International Workshop on Cutting-Edge Plasma Physics

5 - 16 July 2010

Yearning for Burning:
Plasma Physics and Fusion Energy Science

James W. Van Dam
Institute for Fusion Studies
University of Texas
USA
Yearning for Burning: Plasma Physics and Fusion Energy Science

James W. Van Dam
Institute for Fusion Studies, University of Texas
U.S. Burning Plasma Organization, USDOE

- Scientific challenge
- International planning
- Site selection
- Clear mission
- Organization
- Cost
- Research coordination

ICTP Trieste – 12 July 2010
“Pope” of fusion physics: M. Rosenbluth

- **Early participant at ICTP Trieste**
 - Many original contributions to fusion and plasma physics
 - Before Texas: Professor at Institute for Advanced Study (Princeton)
 - Founder of IFS (U. Texas)
 - After Texas: Chief Scientist, ITER Organization (EDA phase)

- **From Yearning to Burning (2000)**
 - “The ‘yearn to burn’ is well motivated. Most of us came into the fusion program with the dream of fusion energy. The dream persists.”
Plasmas are everywhere

Plasmas - the 4th state of matter

- Magnetic fusion reactor
- Inertial confinement fusion

- Solar core
- Solar corona
- Lightning
- Solar wind
- Neon sign
- Interstellar space
- Fluorescent light
- Aurora
- Flames
- Solids, liquids, and gases too cool and dense for classical plasmas to exist

Number Density (Charged Particles / m^3)

Temperature (°C)

10^8
10^6
10^4
10^2
10^15
10^9
10^10
10^11
10^12
10^13
10^14
10^15
10^16
10^17
10^18
10^19
10^20
10^21
10^22
10^23
10^24
10^25
10^26
10^27
10^28
10^29
10^30
10^31
10^32
10^33

ITER
National Ignition Facility

ICTP Trieste – 12 July 2010
Wide applicability of plasma physics

Makes use of: mechanics, E&M, stat mech, relativity, math physics, numerical analysis, quantum mech, solid state, AMO, ...

- Low-temperature plasmas
- Magnetosphere, solar, & astrophysical plasmas
- Geophysical fluid dynamics
- Laser interactions
- Meta-materials, photonics
- High-performance simulation techniques
- Nonlinear dynamics
- Applied mathematics
- Nuclear engineering
- Fusion energy sciences
ITER will demonstrate scientific and technical feasibility of fusion

• ITER ("the way") is essential next step in development of fusion
 – Today: 10 MW, 1 sec, gain = 1
 – ITER: 500 MW, >400 sec, gain ≥ 10

• The world’s biggest fusion energy research project ("burning plasma")
 – 15 MA plasma current, 5.3 T magnetic field, 6.2 m major radius, 2.0 m plasma minor radius, 840 m³ plasma volume, superconducting
 – €10B to construct, then operate for 20 years ("first plasma" in 2019)

• An international collaboration
 – 7 partners, 50% of world’s population
 – EU the host Member; sited in France
 – Unprecedented example of big-science international physics collaboration
ITER is a “tokamak” = confines doughnut-shape plasma with helical magnetic fields.
ITER:
A big international project motivated by a big international scientific challenge
Producing a self-sustaining fusion-heated plasma is a grand challenge

1928 Fusion reactions explain energy radiated by stars [Atkinson & Houtermans]

1932 Fusion reactions discovered in laboratory [Oliphant]

1935 Fusion reactors understood as Coulomb barrier tunneling [Gamow]

1939 Theory of fusion power cycle for stars [Bethe–Nobel Prize 1967]

1950 US approval to develop hydrogen bomb “Super” [Teller]

1951-52 Invention of the tokamak [Tamm and Sakharov]

1950’s US Project Sherwood (classified) on controlled thermonuclear fusion

1958 2nd UN Atoms for Peace Conference (Geneva): declassification of magnetic fusion research

1968 Russian tokamak results with high temperature presented at IAEA Fusion Energy Conference

Since then: Worldwide explosion in tokamak research, culminating in experiments on TFTR (US), JET (EU), JT-60U (Japan), etc.
What is a “burning plasma”?

- “Burning” plasma = ions undergo thermonuclear fusion reactions, which supply self-heating to the plasma

- The energy output E_{out} is huge (global implications):
 \[E_{\text{out}} = 450 \times E_{\text{in}} \]

- The required energy input E_{in} is also large:
 \[20 \text{ keV} = 200 \text{ million °K} \]

ICTP Trieste – 12 July 2010
D-T fusion

- The “easiest” fusion reaction uses hydrogen isotopes: deuterium (D) and tritium (T)
 - D is plentiful in sea water
 - T can be generated from lithium
 - He is harmless (even useful)

\[_1^1D + _1^3T \rightarrow _2^4He + _0^1n \]

Energy/Fusion: \(\varepsilon_f = 17.6 \text{ MeV} \)
Fusion gain Q

\[\frac{dW}{dt} \rightarrow 0 \Rightarrow P_\alpha + P_{\text{heat}} = \frac{W}{\tau_E} \]

Define fusion energy gain,
\[Q \equiv \frac{P_{\text{fusion}}}{P_{\text{heat}}} = \frac{5P_\alpha}{P_{\text{heat}}} \]

Define α-heating fraction,
\[f_\alpha \equiv \frac{P_\alpha}{P_\alpha + P_{\text{heat}}} = \frac{Q}{Q+5} \]

Breakeven
$Q = 1$ \quad $f_\alpha = 17\%$

Burning plasma regime
$Q = 5$ \quad $f_\alpha = 50\%$

$Q = 10$ (ITER) \quad $f_\alpha = 60\%$

$Q = 20$ \quad $f_\alpha = 80\%$

$Q = \infty$ \quad $f_\alpha = 100\%$
Initial D-T experiments

- **Joint European Torus (JET)**
 - “Preliminary Tritium Experiment” (1991): \(P_{DT} > 1 \) MW
 - Subsequently: \(Q=0.9 \) (transient breakeven), \(Q=0.2 \) (long pulse)
 - 16 MW fusion power

- **Tokamak Fusion Test Reactor (TFTR)**
 - Dec 1993 to Apr 1997: 1000 discharges with 50/50 D-T fuel
 - \(P_{DT} = 10.7 \) MW, \(Q=0.2 \) (long pulse)
 - Results:
 - Favorable isotope scaling
 - Self-heating by alpha particles
 - Alpha-driven instability
 - Tritium and helium “ash” transport
 - Tritium retention in walls and dust
 - Safe tritium handling (1M curies)
Status of magnetic fusion

- **Lawson Diagram:**
 - Achieved T_i required for fusion, but need $\sim 10 \times n \tau_E$
 - Achieved $n \tau_E \approx \frac{1}{2}$ required for fusion, but need $\sim 10 \times T_i$

- **No experiment has yet entered the burning plasma regime**
 - Such an experiment is the next logical step forward on the path to fusion energy
 - The world fusion program is technically and scientifically ready to proceed now with a burning plasma experiment

ICTP Trieste – 12 July 2010
International planning for ITER
History of the ITER project

<table>
<thead>
<tr>
<th>Year</th>
<th>P.-H. Rebut</th>
<th>R. Aymar</th>
<th>K. Ikeda</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conceptual Design Activities

- **ITER 98**
 - Original ITER
 - \(R = 8.1 \) m
 - \(Pf = 1500 \) MW
 - \(Q = \infty \)
 - SWG(Task#1, #2)

- **ITER 01**
 - Compact ITER
 - \(R = 6.2 \) m
 - \(Pf = 500 \) MW
 - \(Q \geq 10 \)

Negotiations

- **US-USSR Summit**
 - Gorbachev & Reagan

Agreement Signed

- ITER Agreement signed

ICTP Trieste – 12 July 2010
International developments

 - Four partners: Euratom, Japan, US, and USSR
 - Sponsored by IAEA
 - Produced conceptual design for 600 MW(th) device and 860-page accompanying report
- **ITER Conceptual Design Activity (CDA): 1987-1990**
- **ITER Engineering Design Activity (EDA): 1992-98**
 - Four partners: EU, JA, RF, and US
 - Work sites in San Diego, Naka (JA), and Garching (EU)
 - US withdrew from ITER Project in 1998
 - San Diego site shut in 1999; personnel transferred to Naka Site
- **ITER Fusion Ignition Advanced Tokamak (FIAT)**
 - CTA and ITA phases 1999-2003
 - US re-entered ITER in 2003
- **ITER Implementing Agreement signed 21 Nov 2006**
 - Seven partners: CN, EU (host), IN, JA, KO, RF, US
- **ITER Organization became legal entity in Oct 2007**
ITER: an international project

ITER Implementing Agreement signed 21 Nov 2006 by EU, Japan, Russia, USA, Korea, China, and India
- Signing ceremony hosted by French President Chirac (Elysée Palace)
- Dr. Raymond Orbach (Undersecretary for Energy) signed for the US
Deciding on the site for ITER
Site bids: 4 ➔ 2 ➔ 1

- Japan - Rokkasho
- Spain - Vandellòs
- Canada - Clarington
- France - Cadarache
Time line on decision of ITER host

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001 May</td>
<td>Bid submitted by Canada (Toronto).</td>
</tr>
<tr>
<td>2001</td>
<td>Bids submitted by France, Spain, and Japan.</td>
</tr>
<tr>
<td>2003 Nov</td>
<td>EU support concentrated on France; Canada withdrew.</td>
</tr>
<tr>
<td></td>
<td>Deadlocked vote by ITER partners between Japan and EU.</td>
</tr>
<tr>
<td>2004 June</td>
<td>Japan increased its bid by $1B; EU matched it.</td>
</tr>
<tr>
<td>2004 Dec</td>
<td>EU hinted it would build ITER by itself if no 6-party agreement.</td>
</tr>
<tr>
<td>2004-2005</td>
<td>EU and Japan negotiated privately.</td>
</tr>
<tr>
<td></td>
<td>Japan agreed to withdraw its bid, in return for a concessions package: 20% of the research positions while providing only 10% of the expenses; EU to subsidize half the cost for certain new fusion facilities in Japan (“Broader Approach”); EU support for for Japanese candidate as ITER director-general</td>
</tr>
<tr>
<td>2005 June</td>
<td>Unanimous vote by ITER partners to accept EU bid</td>
</tr>
<tr>
<td>2006 May</td>
<td>Initialing of ITER Agreement. Transmittal to Congress for 120-day review required by Energy Policy Act of 2005</td>
</tr>
<tr>
<td>2006 Nov</td>
<td>Signing of ITER Agreement in Paris</td>
</tr>
</tbody>
</table>
Proposed site in Japan

- Rokkasho-mura
 - Aomori Prefecture (northern Japan)
 - Mutsu-Ogawara Development Area, close to existing nuclear fuel cycle facilities
 - Under JA-EU Broader Approach, will house IFERC
EU-Japan Broader Approach

IFERC in Rokkasho

IFERC Project
- DEMO Design, R&D
- Remote Experiment
- Computer Simulation

DEMO Plant

ITER

IFMIF/EVEDA

Satellite Tokamak

In Naka

JT-60SA

ICTP Trieste – 12 July 2010
Broader Approach site

BA Site in Rokkasho - Present Status -

- Administration & Research Building
- Computer Simulation & Remote Experimentation Building
- DEMO R&D Building
- IFMIF/EVEDA Accelerator Building
- Power Station 30 MVA

September 4, 2009
ITER’s final location

- To be built in Cadarache, France (EU)
 - Near Marseille (in Provence-Alpes-Cote d’Azur region)
 - First plasma operation in 2019, D-T operation by 2027
ITER, currently under construction in the South of France, aims to demonstrate that fusion is an energy source of the future.

Future layout

Present (Mar 2010)
A clear mission for the ITER project
Attachment 6 Achievements of ITER
Physics R&D

Integrate experimental results of tokamaks from all over the world to establish physics basis for plasma performance of ITER.
ITER design goals

• **Physics:**
 - Produce a plasma dominated by alpha particle heating
 - Produce significant fusion power amplification \((Q \geq 10) \) in long-pulse operation
 - Achieve steady-state operation of a tokamak \((Q = 5) \)
 - Retain the possibility of exploring “controlled ignition” \((Q \geq 30) \)

• **Technology:**
 - Demonstrate integrated operation of technologies for a fusion power plant
 - Test components required for a fusion power plant
 - Test concepts for a tritium breeding module
New features in a burning plasma

- **Dominant self-heating (exothermic)**
 - “Autonomous” system: reduced capability to control current, pressure, and rotation profiles by means of external RF power and neutral beams

- **High performance requirements**
 - Sustained, simultaneous achievement of high temperature and density, good macroscopic stability, good confinement of plasma energy
 - Robust plasma-wall facing components and diagnostics that can withstand high heat and neutron wall loadings

- **Long pulse length**
 - BP experiment should have pulse length long compared to the current redistribution time ($\tau_{\text{pulse}} \gg \tau_{\text{CR}}$) to investigate resistively equilibrated current and pressure profiles in the presence of strong alpha heating

ICTP Trieste – 12 July 2010
More new features in burning plasma

- **Strong coupling**
 - Transport, stability, boundary physics, energetic particles, heating, etc., will be strongly coupled nonlinearly due to the fusion self-heating

- **Size scaling**
 - Much larger volume than present expts

- **Large population of super-thermal alpha particles**
 - Different behavior from thermal ions
 - Affect stability, confinement, heating, etc.

- **Nuclear environment**
 - Gamma/neutron radiation, tritium retention, dust, tritium breeding

Cross sections of present EU D-shape tokamaks compared to the cross section of ITER
ITER physics R&D needs

• Issues listed by ITER as urgent
 – Mitigation of disruptions and runaway electrons
 – Access to high confinement (H-mode)
 – ELM control
 – Plasma-facing component material
 – Plasma scenarios
 – Integrated modeling
 – Tritium breeding

• ITER science challenges to be discussed in lecture #2
Organization can be as much of a challenge as science and technology
ITER top leadership

• **Director-General Kaname Ikeda**
 - Deputy Minister for Science and Technology, Japan
 - Executive Director, National Space Development Agency, Japan
 - Ambassador to Croatia

• **Principal Deputy Director-General & Project Construction Leader Dr. Norbert Holtkamp**
 - Research Group Head, S-Band Linear Collider, DESY, Germany
 - Division Director, Spallation Neutron Source, ORNL, USA
ITER staffing projection

Staff Ramp Up IO Team

At present:
450 staff
+ 350 extra
= 800 on site
Other organizational challenges

- **Communication**
 - International video-conferencing techniques
 - Integrated document management

- **Intellectual property rights to data**
 - Who owns ITER’s photons?

- **Management styles, cultural differences, flag waving,**...

- **Multi-national safety regulations**

- **Import/export regulations**

- **Outreach for public visibility**
 - Web site, newsletter, movies, brochures, PR and educational materials,...
 - YouTube movies on ITER

US ITER Project Office booth at 2008 AAAS Meeting
Determining the cost and how to pay for ITER
ITER construction cost-sharing

A
Systems suited only to Host Party industry
- Buildings
- Machine assembly
- System installation
- Piping, wiring, etc.
- Assembly/installation labour

B
Residue of systems, jointly funded, purchased by ITER Project Team

C
“Contributions in Kind”
Major systems provided directly by Members

Overall cost sharing:
EU 5/11, Others 6 Members 1/11 each, Overall contingency up to 10% of total.

Overall costs shared according to agreed evaluation of A+B+C
US in-kind hardware contributions

ORNL
- 7 Central Solenoid Coils
- 8% of Toroidal Field Conductor
- Pellet Injector
- 20% First Wall/Shield
- 75% Cooling for Divertor, Vacuum Vessel, ...

PPPL
- Steady State Power Components

ORNL
- 15% of Port-based Diagnostics
- 100% Ion Cyclotron Transmission Lines
- 100% Electron Cyclotron Transmission Lines

ORNL
- Roughing Pumps, Standard Vacuum Components

SRNL
- Tokamak Exhaust Processing System

ICTP Trieste – 12 July 2010
U.S. Burning Plasma Organization:
To coordinate, facilitate, and promote burning plasma science in the US research program
Preparing for “burning plasma era”

• U.S. Burning Plasma Organization (USBPO) was created in 2005 as a community-based entity
 – Mission: Advance the scientific understanding of burning plasmas and ensure the greatest benefit from burning plasma experiments by coordinating relevant U.S. fusion research with broad community participation

• Broad community participation:
 – Regular members (316 from 55 institutions)
 – Associate members (15 from 9 non-US institutions)
 – Council (12 members)
 – Research Committee (20) = leaders/deputy leaders of 10 Topical Groups
 – Directorate (5)
 – International Tokamak Physics Activity (ITPA): 49 Topical Group members + 3 Coordinating Committee members from the US
Broad Expertise of USBPO Topical Groups

Research Committee made up of Leaders and Deputies of 10 Topical Groups

- MHD, Macroscopic Plasma Physics
- Plasma-Boundary Interfaces
- Fusion Engineering Science
- Diagnostics
- Plasma-Wave Interactions
- Integrated Scenarios
- Operations and Control
- Modeling and Simulation
- Confinement and Transport
- Energetic Particles

Council:
- Amanda Hubbard (Chair)
- Mike Zarnstorff (Vice Chair)
- +10 members at large + ITER Chief Techologist

Executive Committee members in red

MEMBERS (currently 331)

Membership in USBPO is open to any fusion researcher who joins one or more topical groups.

ICTP Trieste – 12 July 2010
USBPO integrated with ITPA in US

March 2010: Plasma-Boundary Interfaces topical group was renamed “Pedestal and Divertor/SOL.”
USBPO communication role

• **USBPO web site** (www.burningplasma.org)
 - All presentations, white papers, progress reports are publicly available
 - Limited-access pages for US STAC, Council, Topical Groups, ...

• **USBPO eNews**
 - 480 subscribers (from 95 institutions); Jan 2010 eNews was 40th issue
 - “Director’s Corner” column, feature articles, ITPA meeting reports, calendar of fusion events, research highlights

• **IT capabilities**
 - Bi-weekly videoconference Research Comm and Executive Comm meetings; quarterly video conference Council meetings
 - Technical briefings for US STAC members
 - Remote seminars: e.g., “LH Capabilities for ITER” (Feb 2009)
4th ITER International Summer School

• ITER Summer School held in US this year
 – May 31-June 4, University of Texas
 – Sponsors: USBPO, National Instruments Corp, French Embassy

• Theme: MHD and Plasma Control in Magnetic Fusion Devices
 – Lectures (20), poster sessions (2), hands-on computer lab sessions (4)

• Participation
 – 133 participants from 17 countries and 48 institutions
References

• **Burning Plasma: Bringing a Star to Earth** (National Academy of Science, 2004)

• **Progress in the ITER Physics Basis**, Nuclear Fusion (2007)