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Dispersion relation for low frequency electrostatic waves, with
Boltzmann distributed electrons, assuming quasi-neutrality and
magnetized cold 1ons, with €Q,<Q

o 0? - Q% )-C2 (K0 + ki (0* 02 )= 0

Limiting case a), ion cyclotron waves: @ =’ +C’k’

Limiting case b), ion sound waves: o° = C’ k||2
For k? =0 we have (a)2 — Qi.)(a)z - kHzCSz): 0, where the
ion sound branch crosses the electrostatic ion cyclotron

resonance at k =Q _/C =1/a,, where a, is the effective

ion Larmor radius
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Plasma with electron temperature striations, 7,(x)
with X 1 B. General linearized fluid model for the
clectrostatic potential, with conditions as before:

o' T(x)d (., & , 8
—— Vit— v +Q
a’ M aﬂ[ 622 )
T,(x) &

% M 822'7”20
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Fourier transform in time and z-coordinate; o, &, .
Normalized eigenvalue equation:

d’ . ] T .
D W:(Qz_l) D . 4
dg y- T,(5)

T, =~ (max T, (x) + min, ()
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High frequency, o > Q2 ., 1.e. ° > I, "leaking” eigenmodes

Cl?>

— — —Q=7/4]

‘
.......... yi
f ! M\ /

wy oo Y v O S T

5 10

g o

© Research Section for Plasma and Space Physics ICTP, July 2010 8




% UNIVERSITETET
| OSLO

Electron temperature striation (top), and lowest order waveguide-
mode (trapped) eigenfunctions, w < Q_, 1.e. £° < [. There may

also be higher order eigenfunctions, with one or more zero-
crossings, depending on T(x).

'I ........ .............. 0=0 72:1.3942054541—
S 7 A\ Q=1/4v"=1.3804796962

— — —Q=1/2v=1.3311333958

v
o
o

Q=3/4"=1.2005565072
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“Particle-in-cell (PIC) simulation of the propagation of linear 1on
waves 1n an electron temperature duct (7, = 25 T,), for two magnetic

field intensities:

d(x,z, T=80 Q:i) ®(x,z, T=80 Q:i)

300

-1 -0.5 0 0.5 1
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summary:

For w > €. we have a continuoum of eigenvalues y with
corresponding global eigenfunctions.

For w < .. we have a discrete set of eigenvalues
minV(T/T,) <y <maxV(T,/T,) with corresponding
localized eigenfunctions.

For w < Q. we also have a continuoum of eigenvalues

y <minV(T /T,) with corresponding global eigenfunctions.
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Nonlinear Waves

These waveguide modes have many interesting
nonlinear wave properties, such as wave particle
Interactions, wave-decay, etc.

Here we amphasize only one of these properties;
collisionless shock formation.
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Simple nonlinear waves: LA (u+ CS)aiu =0
X

ot

Wave breaking in the frame moving with C.:

Signal
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Burger’s equation, with kinematic viscosity v:
0 0 0’

—utu—u=v—u
ot Ox Ox
Shock solution; a balance between harmonic generation

by the nonlinearity and dissipation of short scales.

Assume a monotonically varying, step-like, perturbation
propagating with velocity U,

d d’
Uy =2
(u )dxu dxzu

There exist a position X = X, where d”u/dx* =0 and
du/dx = 0. Then UZM(XO) .
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Solution obtained for instance by Cole-Hopf transformation:
A

1+ exp((x —Ut)

with 4 = 2U. The shock width, in particular, is: v/U = % (v/A)
The shock velocity 1s half of the peak velocity-perturbation.

h(x—Ut) = 7

v
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Postulate in Fourier space:

g”ﬁ O‘k[||®”|]_ ( || Q]
or 2 (“) C.

where 7(k) 1s the time 1t takes a "leaking”
mode to escape from the waveguide.

We introduced H(x) as Heaviside’s step
function, while a originates from an
expansion 1n eigenmodes.
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‘Shock formation, propagation, and shock fitting
in PIC-simulation (no quasi-neutrality assumed):

— =50 ||
=80
—T=110| |
1=140
— =170

Fit result: dn./n =0.24+0.002, 25:82411 A=70+1

0
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Shock thickness for varying parameters:

Shock thickness A [C So/Qd]

147 I | _Te/Ti=25]Qd/Qpi=1/2_
1L | T/T=75Q/Q =172,
| T T=250 /0 =1/4
2 .............................. | ...................
0 0.05 0.1 0.15 0.2 0.25 0.3
Bni/ n,
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Shock velocity for varying parameters,
T/T;=25 75and Q,/ Q= 72, /s

Shock velocity U [C SO]

I'5 ........... I T I I R e
| | | | | —a=
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Supplementary data, with different fitting-model.:

Shock velocity U [| ini] Shock thicknessD[C W ]

T /M=25W /W =1/2
p— c pi

T T=75W_W =1/2
- e i ¢ pi

T /T=25W W =1/4]]
T— w0 c pi

T /M=25W /W =1/2
e i c = pi

107

0 0.05 0.1 0.15 0.2 025 0 0.05 0.1 0.15 0.2 0.25
d ni/n0 d ni/n0
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The processes are time reversible: you can
’run the movie backwards” at any time you
choose, and everything remains physically
acceptable, but the observed phenomenon
has nevertheless all the basic features of a
classical collisional, or dissipative, shock.
This observation remains true also 1n a fluid
model of the problem, although here 1t 1s
illustrated by a PIC-particle simulation!
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Assume 7 = D/u, where D is the width of the striation.
Model equation for propagating shock-like structure:

(w—-U)Ly = T 1(9 ) i (k) sin(k x) dk.

dx Q./C

Cl N

Within this model we have U = u(x=0).

Note that the group velocity u,will in general have D as
a parameter!

To lowest order we have u = C on/n,= C,ep/T,.
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As a test-function use u(k)=Ae O Ji.e. U=a A,
with a = const.

4 (M—U)iu ~—A4 I 4 () e cos(k x)dk.
dx dx . D
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From the model equation we have atx = 0

2 o0
u!(x — O) 2 ~ é A u 7/ CS 6_%72617/.
( ) ’
ci/Cs

A) " DA,

ci

. A A _[AQ. DQ. .
ile. —~—F < < |, recalling
C. D C, C.

that D enters u . as a parameter
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Summary:

1) The existence of trappen waveguide modes 1n striated electron
temperatures was demonstrated 1n a linear fluid model for
magnetized plasmas.

2) By simple physical arguments we gave reasons for the
existence of shock-like nonlinear waveforms. The dissipation
mechanism 1s purely time-reversible.

3) By numerical PIC-plasma simulations we demonstrated the
existence of such shock-solutions, and gave empirical relations
for the amplitude dependence of some basic parameters.

4) A simple fluid model explains parts of these amplitude
variations.
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Thank you for your attention
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