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Abstract 

  The magnetized plasma-wall transition (MPWT) layer occurring, e.g., near a  tokamak 

divertor, typically consists of three dictinct sublayers: the Debye sheath (DS), the magnetic 

presheath (MPS), and the collisional presheath (CPS), with characteristic lengths  (electron 

Debye length),  (ion gyro-radius), and (smallest relevant ion collision length), 

respectively. For analytical simplicity one usually assumes the ordering  <<  << λ, or, 

equivalently,  and  (“asymptotic three- scale (A3S) limit”), 

in which the three sublayers are precisely defined. In the present work the equations and 

length scales governing the transition, or the “intermediate” regions between neighbouring 

sublayers (DS–MPS, MPS–CPS) in the A3S limit are derived, allowing one to avoid the 

singularities arising from the  and  approximations. The MPS entrance 

and the related Bohm-Chodura condition is defined in a natural way. It is found that in the 

hydrodynamic  approximation the intermediate scales and equations have a universal 

form and a similar structure not only for the MPS–DS and CPS–MPS transitions, but also for  

the DS–CPS transition in the non-magnetized case. 

 

 

 

 



 

 1. Introduction 

  In the presence of an oblique magnetic field,  the plasma-wall transition (PWT) layer can be 

divided into three regions (Fig. 1), namely: the Debye sheath (DS), the magnetic presheath 

(MPS) and the  collisional presheath (CPS) with characteristic length scales   (Debye 

length),  (ion gyroradius) and  (relevant collisional or geometrical length), respectively 

[1]. For the limiting ordering   (“asymptotic three-scale (A3S) limit”), i.e. for 

 → 0  and, (which must be clearly distinguished from 

the  and  approximations, respectively) the DS can be characterized as 

collisionless  and non-neutral (   with     the ion and electron  number 

densities, respectively),  the MPS as collisionless and quasi-neutral ( ), and the CPS 

as collisional and quasi-neutral [2]. In the classical PWT problem without magnetic field,  

monotonicity  of the electric potential requires the fulfilment of the  non-marginal Bohm 

condition at the  DS-CPS  interface. Chodura [2] was the first to investigate the quasineutral 

MPS in the case of an oblique magnetic field without any collisional effects, i.e. in the A3S 

limit. 

   The DS and MPS regions are separated by the “sheath edge”,  or “sheath entrance ( SE)” 

which in the A3S limit is characterized by the “marginal Bohm criterion”, 

 , where  is the z-component of the ion fluid velocity,  is the ion-

sound velocity, k  is the Boltzmann constant, γ is the local ion polytropic coefficient,   is 

the electron screening temperature and  is the  ion temperature [3]. In this limit the sheath 

edge appears as a field singularity if viewed on the MPS scale, and as lying at infinity if 

viewed on the DS scale. The MPS and the CPS are separated by a similar but less known 



boundary surface, called  the “MPS entrance (MPSE)”. Below we will show that quite in 

analogy with the DSE, the MPSE can be defined in the A3S limit as a surface were the 

electric field has a singularity if viewed on the CPS scale and lies at infinity if viewed on the 

MPS scale. The condition satisfied at the A3S MPSE is the “Bohm-Chodura condition”  

 [2, 4], where  is the ion flow velocity component along the magnetic field. It 

easy to see that the dominant effect of the MPS is to deflect the ion orbits in such a way that 

the velocity component   can fulfil the Bohm condition at the DS entrance [1, 4]. In the 

absence of a magnetic field, or in the presence of a magnetic field perpendicular to the wall, 

the magnetic presheath does not exist as a distinct region at all.  

      In the present paper we analyze the MPS-CPS and DS-MPS transition (intermediate) 

regions in the A3S limit. The equations bridging (or “matching”) these regions and their 

characteristic lengths are determined. We have found that the both of these transitions can be 

described by one and the same Painlev  equation, quite similar to the DS– CPS transition of 

the unmagnetized PWT layer.  Hence one can say that the Painlev  equation plays a universal 

role in the matching procedure in the hydrodynamic description. It is interesting to note, 

however, that in the unmagnetized PWT the Painlev  equation in fact represents the Poisson 

equation, while in our analysis of the MPS-CPS transition we have used the quasineutrality 

condition (instead of the Poisson equation) from very beginning of our analysis. 

   We have also found that the scale length  of the intermediate region between any two 

neighbouring  regions (denoted as 1 and 2 and having characteristic lengths  and 

,respectively,  with  << ) has the universal  form   earlier found  also 

for the DS–CPS matching of the unmagnetized PWT layer [4]. 

 

 



2. Model and basic equation 

The problem considered is one-dimensional, with the z axis perpendicular to the wall surface. 

The latter is placed at   and the plasma occupies the region  0z . The electric potential 

Φ  decreases towards the wall monotonically. We assume a uniform magnetic field  lying 

in the xz plane and making a small angle  with the wall (see Fig. 2). The thermal motion 

of ions is neglected, 0iT , whereas  the electrons are the Boltzmann-distributed,

.  The ions are assumed to be produced by electron-impact ionization 

(accounted for by the source term  in the ion continuity equation, where  is the 

ionization frequency), and to undergo charge-exchange collisions with the neutrals (with 

frequency ). To describe the MPWT layer we start from the ion fluid equations  

  

 

 

 

 

where    is the ion cyclotron frequency. In the dimensionless variables 

 

the  continuity,  ion motion and  Poisson equations (1) – (5) acquire the form 



 

 

 

 

where    is the “ionization length” and the three equations for the ion velocity 

components  have been  reduced to the single equation  (8), with 

 

         

  The wall is assumed to be completely absorbing. Therefore one may formulate an eigenvalue 

problem originating from the “plasma balance”, i.e.,  the balance between  ion creation due to 

ionization and ion absorption at the wall. Physically this eigenvalue represents, in fact, the 

ionization rate which is necessary to fulfil the plasma balance [5]. Here we do not consider 

this eigenvalue problem but are only interested in the analytic investigation of the time-

independent MPWT sublayers and their analytic matching, deferring the eigenvalue problem 

to future investigations. 

3. Analysis of the CPS and  MPS regions and their matching 

  (3.1) CPS region in the  and  approximation. The CPS and the MPS  

are both quasineutral and therefore . In the CPS region the relation 

 

is  fulfilled. Introducing   as the position variable in “CPS normalization”,  and 

taking into account the smallness of the parameter  we find from (7) – (10) 



 =  

From this equation it is obvious that at the point in the CPS region where , or when 

the ion velocity along the magnetic field line      (  , see also Eq. (17) 

below)   is equal to one, 

 

the value    and also the electric field  have a singularity. This point we 

define as the MPS entrance (MPSE).  Relation (13) in fact represents the Bohm-Chodura 

criterion for the ion velocity in its marginal form. This new definition of the MPSE  is quite 

analogous  to the definition of the DS entrance in the unmagnetized PWT layer [2, 4]. Close 

to the MPSE   from the CPS side, when  Eq. (12) acquires the form 

 

where    

  (3.2) MPS region.  

  (3.2.1) As  mentioned above, the characteristic scale length of the MPS is of the order of the 

ion gyro-radius, so that for MPS analysis it is convenient to introduce the “MPS – 

normalized” position coordinate  ζ =  . Keeping in mind the smallness of the parameters  

= 0 and,  , the system (7) – (10) can be reduced to the single equation 

 

where  the relations 

 



and    have been used. Integrating Eq. (15) twice and using the boundary 

conditions, 

 

we  find [4] 

  

 

where                       

 

The function satisfies the following relations 

 

 

 

 

  (3.2.2). First we analyze the region close to the MPS–DS interface from the MPS side. From  

Eqs. (16) and (18) it follows that at  the electric field runs into a singularity. The 

corresponding point defines the DS entrance (DSE). The equation describing the region close 

to the DSE from the MPS side,  then acquires the form 

 

The formal similarity with Eq. (14) is obvious. 



  (3.2.3). Now we investigate the region close to the CPS–MPS interface from the MPS side.  

For small velocity shift  , which takes place at  from (18) – 

(22) we obtain the equation 

 

Hence because    for the monotonic decay of the potential at (according 

to Eq. (16)   – , where    is the potential at the MPSE)  the Bohm – 

Chodura criterion, must be fulfilled in the non-marginal form:  Eq. (25) demands supersonic 

flow along the magnetic field lines. The same result was derived by Chodura from 

the different arguments based on plasma dispersion relation [2, 4].  

  (3.3) Matching of the MPS and CPS regions.  As it is shown above, the equations (14) and 

(25) (and therefore their solutions), describing separately the CPS and the MPS sublayers at 

the vanishing parameter   0,  do not match smoothly:  at the MPS entrance from the 

CPS side the electric field runs into a singularity indicating that the subsequent interface is 

infinitely thin on the CPS scale ; while from the MPS side (it means on the MPS 

scale ) the MPS entrance is shifted in the infinity , where the electric 

field is zero . As we see the behaviour of plasma characteristics at the different 

sides of the CPS – MPS interface is quite similar to the one observed at CPS-DS matching in 

the unmagnetized PWT layer [4, 5]. Therefore we can follow the procedure used there.  

The matching of the CPS and the MPS sublayers for small but arbitrarily finite 

 requires some common basis for both sublayers to be described simultaneously. For this 

purpose we try to construct an equation for a space region termed as “intermediate region”, 

which exists between the two regions and where the properties of both regions co-exist. In 



principle, the equation for the intermediate region should consider the collision effects of the 

CPS (which are absent in the MPS) as well as take into account the ion gyro- motion in the 

magnetic field (which is neglected in the CPS). Hence both regions must be  treated on same 

appropriate scale for  better comparison of their involvements. So we introduce the 

normalized coordinate    for the intermediate region, with  the “intermadiate” 

scale length   being from the supposed range   Under these  restrictions  

we obtain from (7) – (10) an equation which bridges the CPS and the MPS sublayers: 

 

 

In fact, assuming formally    we obtain Eq. (12). If    then (26) reduces 

to Eq. (15). In addition to the normalized length scale, we introduce in the intermediate region 

the normalized velocity    according to the relation .  By appropriately 

choosing the characteristic scale    and the coefficient    we can make the contribution of 

the collision effect (the rhs of Eq. (26)) to  have the same order as the contribution of the ion 

gyro-motion (the first term in the lhs of Eq. (26)). Assuming the contributions of every term 

in (26) to be equal we find 

  

We see that the powers in (27) are the same as those obtained for the problem of the CPS–DS 

matching in the unmagnetized PWT layer [4]. The intermediate-region equation (26) can be 

represented in the form 

 



where    is the value corresponding to the MPS entrance.  

 4. Analysis of the DS region and its matching with MPS 

   When traveling from the unperturbed plasma to the wall, the ions are first accelerated along 

the magnetic field fines in the CPS. Then, in the MPS they are progressively reoriented 

towards the wall.  And finally, in the DS, they are strongly accelerated in the direction normal 

to the wall. The DS entrance from the MPS side in the  approximation has already 

been defined above (see section (3.2.2.)). On the MPS scale it is a singular point of the 

electric field. In the approximation  and  the behaviour 

of ions in the DS is described by the equations 

 

 

 

which follow from the system (7) – (10). In (29) – (31) the dimensionless coordinate  

  is introduced and also the Poisson equation rather than the quasineutrality condition is 

used. In the sheath variable  the DSE is shifted to the infinity ( ),  where  

, and  ( and  are the potential and the ion velocity at the DSE) [4, 5]. In the 

region close to the  DSE from the DS side Eqs. (29) and  (30) give 

 

and  for the potential we obtain the equation 

 



  Hence the Bohm condition must be fulfilled in the non-marginal form,  , Eq. (33)  

formally coincides with Eq. (25), describing the ion velocity at the CPS–MPS interface from 

the MPS side. Moreover the situation is quite analogous to the fracture on the shape of the 

electric potential at the CPS-MPS interface: on  the MPS scale  the electric field in the  

 and   approximation again runs into a singularity, while on the DS scale  the 

MPS–DS interface is shifted to infinity,    where the electric field according to 

Eq. (33) tends to zero [6]. Therefore, for matching such distinctly different sublayers as the 

MPS and the DS (the MPS is quasi-neutral, while in the DS there is space charge and the 

influence of the magnetic field is negligible), we can repeat the procedure used for matching 

the CPS with the MPS given above in section (3.3).  

  To bridge the MPS and the DS we again assume the existence of an intermediate region 

between them.  Both MPS and DS are collisionless in their bulks thanks to the smallness of 

parameters  and  :     and .  Introducing the 

normalized coordinate,  , quite analogous to [4] we can construct the equation, 

which describes the properties of  both sublayers.  

 

In deriving this equation the relations   and –  have been 

are used,   is the DS entrance position in the limit  and  . For 

  Eq. (34) reduces to the equation describing the DS in the region close to its 

entrance (see Eqs. (32) and (33) with  when in the Poisson equation (33) the third 

term in the rhs of (32) is taken into account). For the case when  , Eq. (34) gives a 

result which correctly describes the MPS at the DS entrance (cf., Eq. (24)). By appropriately 



choosing the characteristic scale length  we can make the contribution of the magnetic 

field to have  the same order as that of charge separation. For the renormalized potential  

    we obtain from (34)  

 

The intermediate scale-length has the form 

    and     .               (36) 

The similarity with (27) is obvious. The intermediate equations (28) and (35) both represent 

the Painlev  equation. By introducing  appropriate new variables one can represent these 

equations  in the  form 

 

 Analytic and numerical investigation of the Painlev  equation can  be found in [4, 5, 7]. In 

Fig. 3, the solid line shows the solution of Eq. (37), which obviously  It is obvious bridges the 

solutions of the neighbouring regions.  

5. Summary and conclusion 

  In the unmagnetized PWT layer the Painlev  equation, which governs the intermediate 

region between the CPS and the DS,  in fact represents Poisson’s equation [4], In our analysis 

of the CPS –MPS transition, on the other hand, we have used the quasi-neutrality condition  

(instead of  Poisson’s equation) from the very beginning, again obtaining  the Painlev  

equation for the CPS-MPS intermediate region. 

  The intermediate scale of the DS-CPS transition without magnetic field  was found in the 

form    [4].  According to our results (27) and (36), the dependence of the 

characteristic scale-lengths on the sublayers’ parameters for the magnetized PWT is quite 

similar. These findings indicate that in the hydrodynamic,  approximation the 



intermediate scale between two sublayers 1 and 2 with characteristic lengths  and  

  has the general form  . 

  Apparently both the CPS-MPS and  the MPS-DS transitions are described by the Painlev  

equation (see (28) and (35)), quite similar to the case of the unmagnetized PWT layer [1]. 

Hence one can say that at least for the cold-ion hydrodynamic approximation the Painlev  

equation plays somewhat a universal role in the matching procedure. 
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Figure captions 

Fig.1 Structure of the MPWT. 

Fig.2  MPWT geometry. 

 

Fig.3  Matching potential  on the intermediate scale  

           (see Eq. (37)). The point  corresponds to the  

           DSE (or MPSE). The curve  describes  

           the potential in the DS region close to the DSE (or  

           in the MPS region close to MPSE). The curve   

           corresponds to the MPS region close to the DSE  

           (or to the CPS  region close to the MPSE) . 
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