

2155-8

International Workshop on Cutting-Edge Plasma Physics

5 - 16 July 2010

Plasma Physics of the Lunar Surface

Mihaly Horanyi Dept. of Physics University of Colorado at Boulder USA

Plasma Physics of the Lunar Surface

Mihaly Horanyi

Colorado Center for Lunar Dust and Atmospheric Studies Lab. for Atmospheric and Space Physics and Dept. of Physics, University of Colorado at Boulder

Symposium: "Prof. P.K. Shukla 60th Birthday

Outline

- Plasma Environment at the Moon
- Sheaths
 - In-situ Observations
 - Theory and Modeling
 - Laboratory Experiments
- Future Measurements

Lunar Plasma Environment

Plasma Sheaths

4

Plasma Sheaths - Nightside

Photoelectron Sheaths - Dayside

Observations

In-situ Observations

- Charged Particle Lunar Environment Experiment (CPLEE)
 - Deployed by the Apollo 14 astronauts
 - Only able to measure electrons, 40 eV to 50 keV
 - Some evidence of a photoelectron layer but can't measure the low-energy electrons

• Measurement of the photoelectron sheath

Reasoner and Burke, 1972

Lunar Plasma Observations

- Lunar Surface potential decreases dramatically behind the wake
 - More mobile electrons reach the surface more easily than the ions
 - Leads to negative charging on the lunar nightside

- Lunar Prospector Electron Reflectometer
 - ER measured electrons reflected from the lunar surface
 - Able to extrapolate surface potential values

AS

NASA

Halekas et al., 2005

9

Lunar Dust Observations

- Lunar Ejecta and Meteorites Expt. (LEAM)
 - Large number of counts near sunrise interpreted as slow-moving, horizontally transported dust particles
 - Charging and transport due to horizontal electric fields?

Colwell et al., 2005

Horizon Glow

- Forward scattering of solar light detected by Surveyor spacecraft
- Possibly levitated dust particles
 - ~ 6 m in radius [Rennilson & Criswell, 1973]

July 8, 2010 - Plasma Physics of the Lunar Surface

Why should we study this?

- Fundamental physics and applications to other bodies
 - Plasma interaction with an unmagnetized body
 - Surface-bounded exospheres
 - Mercury, Phobos, Deimos, asteroids
 - Human exploration of the Moon
 - Need to understand object (ie. astronaut!) charging

 "Dust - I think probably one of the most aggravating, restricting facts of lunar exploration is dust and its adherence to everything, no matter what kind of material..." - E. Cernan, Apollo 17

Farrell et al., 2008

July 8, 2010 - *Plasma Physics of the Lunar Surface*

Theory and Modeling

Photoelectron Sheaths - Dayside

Particle-in-Cell Model

- Electrostatic 1D PIC
 - Photoelectrons emitted from left boundary
 - Two distributions:
 - » Lunar [Feuerbacher et al., 1972]
 - » 2.2 eV Maxwellian
 - Solar wind electrons/ion enter at right boundary
 - 10 eV, 400 km/s drift
 - Lunar surface charge density continuously calculated

Particle Distributions

• Photoelectrons dominate near the surface

Poppe and Horányi, 2010, in press

- SW electrons accelerated into the surface
- Solar wind ion are supersonic remain constant

Potential and Electric Field Dists.

- Potentials both show non-monotonicity [Guernsey and Fu, 1970; Nitter et al. 1998]
- Electric fields similar, but lunar field consistently weaker
 - At sufficient heights, electric field becomes negative

Poppe and Horányi, 2010, in press

Grain Levitation

With modeled electric fields, very hard to levitate micron-sized dust grains

Crater Shadowing Effects

- The topography on the surface of the Moon yields lots of sunlit / shadowed boundaries
 - Sunlit portions photoemit electrons
 - Shadowed portions do not photoemit, but collect electrons!

Crater Shadowing Effects

Farrell et al., 2010

20

- Craters can give rise to "miniwakes" in addition to complex shadowing
- Increased electric fields could yield greater dust mobility on the lunar surface

3-d Crater Simulations

• To understand the plasma conditions at the lunar terminator, CCLDAS has developed a 3-d plasma model of a sample crater

• Illuminated at 45° - both UV radiation and solar wind flow

Ion density

Surface charge density

23

3-d Crater Simulations

- Electric fields ~3 times the normal strength are seen at the crater rim
- These electric fields could give rise to dust launching and transport more readily than during the sub-solar case

Laboratory Experiments

Experimental Setup #1

Results

Experimental Setup #2

Results

Experimental Setup #3

Results

Surfaces with less illumination reach a lower potential

Horizontal charge gradients lead to horizontal electric fields!

Experimental Setup #4

Wang et al., 2009

Results

Dust is seen spreading symmetrically away from the center of the pile over time

Additionally, the presence of a block shows that the dust has vertical motion as well - *hopping*?

Wang et al., 2009

Results

Complex potential structures exist above the dust and change as a function of time

- Horizontal electric fields exist

Experimental Setup #5

Dust transport is enhanced with differential charging

Results

Before

After

Movement seen in the exposed dust, but not in the shadowed dust

Future/Ongoing Experiments

Upcoming Lunar Mission

Lunar Dust Experiment (LDEX) for the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission in 2013.

Future Measurements?

 Ground-truth measurements are needed to constrain the models and laboratory experiments

- Langmuir Probes for the Lunar Surface (LPLUS)
 - Concept in development at CCLDAS by CU students

Future Measurements

July 8, 2010 - *Plasma Physics of the Lunar Surface*

Applications to Other Bodies

- Evidence of dust transport seen on other bodies
 - Eros 433
 - Phobos / Deimos?

• No matter where humans explore, there'll be dust...

Conclusion

- Theory and modeling can predict the plasma environment, but laboratory and *modern* in-situ measurements are sorely needed
- Studying dust and plasma at the Moon is relevant for airless planetary bodies throughout the solar system

The Moon is an excellent dusty plasma laboratory!

