculated at constant 
dimensionless inlet mass flux, providing initialization of channel nodal variables and the value of the 
overall pressure drop across the channel to be imposed as a constant boundary condition during the 
analysis. An impulse perturbation in the outlet pressure is used to start system oscillation. 
 
In order to provide information about the linear stability of the boiling channel, the obtained 
discretized equations are then linearized by perturbation. This approach adopted by Ambrosini 2001 is 
based on the simple matrix formulation that relates the vectors of the system state variables at two 
subsequent time steps: 
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where s
ynJ 1+  and s

y nJ  are the Jacobian matrices of the non-linear discretized equations with respect 
to yn and yn+1. Considering the eigenvalues ( Ci ∈λ ) of the matrix A, the criterion ( ) 1max >= λρ A  
is the condition for the asymptotic instability. 
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The quantities 
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are useful in studying stability of small perturbation. They represent respectively a measure of the 
amplification (ZR<0) or damping (ZR>0). The period (T) and the decay ratio (DR) of the oscillations 
are: 
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The “stability plane” is the Nsub versus Npch plane, Fig. 12, and the stability is studied in the regions in 
which ZR>0. 
 
The figure concerns the Ambrosini’s analyses, where two cases are analyzed. These differ for the 
Froude number and for the friction parameters. In particular: the case (a) regards a vertical channel 
(Fr=0.033) characterized by 

hD
fl
2

=2.85 and the case (b) regards a nearly horizontal channel (Fr=105) 

characterized by 
hD

fl
2

= 0. 
 
The figures show the shape of the neutral stability, the expected separation between the density-wave 
and the Ledinegg (excursive) instability regions. Furthermore, the system condition Npch > Nsub, 
corresponds to a positive exit thermodynamic quality and the system is ‘less stable’ than in the single 
phase region. 
 

 

N
su
b 

  

(a) (b) 
 

FIG. 12. Stability map obtained by a HEM type model (Ambrosini, 2001) 
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5. SUMMARY AND CONCLUSIONS   

A non systematic overview of instabilities in single and two phase fluid-dynamic systems has been 
given. The attention is focused on measured data from complex (e.g. BWR) and simple (e.g. NC loop) 
systems in either single and two-phase flow conditions. Furthermore the bases of the analytical tool in 
the time domain that are suited for stability analysis are presented together with selected-significant 
results from the application.  
 
The overview is expected to stimulate the curiosity of the reader to learn more and more on this 
subject, also considering the referenced papers and documents. 
 

 
NOMENCLATURE 

 
Roman letter 
 
A  Cross sectional area [m2] 
B  buoyancy force [N] 
hD  hydraulic diameter [m] 
f  friction factor 
qf  power distribution factor 
F  momentum losses and friction force [N] 

glwFr /2
0=  Froude number 

g  gravity [m/s2] 
G  mass flux [kg/(m2s)] 

*** jG ρ=  dimensionless mass flux 
h  specific enthalpy [J/kg] 

f

fg

fg

f
v
v

h
hh

h
−

=
*  dimensionless enthalpy 

H  heat transfer coefficient [W/(m2K)] 
j  volumetric flux [m/s] 

0
* /wjj =  dimensionless volumetric flux 

exinK ,  singular pressure drop coefficient 

fpf

h
H Acw

LHK
ρ0

Π=  dimensionless heat transfer coefficient 

L  length [m] 

pff

pHh
MH cLA

cM
N

ρ
=  heater capacity number 

f

fg

fgf

h
pch v

v
Ahw

LqN
0

''
0

ρ
Π=  phase change number 

f

fg

fg

inf
sub v

v
h

hh
N

−
=  sub-cooling number 

nN  number of nodes 
p  pressure [kg/s2m] 
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2
0

* / wpp fρ=  dimensionless pressure 
q  flow rate [kg/m2] 

''q  heat flux [W/m3] 
Q  heat transfer per unit time and volume 
R  frictional coefficient [s-1] 
t  time [s] 

Ltwt /0
*
=  dimensionless time 
v  specific volume [m3/kg] 
z  axial coordinate [m] 

Lzz /*
=  dimensionless axial coordinate 

 
Greek letter 
 
α  thermal expansion coefficient [m] 

hΠ  heated perimeter [m] 
ϑ  temperature [K] 




≥
<= 0h if 0
0h if h*

*ϑ
 dimensionless fluid temperature 

*
hϑ  dimensionless heater temperature 
Λ  friction perimeter 
ρ  density [kg/m3] 

fρρρ /*
=  dimensionless density 

 
Subscripts 
 
f liquid phase 
fg difference between vapour and liquid 
g vapour phase 
in inlet 
ex exit 
0 reference value 
 
Superscripts 
 
H heater 
i i-th node or junction 
n n-th time level 
n+1 (n+1)-th time level 
• dimensionless value 
T transposed 
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