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• The conventional description of the collective behavior of 
charged-particle beams is usually given in terms of the 
Vlasov equation. 

• An alternative non-conventional description is based on a 
mathematical formalism fully similar to the ones used for the 
propagation of e.m. radiation beams in nonlinear media a well as the 
nonlinear dynamics of the Bose-Einsten condensates.

• In this talk, a tutorial presentation of such a non-conventional 
description is given.



Let us consider a paraxial charged-particle beam travelling in 
vacuo along the z-axis with speed ��c (� �1)

In the comoving frame, the transverse (x-y plane) motion of a 
single particle of a paraxial beam is nonrelativistic. 

In particular, if the beam has a finite transverse temperature 
(transverse thermal spreading), paraxial approximation means: 

transverse thermal velocity << c
Adopting the electron optics language we can say: the slopes of 
the electron rays (single particle trajectories) with respect to z-
axis are very small: 

|px |=  |dx/dz|<<1,    |py |=  |dy/dz|<<1



(x, px ) and (y, px ) are pairs of canonical
conjugate variables and the beam transverse 
motion affected by the thermal spreading should 
be in principle described statistically by the first-
and the second-order moments of the classical 
phase-space distribution function �(x, px,y, px,z)
for the electronic rays.

�(x, px,y, px,z) =  probability density of finding an 
electronic ray at the transverse phase space location 
(x, px,y, px) and time t=z/(� c).



One is naturally lead to consider the transverse thermal 
spreading as a diffusion process in the real space. In 
particular, once �(x, px,y, px,z) is found, its second-order 
moments can be introduced:

�j(z)= <(j-<j>)2>1/2

rms dispersion of the j-th electronic ray positions

�pj(z) = <(pj-<pj>)2>1/2

rms dispersion of the j-th electronic ray slops

�jpj(z) =<(j-<j>)(pj-<pj>)>1/2

correlation term for the j-th transv. direction

j = x,y



Diffusion coefficient associated with the j-th
transverse direction or rms emittance associated 
with the j-th transverse direction:

�j(z) = 2[�j
2(z) �pj

2(z) - �jpj
2(z)]1/2

Let us assume, for the sake of simplicity, that 

�x = �y = �

For free motion or in the presence of linear 
(elastic-like) forces � is constant of motion 
(independent of z)



It is possible to show that, during the free beam
motion, �j satisfies to the following envelope 
equation (j=x,y):

0
4 3

2

2

2

��
j

j

dz
d

�
��

(Pinney equation)

which is in full agreement with the experimental 
observations (see, f.i., the final focusing stage of 
linear colliders).
The quantity �= (�x

2 + �y
2) ½ (the effective 

transverse beam width) obeys to a similar
differential equation.
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Since we are trying to describe the thermal 
spreading of the beam as a diffusion process, it is 
“natural” (but not obvious!) to suppose the
existence of a real function f(x,y,z), defined in the 
(x,y) configuration space (z plays the role of 
timelike coordinate) satisfying the following
diffusion equation:

yxyx dpdpzppyxzyxf �� ),,,,(),,( �

f(x,y,z) = classical probability density of finding an electronic ray
at the transverse configurational position (x,y) and time t=z/� c
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where

Assuming that initially (z=z0 ) the beam has a 
Gaussian transverse shape, a Gaussian non-
stationary normalized solution of the diffusion
equation can be found:
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NOT IN AGREEMENT WITH THE 
EXPERIMENTAL OBSERVATIONS

IN AGREEMENT WITH THE 
EXPERIMENTAL OBSERVATIONS
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� � � � 1,,,, 2 ��� �� dxdyzyxndxdyzyx

� � �zyxn ,, transverse probability density of the beam particles

Fluid interpretation:

� � �
� 	�zyx ,,V transverse current velocity
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Gaussian solution for the BWF

� � � �zz
zR

y
zR

xzyx yx
yx

��� ����
)(2)(2

),,(
22

� � � �
� �

dt
zd

zzR
j

jj

�
�

11
�

� �
� �zdt

zd

j

j
2

0

4�
��

��

yxj ,�



Qualitative rappresentation of the free envelope motion
(paraxial approximation) of a cilindrically-symmetric
beam travelling in vacuo.

z

generic electron ray

�(z0) = �0
minimum spot size



Qualitative envelope evolution of a cilindrically-symmetric
Gaussian beam propagating in vacuo.

� � � �2
0

2
0 2 zzEz ��� ��

0�

� �z�

0z z



TRANSVERSE NONLINEAR BEAM 
DYNAMICS IN A COLD PLASMA



TRANSVERSE NONLINEAR BEAM 
DYNAMICS IN A COLD PLASMA

• A cilindrically symmetric Gaussian relativistic 
charged particle beam, with transverse rms R0
(initial beam radius) and unperturbed number 
density nb0, travelling along the z-axis with
velocity �c (��1) and transverse emittance �. 

• At z=0 the beam enters a semi- infinite slab of 
cold unmagnetized plasma with unperturbed 
number density np0 in "overdense condition" 
(nb0<< np0). 



•  According to the theory of plasma wake field excitation:
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• The beam length �z>> %p (the plasma density perturbation n1 is 
produced adiabatically) and therefore 

e n1(r,�) � q nb0(r,�),    

r=cilindrical radial coordinate,   � = z-�ct
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A>0: self-defocusing
A=0: stationary solution; Weibel instability threshold:
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(b). ,1++Rk p � �� ���
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Bennett self-pinch equilibrium 
condition:
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• Aberrationless approximate solution of NLSE:
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Dear Padma
HAPPY BIRTHAY TO 

YOU!


