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Forces in plasmas
Lorentz force

Fundamental interactions:

Gravitational (Space-time curvature without using the concept of
force)

Electromagnetic [Lorentz force: F = q (E+ v�B)]
Strong & Weak (Devoid of classical limit, in principle)

In modern language, the term EM forces is mainly used in a general sense.
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What is ponderomotive force (PF)?
Why do we use PF?

PF of EM waves is a key concept in plasma physics and plays a
central role in intense laser plasma interactions.

PF arises whenever a nonuniform oscillating electric �eld is present in
a dielectric and can be seen as a slow time scale e�ect or the average
e�ect due to some nonuniformity of the hf oscillations of the electric
�eld. [Fp � �

�
q2/4mω2

�
rE 2]

Unlike the Lorentz force, the PFs are inexact, nonlinear and rather
cumbersome.

So, what are the compelling reasons for introducing PFs instead of
Lorentz force (LF)?

The answer is: To facilitate the solution of dynamical problems. The
exact behavior of a dynamical system with the simple LF is very
complex. By averaging over the period of oscillations, we obtain the
more complex PFs, but the dynamics are simpli�ed.
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Motivation

Recent experimental progress in nano-scale plasmas [APL 91, 061108
(2007)], ultracold plasmas PRL 85, 4466 (2000), spintronics [Science
294, 1488 (2001)], and plasmonics [Sci. Am. 296, 56 (2007)].

There is a possibility of observing quantum plasma e�ects through
the electron spin in regimes otherwise thought to be classical [PRL
98, 025001 (2007)].

In classical plasmas, the density 
uctuation induced by PF of EM
wave �eld leads to an electrostatic wake �eld as used in advanced
particle accelerator schemes [Bingham, Nature 445, 721 (2007)].

In other regimes, the back-reaction on the EM wave due to the
density 
uctuations leads to phenomena such as soliton formation,
self-focusing or wave collapse. Such radiation pressure-like e�ects are
widely used in high-intensity laser experiments and generalizations to
include certain quantum plasma e�ects [Shukla et al, Phys.-Usp. 53,
51 (2010)].
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Derivation of ponderomotive force
Contribution from the Lorentz force

Microscopic approach [Tskhakaya, JPP 25, 233 (1981)]

Energy-momentum-stress tensor approach [Washimi & Karpman,
Zhur. Eksp. Teor. Fiz. 71, 1010 (1976)]

Equation of motion:

dv

dt
�
�

∂

∂t
+ v.r

�
v =

q

m
(E+ v�B) (1)

Assume E = (x̂� i ŷ)E (z , t) exp(ikz � iωt)+ c.c., along B = B0ẑ,
j(1/f ) ∂f /∂z j � k, j(1/f ) ∂f /∂tj � ω. Eq. (1) gives�

∂

∂t
� iω

�
v =

q

m
E�ωcv� ẑ, (2)
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Derivation of PF (Contd.)
Contribution from the LF (contd.)

Substituting the lowest order result [Eq. (3)] into the correction term
involving the slow-time derivative, in Eq. (2)

v� � vx � ivy =
iqE�

m (ω�ωc)
(3)

we get

v� =
q

m

1

(ω�ωc)

�
iE� +

1

ω�ωc

∂E�
∂t

�
. (4)

Similarly, using Faraday's law: r� E = �∂B/∂t, we have

B� = �
ik

ω
E� �

1

ω

∂E�
∂z

� k

ω2

∂E�
∂t
. (5)
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Derivation of PF (Contd.)
Contribution from the LF (contd.): Classical PF

FC � h
q

m
v�Biz =

iq

2m
(v+B

�
+ � v �+B+) for RCP,

=
iq

2m
(v ��B� � v�B��) for LCP. (6)

Substitution of Eqs. (4) and (5) into Eq. (6) yields [Karpman & Washimi,
JPP (1977)]

FC = �
e2

2m2ω (ω�ωc)

�
∂

∂z
� kωc

ω (ω�ωc)

∂

∂t

�
jE j2. (7)
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Derivation of SPF
Contribution from the magnetic dipole force (mdf)

The spin-evolution equation:

dS

dt
�
�

∂

∂t
+ v.r

�
S = �2µ

�h
(B� S) . (8)

Linearized spin evolution equation:

(∂t � iω)S = � (2µ/�h) (B0ẑ� S+ S0B� ẑ) , (9)

where jS0j � �h/2, µ = �gµB/2, µB = e�h/2m. As before, in the lowest
order,

S� � Sx � iSy = �
2µS0

�h (ω�ωg )
B�, (10)

where ωg = (g/2)ωc . Then �nally, the expression for the perturbed spin
becomes

S� =
2µS0

�h (ω�ωg )

�
�B� �

i

(ω�ωg )

∂B�
∂t

�
, (11)
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Derivation of SPF (Contd.)
Contribution from the mdf: Spin-induced PF

FS �
2µ

m�h
hS.rBiz =

2µ

m�h
hSarBaiz

=
2µ

m�h

�
S+

∂B�+
∂z

+ S�+
∂B+
∂z

�
for RCP,

=
2µ

m�h

�
S�

∂B��
∂z

+ S��
∂B�
∂z

�
for LCP. (12)

Substitution of Eq. (11) into Eq. (12) yields

FS = �
4µ2

m�h2
S0

(ω�ωg )

�
∂

∂z
� k

(ω�ωg )

∂

∂t

�
jB j2. (13)
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Classical and spin-induced PF: Few comments

FC = � e2

2m2ω (ω�ωc)

�
∂

∂z
� kωc

ω (ω�ωc)

∂

∂t

�
jE j2, (14)

FS = � 4µ2

m�h2
S0

(ω�ωg )

�
∂

∂z
� k

(ω�ωg )

∂

∂t

�
jB j2. (15)

Eq. (15) is applicable to arbitrary EM wave propagation parallel to
B0.
The overall structure of the SPF is similar to its classical counterpart
(14).

The frequency resonances occur at ωg = (g/2)ωc .

The dependence on S0 means that spin-up and spin-down populations
drift in opposite directions relative to B0.
For ω << ωc , typically the time-derivative part is negligible, whereas
it is crucial for the classical contribution.

For ω >> ωc , jFS j / jFC j � �hk
mvp

�
1+

vg
vp

�
� �hk

mc for vg , vp � c .
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Fluid model

From Spin MHD model [Brodin & Marklund, NJP 9, 277 (2007)]

∂nα

∂t
+r � (nαvα) = 0, (16)

m

�
∂

∂t
+ vα � r

�
vα = qα (E+ vα �B)�

rPα

nα
+
2µ

�h
SaαrBa, (17)�

∂

∂t
+ vα � r

�
Sα = �

2µ

�h
B� Sα, (18)

r � E = 1

ε0
∑
α

qαnα, (19)

where µ � �gµB/2, µB � e�h/2m, g � 2.0023192.
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Equations for low-frequency response

De�ne N1,2 = nu � nd and V1,2 = (vu � vd ) /2 and n0u = n0d � n0/2.
Neglecting the thermal e�ects v2th � v2g ,

∂tN1,2 = �n0∂zV1,2, (20)

∂V1
∂t

=
q

m
El �

q2

2m2ω (ω�Ω)

�
∂jE j2

∂z
� kΩ

ω (ω�Ω)
∂jE j2

∂t

�
(21)

∂V2
∂t

= � 4µ2k2S0

m�h2ω2 (ω�ωg )

�
∂jE j2

∂z
� k

(ω�ωg )

∂jE j2
∂t

�
, (22)

∂El
∂z

=
q

ε0
(N1 � n0). (23)
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Wave equations

In the comoving frame ξ = z � vg t,

v2g
∂2N1

∂ξ2
+ω2

pN1 =
ε0ω

2
p

2mω (ω�Ω)

�
1� kvgΩ

ω (ω�Ω)

�
∂2jE j2

∂ξ2
, (24)

v2g
∂2N2

∂ξ2
= �

ε0ω
2
pk
2S0

2m2ω2 (ω�ωg )

�
1+

kvg
(ω�ωg )

�
∂2jE j2

∂ξ2
. (25)

Some Notes:

N2 ∝ jE j2, whereas N1 is non-locally related to jE j2 due to the
possible excitation of a plasma oscillation wake-�eld with a
characteristic wavelength λp � vg/ωp.

Ion dynamics is neglected with pulse lengths ful�lling Lp . c/ωpi .
That is, we consider an EM pulse interacting with a plasma metal
where ωp/2π ' 1016 s�1.
We consider ωp . kc and use the estimate ∂2jE j2/∂ξ2 �jE j2/L2p,
where Lp � k�1 is the length of the hf pulse.

GB, APM & MM (Institute) Spin quantum e�ects 05 July, 2010 13 / 21



Spin-polarization
Back-reaction on the EM pulse

In the limit ωc ! 0, (when e.g., the laser frequency >>the cyclotron
frequency) [JM� = (kgµB/2�h)∑

α
nαSα�]

jN2/N1j �
�
�hωp/mc2

�
(kLp)

2 (c/vp)
2 �ωωp/k2v2g

�
(1+ vg/vp) ,

Γ � jJM�/J�j � (�hω/mv2p )jN2/N1j.
For vg , vp � c , we have jN2/N1j �

�
�hωp/mc2

�
(kLp)

2 ,

Γ �
�
�hωp/mc2

�2
(kLp)

2 .

Spin polarization: UV-Laser of wavelength, λ = 80nm and pulse
length, Lp = 15 µm gives moderate spin-polarization (N2/N1 � 3 at
the center, Fig. 1). A longer pulse length or a shorter wavelength will
give a higher degree of spin-polarization. For an intense pulse
resulting in N2 � N1 we obtain a strongly spin-polarized plasma.
Back-reaction on the EM-pulse: XFEL with λ = 1nm, pulse length
Lp = 30 µm, and a metallic plasma density with ωp/2π = 1016 s�1

gives Γ � 3 (Fig. 2). These parameters are relevant for the XFEL at
DESY (http://xfel.desy.de). For λ = 0.1nm, Γ � 200.
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Graphical representation (Fig. 1)
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Graphical representation (Fig. 2)
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Validity of the 
uid model: Some remarks

Division of electrons in spin-up and spin-down populations. This is
suggested by the Stern-Gerlach experiment where particles passing
through (an inhomogeneous magnetic �eld) the Stern-Gerlach
apparatus are de
ected either up or down by a speci�c amount, i.e.,
spin angular momentum is quantized and can take only discrete
values. This division of electrons is common in semiconductors
[Science 294, 1488 (2001), ibid 312, 1883 (2006)].

The theoretical basis for the division is two-fold:

1 In the unperturbed plasma (before the pulse arrival), there are two
discrete spin states (up & down) relative to the magnetic �eld with
n0u � n0d � n0/2. In thermodynamic equilibrium, the latter is valid
whenever µBB0 << kBTe .

2 Spin coupling of the electrons to the wave magnetic �eld is of
opposite signs depending on the unperturbed spin states.
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Some remarks (Contd.)

The discrete initial states prevent the two spins from mixing.
However, spin-
ips due to e.g., collisions can, in principle, mix the up
and down states too fast. For signi�cant spin 
ips to occur, we must
have νsp > vg/Lp. In the speci�c example, vg/Lp & 1014Hz, and
hence neglected the spin-
ips [Quantum Statistics of Nonideal
plasmas, Springer, 2005], and the identity of the spin states can be
retained for a su�cient time.

Since the external magnetic �eld is considered constant and thus
provides no magnetic dipole force, it is not responsible for the spin
states, rather the separation is due to the inhomogeneous wave
magnetic �eld. So, our results will be valid still for B0 = 0. The
importance of the external magnetic �eld is that it a�ects the
transverse wave modes and determines the spin-precession frequency.
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Some remarks (Contd.)

We have omitted quantum e�ects like particle dispersion (Bohm
potential), Fermi pressure, and considered only the spin e�ects. For
the speci�c example considered here, these e�ects are shown to be
negligible as VF is compared to vg (� c). Furthermore, the particle
dispersion only a�ects length-scales that of the order of the Compton
length, which is considerably shorter than the pulse length considered
in our example.

Whether nonrelativistic treatment is valid. Due to weak �eld
expansion of the wave amplitude, the electrons are not trapped in the
potential well of the electrostatic oscillations. Hence the velocity of
the electrons is much smaller than vp or vg of the electrostatic
oscillations that are induced, and is essentially limited by the electron
quiver velocity which is much smaller than c . Moreover, the
relativistic nonlinearities are cubic, and our main focus in this work is
with a quadratic one associated with the PF.
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Concluding Remarks

Generalization of the classical ponderomotive force to include the
electron spin e�ect in a magnetized plasma.

SPF is applicable to arbitrary EM waves propagating along an
external magnetic �eld. In the limit of ω >> ωc , the spin
contribution to the ponderomotive force has opposite directions for
RCP and LCP waves. Thus, an experiment on spin-polarization along
these lines must consider CP rather than linearly polarized light.

SPF can induce a strong spin-polarization in a plasma even if the
initial up and down states of electrons are equally populated. A
longer pulse length (> UV-laser) or shorter wavelength can give rise a
higher degree of spin-polarization.

In an unmagnetized plasma, the nonlinear back-reaction from the spin
induced current can be even larger than the classical one when the
EM pulse has su�ciently short-wavelength.

GB, APM & MM (Institute) Spin quantum e�ects 05 July, 2010 20 / 21



Open Issues

Generalizations to, e.g., arbitrary direction of propagation.

Inclusion of relativistic e�ects may play a role for the full dynamical
evolution.

SPF can well be applied to nonlinear lf propagation of Whistler waves,
Alfv�en waves etc.

Instead of producing a spin-polarized plasma, another use of PF may
be `Isotope Separation' [Weibel, PRL 44, 377 (1980)].
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