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® The conventional description of the collective behavior of

charged-particle beams is usually given in terms of the
Vlasov equation.

® An alternative non-conventional description is based on a
mathematical formalism fully similar to the ones used for the
propagation of e.m. radiation beams in nonlinear media a well as the
nonlinear dynamics of the Bose-Einsten condensates.

® In this talk, a tutorial presentation of such a non-conventional
description is given.



Let us consider a paraxial charged-particle beam travelling in
vacuo along the z-axis with speed Bc (f =1)

In the comoving frame, the transverse (x-y plane) motion of a
single particle of a paraxial beam is nonrelativistic.

In particular, if the beam has a finite transverse temperature
(transverse thermal spreading), paraxial approximation means:

transverse thermal velocity << ¢

Adopting the electron optics language we can say: the slopes of
the electron rays (single particle trajectories) with respect to z-
axis are very small:




(X, p, ) and (y, p, ) are pairs of canonical
conjugate variables and the beam transverse
motion affected by the thermal spreading should
be in principle described statistically by the first-
and the second-order moments of the classical
phase-space distribution function p(x, p_.y, p,.Z)
for the electronic rays.

p(X, p,.y, P,-2) = probability density of finding an
electronic ray at the transverse phase space location
(X, p,»Y> P,) and time t=z/(3 c).



One is naturally lead to consider the transverse thermal
spreading as a diffusion process in the real space. In
particular, once p(X, p,.¥, p,.z) is found, its second-order
moments can be introduced:

(z)= <(G-<;>)>>172
6,(2)= <(-<j>)
rms dispersion of the j-th electronic ray positions
(z) = <(p.-<p.>)*>1"2
G,(2) = <(p;-<p;>)
rms dispersion of the j-th electronic ray slops

—<(1-<1 _ 1/2
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correlation term for the j-th transv. direction
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Diffusion coefficient associated with the j-th
transverse direction or rms emittance associated
with the j-th transverse direction:

£(z) = 2[cX(2) 5, () . Gjpjz(z)]uz

Let us assume, for the sake of simplicity, that
€, =& =€
For free motion or in the presence of linear

(elastic-like) forces ¢ is constant of motion
(independent of z)




It is possible to show that, during the free beam
motion, c; satisfies to the following envelope
equation (J=Xx,y):

2
d o j 52
2 3
dz 4o
(Pinney equation)

= ()

which is in full agreement with the experimental
observations (see, f.i., the final focusing stage of
linear colliders).

The quantity 6= (c,” + c,?) * (the effective
transverse beam width) obeys to a similar
differential equation.




Since we are trying to describe the thermal
spreading of the beam as a diffusion process, it is
“natural” (but not obvious!) to suppose the
existence of a real function {(x,y,z), defined in the
(x,y) configuration space (z plays the role of
timelike coordinate) satistying the following
diffusion equation:

of ¢

=V
oz 2 Lf

J(x,y,2)= j P, Y, P, P,»Z)ap.dp,

f(x,y,z) = classical probability density of finding an electronic ray
at the transverse configurational position (x,y) and time t=z/f3 ¢



Assuming that initially (z=z, ) the beam has a
Gaussian transverse shape, a Gaussian non-

stationary normalized solution of the diffusion
equation can be found:

exp[—x* /20,7 (2) -y /20, (2)]

f(x,y,z)=

V276 ,(2)0,(2)
where
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NOT IN AGREEMENT WITH THE
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2
‘LP(X s V,Z )‘ OC transverse density profile of the beam particles

V(,v,2) = i, . ) expl =0 3,2)]

_”‘P(x, v, Z)‘zdxdy = J-n(x, v, Z)a’xdy =1

Fluid interpretation:

n (X » Vo2 ) — transverse probability density of the beam particles

V(x s Vo Z ) =V J_Q = transverse current velocity



Gaussian solution for the BWF
exp[—x’ /40 (2)—y°/ 4o ,(2)]
J270 (2)0,(2)
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Y(x,y,z)=

exp[é O(x, y,2)]
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Qualitative rappresentation
(paraxial approximation)
beam travelling in vacuo.

generic electron ray

of the free envelope motion
of a cilindrically-symmetric

o(zy) = 0y

minimum spot size

v




Qualitative envelope evolution of a cilindrically-symmetric
Gaussian beam propagating in vacuo.
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TRANSVERSE NONLINEAR BEAM
DYNAMICS IN A COLD PLASMA

PHYSICAL REVIEW A VOLUME 45, NUMBER 6 15 MARCH 1992

Self-consistent interaction between the plasma wake field and the driving relativistic electron beam
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It is shown that the self-consistent interaction between wake fields and the driving electron bunch in a
collisionless, unmagnetized, overdense (n, =>n, ) plasma is governed by three coupled equations. In the
long-beam limit, they reduce to a pair consisting of an appropriate nonlinear Schrodinger equation for
the beam wave function W, and an equation for the wake-field potential that is driven by the transverse
profile of the beam density, which is proportional to |¥|?. The pair of equations are suitable for studying
the beam self-focusing (self-pinching equilibrium) for the case in which the beam-spot size is larger
(smaller) than the wavelength of the wake fields. It is demonstrated that our self-consistent theory,
which is based on the recently proposed thermal wave model for relativistic charged-particle beam propa-
gation, is capable of reproducing the main results for the beam-filamentation threshold and the self-
pinching equilibrium condition that are already known in the conventional theory of the beam self-
interaction in collisionless plasmas.

PACS number(s): 41.85.—p, 03.65.—w, 52.40.Mj, 29.17.+w



TRANSVERSE NONLINEAR BEAM
DYNAMICS IN A COLD PLASMA

* A cilindrically symmetric Gaussian relativistic
charged particle beam, with transverse rms R,
(initial beam radius) and unperturbed number
density n_,, travelling along the z-axis with
velocity ¢ (B=1) and transverse emittance &.

* At z=0 the beam enters a semi- infinite slab of
cold unmagnetized plasma with unperturbed
number density n , in "overdense condition™

(n,,<< npo).



* The beam length ¢ >> kp (the plasma density perturbation n, is
produced adiabatically) and therefore

e ny(1,5) ~ q Nyy(1,0),

r=cilindrical radial coordinate, & = z-fct

e According to the theory of plasma wake field excitation:
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R} (&E)=R; +2A(&E,)

A<O0: self-focusing
A>0: self-defocusing

A=0

: stationary solution, Weibel instability threshold:
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(b). k,R<<l, d’R = 2 2k <]“P(r',§){2r'dr'>
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dR
—=0 = Bennett self-pinch equilibrium
S condition:
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* Aberrationless approximate solution of NLSE:
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Dear Padma
HAPPY BIRTHAY TO

YOU!




