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Abstract. An earlier elaborated model of the electron, being based on a revised
quantum electrodynamic theory, is further investigated in terms of an improved
numerical iteration scheme. This point-charge-like model is based on the “infinity”
of a divergent generating function being balanced by the “zero” of a shrinking
characteristic radius. This eliminates the self-energy problem. According to the
computations, the quantum conditions on spin, magnetic moment, and magnetic
flux, plus the requirement of an elementary charge having the experimental value,
can all be satisfied within rather narrow limits by a single scalar parameter. The
revised model prevents the electron from “exploding” due to its eigencharge.

1. Introduction
The vacuum is not merely an empty space. According to quantum mechanics
there is a nonzero level of the ground state, the zero point energy. With this as
an incitement, a Lorentz and gauge invariant revised quantum electrodynamic
theory has been based on the hypothesis of a nonzero electric field divergence in
the vacuum state [1–5]. Due to this additional degree of freedom, a space-charge
current arises in the resulting field equations, beside the displacement current. As
compared to Maxwell’s equations, new results and applications are then obtained,
such as those of steady electromagnetic states and modified electromagnetic wave
phenomena. An electron model further results from the steady states, having a
net integrated electric charge. In the model relevant quantum conditions have
been imposed on the angular momentum, on the magnetic moment and on the
magnetic flux. From numerical computations an integrated electric charge was
thereby deduced, which deviated by only a few percent from the experimental
value “e” of the elementary charge. However, the parts of the computation related
to the magnetic field geometry were connected with a complicated and rather
tedious matching procedure thus becoming a source of numerical errors. This paper
therefore describes a modified and improved iteration procedure, due to which the
integrated charge and all related subsidiary conditions are treated with a high
degree of accuracy.

2. Basic concepts of the electron model
Here the basic concepts of the present theory are shortly reviewed, whereas refer-
ence is made to earlier investigations [1–5] for the details. The basic field equations
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of a steady electromagnetic vacuum state become

curl B/µ0 = ε0(div E)C, (2.1)

B= curl A, (2.2)

E= −∇φ, div E = ρ̄/ε0 (2.3)

for the electric and magnetic fields E and B, the corresponding potentials φ and
A, the electric charge density ρ̄, and the dielectric constant ε0 and magnetic per-
meability µ0 in the vacuum. The vector C has a modulus equal to the velocity c of
light.
For a model of the electron at rest, we study an axisymmetric state in a spherical

frame (r, θ,ϕ ) with C = (0, 0, C), C = ±c for the two spin directions, and A =
(0, 0, A). Equations (2.1)–(2.3) then reduce to

(r0ρ)2 ρ̄

ε0
= Dφ =

[
D + (sin θ)−2] (CA), (2.4)

where ρ = r/r0 with r0 as a characteristic radial dimension, D = Dρ + Dθ and

Dρ = − ∂

∂ρ

(
ρ2 ∂

∂ρ

)
, Dθ = − ∂2

∂θ2 − cos θ
sin θ

∂

∂θ
. (2.5)

The solution of the system (2.4) is given by a generating function

F (r,θ ) = CA − φ = G0 · G(ρ,θ ), (2.6)

where G0 stands for its amplitude and G for a normalized dimensionless part. This
results in a general solution of the form

CA = −(sin θ)2DF,φ = −
[
1 + (sin θ)2D

]
F (2.7)

ρ̄= −
(

ε0
r2
0ρ

2

)
D

[
1 + (sin2 θ)D

]
F. (2.8)

With the definitions

f(ρ,θ ) = −(sin θ)D
[
1 + (sin θ)2D

]
G, (2.9)

g(ρ,θ ) = −
[
1 + 2(sin θ)2D

]
G, (2.10)

the integrated electric charge q0 , magnetic moment M0 , mass m0 , and angular
momentum s0 become

q0 = 2πε0r0G0Jq , Iq = f (2.11)

M0 = πε0Cr2
0G0JM , IM = ρ(sin θ)f (2.12)

m0 = π(ε0/c2)r0G
2
0Jm , Im = fg (2.13)

s0 = π(ε0C/c2)r2
0G2

0Js, Is = ρ(sin θ)fg (2.14)

with the normalized integrals

Jk =
∫ ∞

ρk

∫ π

0
Ik dρd θ, k = q,M,m, s. (2.15)
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In expression (2.15) ρk $= 0 are small radii at the origin ρ = 0 when G is divergent
there, and ρk = 0 when G is convergent at ρ = 0. The analysis is now restricted to
a separable generating function G = R(ρ)T (θ). The integrals (2.15) then reduce to
a separable form Jk = JkρJkθ . An examination of the radial part R further yields
the following results:

• For a convergent R at ρ = 0 the charge q0 and magnetic moment M0 vanish,
regardless of the symmetry properties of T . This leads to a model of an electrically
neutral particle, such as the neutrino.

• For a divergent R at ρ = 0, and for a polar part T being symmetric with
respect to the mid-plane θ = π/2, there are nonzero q0 and M0 . This leads to a
model of a charged particle, such as the electron.
The electron model with a divergent R(ρ) and a symmetric T (θ) is then given by

R = ρ−γ e−ρ , γ >0, (2.16)

T = 1 +
n∑

ν=1

{a2ν−1 sin[(2ν − 1)θ] + a2ν cos 2νθ} , (2.17)

where γ(γ −1) = 2+δ, 0 ! δ ! 1, and γ approaches the value 2 from above. With
the notation Aq = Jqθ , AM = JM θ/δ, Am = Jmθ , As = Jsθ and ρq = ρM = ρm =
ρs = ε, expressions (2.11)–(2.14) for the integrated field quantities become

q0 = 2πε0r0G0Aq/ε, (2.18)

M0m0 = π2ε20(C/c2)(r0G0)3AM Am /ε3 , (2.19)

s0 =
1
2
π(ε0C/c2)(r0G0)2As/ε

2 , (2.20)

where

Aq = −3.141592654a3 − 2.400000000a2 − 1.333333333 + 1.714285714a4 , (2.21)

AM = −.7853981635a2 − 2.171428571a3 + .8507936508a5

+ 1.963495409a4 − 1.333333333a1 − 2.356194491, (2.22)

Am = 54.97142857a2
2 + 723.7448773a2

3 − 3251.548397a3a4 + 367.5663405a2a3

− 67.42857143a4 + 15409.51197a4a5 + 50.26548246a3 + 3.466666667

+ 21.25714286a2 − 707.8441558a2a4 + 4231.268731a2
4 − 933.0530182a5a2

− 5070.283317a5a3 − 56.54866777a5 + 16357.19800a2
5 , (2.23)

As = −109.3010101a5 + 343.5520924a2a3 + 644.4468463a2
3 + 2.057142857a1a2

+ 5.497787145a1a3 + 49.48008430a2
2 + .5333333333a1 + 62.95873016a3

− 8a1a4 − 3034.300278a3a4 − 102.1017613a4 + 38887.720909a2
4

− 1006.220979a5a2 − 699.7897637a2a4 + 15041.94563a2
5 + 14374.48791a4a5

+ 21.99114858a2 + 3.141592654 − 4960.574801a5a3 − 7.068583472a1a5
(2.24)
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with values given for the first five amplitudes of the expansion (2.17). As will be
seen later, only the combined expression for M0m0 will be needed in the following
analysis. The magnetic flux Ψ is obtained from the first part of (2.7). At the
corresponding normalized radius ρ = ρΓ = ε, the normalized flux function becomes

Ψ ≡ Γ(ρ = ε,θ )/2π(r0G0/εC) = sin3 θ(DθT − 2T )

= −(a1 + 3a3 + 5a5)s2 + (−2 + 6a2 + 30a4)s3 + (36a3 + 180a5)s4

− (8a2 + 160a4)s5 − (40a3 + 600a5)s6 + 144a4s
7 + 448a5s

8 + · · · , (2.25)

where s ≡ sin θ. In the cases to be treated here, the radial magnetic field component
is found to vanish at the angles θ = θ1 and θ = θ2 within the range 0 ! θ ! π/2.
These angles represent the two zero points of the derivative dΨ/ds of the flux
function (2.25). When θ increases from θ = 0 at the axis, the flux Ψ first increases
to a maximum at θ1 . Then follows an interval θ1 ! θ ! θ2 of decreasing flux, down
to a minimum at θ2 . Finally, in the range θ2 ! θ ! π/2, the flux increases again,
up to the total main value

Ψ0 =Ψ( π/2) ≡ AΓ = −2 − a1 − 2a2 − 7a3 + 14a4 + 23a5 + · · · . (2.26)

This behavior is due to a magnetic island having dipole-like field geometry with
current centra at θ1 and θ2 . Thus the total flux includes the main part (2.26), plus
that from two magnetic islands at each side of the mid-plane θ = π/2. It becomes

Ψtot = fΓΨ0 , fΓ = 1 + 2 [Ψ(s1) − Ψ(s2)] /Ψ0 . (2.27)

Here fΓ is the corresponding flux factor, where the unity term stands for the main
flux and the rest for the contribution from the magnetic islands. Three quantum
conditions have to be imposed. First, the angular momentum (spin) s0 has to take
the values±h/4π. With the definition q∗ = |q0/e|, where e is the experimental value
if the elementary charge, this condition reduces to

q∗ = (f0A
2
q /As)1/2 , f0 = 2ε0ch/e2 , (2.28)

where f0 is the inverted value of the fine-structure constant. Second, the magnetic
moment is subject to a condition formulated by Dirac [6], Schwinger [7], and
Feynman [8]. It reduces to the relation

AM Am /AqAs = 1 + δM , δM = 1/2πf0 = 0.0011614. (2.29)

Third, the total magnetic flux has to become quantized, by being equal to the ratio
|s0/q0 |, i.e.

8πfΓAΓAq = As. (2.30)

Here we observe that all three conditions (2.28)–(2.30) become independent of the
parameter r0G0/ε, which appears in (2.18)–(2.20) and in (2.25).
In conventional theory there is only an unbalanced radial electrostatic force due

to the electron charge, and this tends to “explode” the configuration [9]. However,
using well-known vector identities in the present case of (2.1)–(2.3), the volume
force density becomes

f = ρ̄(E+ C× B) (2.31)
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having an additional magnetic term C× B. The integrated radial force is given by

Fr = 2π
∫ ∫

frr
2 sin θ dr d θ= JRJT . (2.32)

A recent deduction of this force [10] can shortly be summarized as follows. As shown
earlier, an electron model requires the radial part (2.16) of the separable generating
function (2.6) to be divergent at the origin, and be restricted to γ = 2. Addition
of an extra term in the radial part having γ = 1 does not contribute to the charge
density. The distribution of the latter further includes the boundary condition of
being zero within the hollow region ρ < ε near the origin. Taking this into account,
the radial factor JR is always negative. The polar factor JT is given by

JT =
∫ π

0
fρeρ dθ. (2.33)

Here positive values of JT result in a negative Fr and in a tendency to “implode”
the configuration, whereas a negative JT tends to “explode” the latter. The detailed
force balance in the case of a positive JT is likely to be quite a complicated problem
which is not treated in this paper. After a number of deductions based on (2.8), (2.3),
(2.7), and (2.2), the functions fρ and eρ become

fρ = 2sT − 4s3T − sDθT + 2s3DθT + 2sDθ (s2T ) − sDθ (s2DθT )

= (18a2 + 90a4)s + (288a3 + 1440a5)s2 − (144a2 + 2520a4)s3

− (1320a3 + 16200a5)s4 + (144a2 + 7920a4)s5 + (1120a3 + 38304a5)s6

− 5760a4s
7 − 24192a5s

8 + · · · , (2.34)

eρ = −2T + 2s2T − s2DθT

= −(2a2 + 2a4) − (a1 + 3a3 + 5a5)s − (2a2 + 14a4)s2

− (28a3 + 140a5)s3 + (8a2 + 144a4)s4 + (40a3 + 568a5)s5

− 144a4s
6 − 448a5s

7 + · · · . (2.35)

In earlier deductions of (2.34) there was a miscalculation of the term 7920a4s5 ,
having instead the coefficient 8727.

3. Earlier numerical analysis
The elementary electronic charge has so far been considered as an independent
constant of nature, determined by measurements. Since it appears to represent
the smallest quantum of free electric charge, however, the question can be raised
whether it could result from a quantized variational analysis. In a first attempt
such an analysis has been applied, as based on the present theory and with the
subsidiary quantum conditions in terms of Lagrangian multipliers. This attempt
failed, because there was no well-defined and localized point of an extremum [5].
An alternative approach was then applied in which the study was limited to the
first four amplitudes of the expansion (2.17), the quantum conditions (2.28)–(2.30)
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were imposed, and q∗ was plotted as a function of a3 and a4 , which were scanned
across their entire ranges of variation. For real q∗ the result was as follows [5]:

• Two real solutions were found. That with the lowest value of q∗ was of main
interest, and only this solution will henceforth be discussed here in detail.

• In a range of a3 ! 0 and a4 ! 0 a “barrier” was found within which q∗ dropped
from values q∗ " 1 down to a level close to q∗ = 1.

• In the ranges of a3 " 1 and a4 " 1 the values of q∗ were localized to a flat
“plateau” within which q∗ deviated only by a few percent from the experimental
value q∗ = 1. This explained the failure of the variational analysis.
To calculate the plateau values of q∗, including the magnetic flux condition (2.30)

and the varying magnetic flux factor (2.27), a rather tedious matching procedure
was applied, which resulted in values of q∗ that deviated only by some percent from
the experimental one [2, 3]. However, this procedure included numerical errors.

4. An improved numerical iteration scheme
Within the plateau region, where all amplitudes (a1 , a2 , a3 , . . .) in (2.21)–(2.26),
(2.34) and (2.35) take large values, an improved iteration scheme has been proposed
[10]. The auxiliary parameters

h0 = Ām /Ās , g0 = Ās/8πĀΓfΓ (4.1)

are first introduced, where a bar indicates the limit of large amplitudes. Then the
two quantum conditions (2.29) and (2.30) are written as

h0Ām = (1 + δM )Āq , Āq = g0 (4.2)

with the notations

x = a1/a∞, y = a2/a∞,

a = a3/a∞ = − sinα, b = a4/a∞ = cosα (4.3)

and cµ = aµ/a∞, (µ = 5, 6, . . .), a∞ " 1 being introduced. Relevant values of α
in the plateau region of the four-amplitude case [3, 5] correspond to the range
−π/4 ! α ! π/2. With given values for each of the normalized amplitudes (a, b, cµ),
expressions (4.2) then form a simple linear system of equations for the variables x
and y. The iteration procedure begins with adopted values of h0 and g0 , and end
with self-consistent values satisfying the quantum conditions (2.29) and (2.30).
As a consequence of the obtained solution, corresponding values of q∗ and JT

are then obtained according to (2.28) and (2.33). We finally observe that, in the
plateau region, all factors (2.21)–(2.24) have quadratic forms of the amplitudes in
the expansion (2.17). In the four-amplitude case the quantum conditions (2.28)–
(2.30) therefore depend on the angle α only, and not on the magnitude of a2 + b2 .

5. Numerical analysis
In a determination of the deduced normalized charge q∗ the present theory relies on
the three quantum conditions (2.28)–(2.30). The disposable independent variables
are the amplitudes (a1 , a2 , a3 , . . .). In all cases up to five amplitudes, the iteration
scheme of Sec. 4 was found to converge rapidly, after about seven iterations. When
limiting the analysis to the first four amplitudes, the three quantum conditions
will specify the charge q∗ as a function of the angular variable α at the perimeter
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Figure 1. (Color online) The normalized charge q∗ = |q0/e| as a function of the angle α at
the perimeter of the plateau: (a) four amplitudes only, (b) five amplitudes with c5 = 0.05,
(c) five amplitudes with c5 = −0.05.

of the plateau region, with the notations (4.3). The behavior of the normalized
charge is then demonstrated by Fig. 1(a). In the plateau region corresponding to
the range −0.8 ! α ! 1.6, this charge was found to be bound within the limits
1.04 " q∗ " 0.97, i.e. with a deviation of only a few percent from the experimental
value q∗ = 1. The latter value was reached at the angle α ∼= 1.26. The addition of a
small contribution from a fifth amplitude changes this result dramatically. This is
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Figure 2. (Color online) The normalized magnetic flux dΨ/dθ per unit angle θ, with α ≈ 1.26
for which q∗ = 1 in the four amplitude case: (a) four amplitudes only, (b) five ampltidues
with c5 = 0.05, (c) five amplitudes with c5 = −0.05.

shown in Fig. 1(b) for c5 = 0.05 where there is no value of α satisfying the condition
q∗ = 1, and in Fig. 1(c) for c5 = −0.05 where the value of α for q∗ = 1 has been
displaced from α = 1.26 to α = 0.80.
The derivative dΨ/dθ of the magnetic flux function (2.25) has been plotted in

Fig. 2(a). Here the sum of the areas above the horizontal axis represents the total
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Figure 3. (Color online) The variation of the magnetic flux factor fΓ in the four-amplitude
case, as a function of the plateau angle α.

outflux in the upper half plane, whereas the area below the same axis repres-
ents the counter-directed flux due to one magnetic island. A comparison between
Figs 2(a)–(c) reveals that there are also noticeable changes in the magnetic geometry
when small contributions from the amplitude c5 are included. The variation of the
magnetic flux factor (2.27) with the angle α is further demonstrated in Fig. 3 of
the four-amplitude case. Finally, the polar factor JT of (2.33) has been plotted in
Fig. 4(a), thus resulting in positive values within the entire region of α. This
indicates that there is an inward directed confining radial integrated force, which
tends to “implode” the electron configuration. To demonstrate the influence of the
magnetic contribution C × B to the Lorentz force (2.31), a simulation has been
performed in Fig. 4(b) where this contribution has been dropped. The sign of J ′

T
then becomes reversed, indicating that the system would “explode”.

6. Summary and conclusion
As being stated earlier [2, 3], the present electron model is for a nonzero net electric
charge forced is to have the character of a point-charge-like geometry. Here the
“infinity” of a divergent generating function is balanced by the “zero” of a shrinking
characteristic radius appearing in a finite parameter r0G0/ε of (2.18)–(2.20) and
(2.25). This eliminates the self-energy problem and provides a physically more
acceptable alternative to the renormalization process in which extra ad hoc counter
terms are added to the Lagrangian, to outbalance one “infinity” by another. The
improved numerical analysis of this paper shows that the relevant basic properties
of the electron can be reproduced by the present model. Thus, the three quantum
conditions, plus the requirement to make the deduced elementary charge equal to
the experimental value, can all be satisfied by merely adjusting one single scalar
parameter, α. This further takes place within a narrow range of possible variations,
where q∗ only deviates by a few percent from the experimental value. Even small
contributions from amplitude parameters in addition to the four first ones strongly
modify the result and prevent a matching to the experimental value. Finally, due
to the magnetic part of the Lorentz force, the present electron model is prevented
from “exploding” under the influence of its eigencharge. This leads on the other
hand to an inward directed integrated force, the balance of which requires further
investigation.
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Figure 4. (Color online) The polar factor of the integrated radial force in the four-amplitude
case: (a) polar factor JT due to the full Lorentz force, (b) simulated reduced polar factor J ′

T
without the magnetic part of the Lorentz force.
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