

2155-19

International Workshop on Cutting-Edge Plasma Physics

5 - 16 July 2010

Yearning for Burning: Plasma Physics and Fusion Energy Science

James W. Van Dam

Institute for Fusion Studies University of Texas USA

United States **Burning Plasma Organization**

Yearning for Burning: Plasma Physics and Fusion Energy Science

- Scientific challenge •
- International planning •
- Site selection
- **Clear** mission
- **Organization** .
- Cost
- **Research coordination**

James W. Van Dam

Institute for Fusion Studies, University of Texas U.S. Burning Plasma Organization, USDOE

"Pope" of fusion physics: M. Rosenbluth

• Early participant at ICTP Trieste

- Many original contributions to fusion and plasma physics
- Before Texas: Professor at Institute for Advanced Study (Princeton)
- Founder of IFS (U. Texas)
- After Texas: Chief Scientist, ITER
 Organization (EDA phase)

• From Yearning to Burning (2000)

 "The 'yearn to burn' is well motivated. Most of us came into the fusion program with the dream of fusion energy. The dream persists."

Plasmas are everywhere

Wide applicability of plasma physics

Makes use of: mechanics, E&M, stat mech, relativity, math physics, numerical analysis, quantum mech, solid state, AMO, ...

- Low-temperature plasmas
- Magnetosphere, solar, & astrophysical plasmas
- Geophysical fluid dynamics
- Laser interactions
- Meta-materials, photonics
- High-performance simulation techniques
- Nonlinear dynamics
- Applied mathematics
- Nuclear engineering
- Fusion energy sciences

ITER will demonstrate scientific and technical feasibility of fusion

ITER ("the way") is essential next step in development of fusion

- Today: 10 MW, 1 sec, gain = 1
- ITER: 500 MW, >400 sec, gain ≥ 10
- The world's biggest fusion energy research project ("burning plasma")
 - 15 MA plasma current, 5.3 T magnetic field, 6.2 m major radius, 2.0 m plasma minor radius, 840 m³ plasma volume, superconducting
 - €10B to construct, then operate for 20 years ("first plasma" in 2019)
- An international collaboration
 - 7 partners, 50% of world's population
 - EU the host Member; sited in France
 - Unprecedented example of big-science international physics collaboration

Cutaway view of ITER

ITER is a "tokamak" = confines doughnut-shape plasma with helical magnetic fields

ITER:

A big international project motivated by a big international scientific challenge

Producing a self-sustaining fusion-heated plasma is a grand challenge

- **1928** Fusion reactions explain energy radiated by stars [Atkinson & Houtermans]
- 1932 Fusion reactions discovered in laboratory [Oliphant]
- **1935** Fusion reactors understood as Coulomb barrier tunneling [Gamow]
- **1939** Theory of fusion power cycle for stars [Bethe–Nobel Prize 1967]
- **1950** US approval to develop hydrogen bomb "Super" [Teller]
- **1951-52** Invention of the tokamak [Tamm and Sakharov]
 - **1950's** US Project Sherwood (classified) on controlled thermonuclear fusion
 - **1958** 2nd UN Atoms for Peace Conference (Geneva): declassification of magnetic fusion research
 - **1968** Russian tokamak results with high temperature presented at IAEA Fusion Energy Conference
- **Since then:** Worldwide explosion in tokamak research, culminating in experiments on TFTR (US), JET (EU), JT-60U (Japan), etc.

What is a "burning plasma"?

Sun

- Energy stored in nucleus Hydrogen Iron Uranium Nuclear mass
- "Burning" plasma = ions undergo thermonuclear fusion reactions, which supply selfheating to the plasma
- The energy output E_{out} is huge (global implications):

 $E_{out} = 450 \times E_{in}$

The required energy input E_{in} is also large:
 20 keV = 200 million °K

D-T fusion

- The "easiest" fusion reaction uses • hydrogen isotopes: deuterium (D) and tritium (T)
 - D is plentiful in sea water
 - T can be generated from lithium _
 - He is harmless (even useful)

10

Fusion gain Q

Initial D-T experiments

- Joint European Torus (JET)
 - "Preliminary Tritium Experiment" (1991): $P_{DT} > 1 MW$
 - Subsequently: Q=0.9 (transient breakeven), Q=0.2 (long pulse)
 - 16 MW fusion power
- Tokamak Fusion Test Reactor (TFTR)
 - Dec 1993 to Apr 1997: 1000 discharges with 50/50 D-T fuel
 - P_{DT} = 10.7 MW, Q=0.2 (long pulse)
 - Results:
 - Favorable isotope scaling
 - Self-heating by alpha particles
 - Alpha-driven instability
 - Tritium and helium "ash" transport
 - Tritium retention in walls and dust
 - Safe tritium handling (1M curies)

Status of magnetic fusion

• Lawson Diagram:

- Achieved T_i required for fusion, but need ~10 x n τ_F
- − Achieved n $\tau_E \approx \frac{1}{2}$ required for fusion, but need ~10 x T_i
- No experiment has yet entered the burning plasma regime
 - Such an experiment is the next logical step forward on the path to fusion energy
 - The world fusion program is technically and scientifically ready to proceed now with a burning plasma experiment

International planning for ITER

History of the ITER project

International developments

- International Tokamak Reactor (INTOR) Workshop: 1978-1981
 - Four partners: Euratom, Japan, US, and USSR
 - Sponsored by IAEA
 - Produced conceptual design for 600 MW(th) device and 860-page accompanying report
- ITER Conceptual Design Activity (CDA): 1987-1990
- ITER Engineering Design Activity (EDA): 1992-98
 - Four partners: EU, JA, RF, and US
 - Work sites in San Diego, Naka (JA), and Garching (EU)
 - US withdrew from ITER Project in 1998
 - San Diego site shut in 1999; personnel transferred to Naka Site
- ITER Fusion Ignition Advanced Tokamak (FIAT)
 - CTA and ITA phases 1999-2003
 - US re-entered ITER in 2003
- ITER Implementing Agreement signed 21 Nov 2006
 - Seven partners: CN, EU (host), IN, JA, KO, RF, US
- ITER Organization became legal entity in Oct 2007

ITER: an international project

- ITER Implementing Agreement signed 21 Nov 2006 by EU, Japan, Russia, USA, Korea, China, and India
 - Signing ceremony hosted by French President Chirac (Elysée Palace)
 - Dr. Raymond Orbach (Undersecretary for Energy) signed for the US

Deciding on the site for ITER

Time line on decision of ITER host

2001 May	Bid submitted by Canada (Toronto).
2001	Bids submitted by France, Spain, and Japan.
2003 Nov	EU support concentrated on France; Canada withdrew. Deadlocked vote by ITER partners between Japan and EU.
2004 June	Japan increased its bid by \$1B; EU matched it.
2004 Dec	EU hinted it would build ITER by itself if no 6-party agreement.
2004-2005	EU and Japan negotiated privately. Japan agreed to withdraw its bid, in return for a concessions package: 20% of the research positions while providing only 10% of the expenses; EU to subsidize half the cost for certain new fusion facilities in Japan ("Broader Approach"); EU support for for Japanese candidate as ITER director-general)
2005 June	Unanimous vote by ITER partners to accept EU bid
2006 May	Initialing of ITER Agreement. Transmittal to Congress for 120-day review required by Energy Policy Act of 2005
2006 Nov	Signing of ITER Agreement in Paris

Proposed site in Japan

Rokkasho-mura

- Aomori Prefecture (northern Japan)
- Mutsu-Ogawara Development Area, close to existing nuclear fuel cycle facilities
- Under JA-EU Broader Approach, will house IFERC

(a) Aomori Prefecture

(b) Rokkasho Area

EU-Japan Broader Approach

Broader Approach site

- To be built in Cadarache, France (EU)
 - Near Marseille (in Provence-Alpes-Cote d'Azur region)
 - First plasma operation in 2019, D-T operation by 2027

Site: present and future

Future layout

Present (Mar 2010)

A clear mission for the ITER project

ITER design goals

• Physics:

- Produce a plasma dominated by alpha particle heating
- Produce significant fusion power amplification (Q ≥ 10) in long-pulse operation
- Achieve steady-state operation of a tokamak (Q = 5)
- Retain the possibility of exploring "controlled ignition" ($Q \ge 30$)

• Technology:

- Demonstrate integrated operation of technologies for a fusion power plant
- Test components required for a fusion power plant
- Test concepts for a tritium breeding module

• Dominant self-heating (exothermic)

 "Autonomous" system: reduced capability to control current, pressure, and rotation profiles by means of external RF power and neutral beams

• High performance requirements

- Sustained, simultaneous achievement of high temperature and density, good macroscopic stability, good confinement of plasma energy
- Robust plasma-wall facing components and diagnostics that can withstand high heat and neutron wall loadings
- Long pulse length
 - BP experiment should have pulse length long compared to the current redistribution time ($\tau_{pulse} >> \tau_{CR}$) to investigate resistively equilibrated current and pressure profiles in the presence of strong alpha heating

More new features in burning plasma

• Strong coupling

- Transport, stability, boundary physics, energetic particles, heating, etc., will be strongly coupled nonlinearly due to the fusion self-heating
- Size scaling
 - Much larger volume than present expts
- Large population of super-thermal alpha particles
 - Different behavior from thermal ions
 - Affect stability, confinement, heating, etc.
- Nuclear environment
 - Gamma/neutron radiation, tritium retention, dust, tritium breeding

Cross sections of present EU D-shape tokamaks compared to the cross section of ITER

ITER physics R&D needs

Issues listed by ITER as urgent

- Mitigation of disruptions and runaway electrons
- Access to high confinement (H-mode)
- ELM control
- Plasma-facing component material
- Plasma scenarios
- Integrated modeling
- Tritium breeding
- ITER science challenges to be discussed in lecture #2

Organization can be as much of a challenge as science and technology

ITER org chart

ITER top leadership

- Director-General Kaname Ikeda
 - Deputy Minister for Science and Technology, Japan
 - Executive Director, National Space Development Agency, Japan
 - Ambassador to Croatia
- Principal Deputy Director-General & Project Construction Leader Dr. Norbert Holtkamp
 - Research Group Head, S-Band Linear Collider, DESY, Germany
 - Division Director, Spallation Neutron Source, ORNL, USA

ITER staffing projection

Other organizational challenges

- Communication
 - International video-conferencing techniques
 - Integrated document management
- Intellectual property rights to data
 - Who owns ITER's photons?
- Management styles, cultural differences, flag waving,...
- Multi-national safety regulations
- Import/export regulations
- Outreach for public visibility
 - Web site, newsletter, movies, brochures, PR and educational materials,...
 - YouTube movies on ITER

US ITER Project Office booth at 2008 AAAS Meeting

Determining the cost and how to pay for ITER

ITER construction cost-sharing

US in-kind hardware contributions

U.S. Burning Plasma Organization: To coordinate, facilitate, and promote burning plasma science in the US research program

- U.S. Burning Plasma Organization (USBPO) was created in 2005 as a community-based entity
 - Mission: Advance the scientific understanding of burning plasmas and ensure the greatest benefit from burning plasma experiments by coordinating relevant U.S. fusion research with broad community participation
- Broad community participation:
 - Regular members (316 from 55 institutions)
 - Associate members (15 from 9 non-US institutions)
 - Council (12 members)
 - Research Committee (20) = leaders/deputy leaders of 10 Topical Groups
 - Directorate (5)
 - International Tokamak Physics Activity (ITPA): 49 Topical Group members + 3 Coordinating Committee members from the US

Broad Expertise of USBPO Topical Groups

USBPO integrated with ITPA in US

MHD, Macroscopic Plasma MHD Physics Chris Hegna, Ted Strait **BPO Topical Groups** Pedestal Plasma-Boundary Interfaces Tom Rognlien (PED) Tony Leonard, (DSOL) **Divertor and Scrape Off Layer ITPA** members TPA Groups **Energetic Particles** and leaders **Energetic Particles** Donald Spong, Eric Fredrickson Integrated Scenarios **Integrated Operational Scenarios** Chuck Kessel, John Ferron **Operations and Control** David Gates, Mike Walker Plasma-Wave Interactions Steve Wukitch (EP), Gary Taylor Confinement and Transport **Transport and Confinement** Edward Doyle, John Rice SU Diagnostics Diagnostics Steve Allen, Jim Terry ITER Working Group on Integrated Modeling (Houlberg) Modeling and Simulation Don Batchelor, Dylan Brennan **Fusion Engineering Science** US and International technology Richard Nygren, Larry Baylor communities

> March 2010: Plasma-Boundary Interfaces topical group was renamed "Pedestal and Divertor/SOL."

- USBPO web site (www.burningplasma.org)
 - All presentations, white papers, progress reports are publicly available
 - Limited-access pages for US STAC, Council, Topical Groups, ...

USBPO eNews

- 480 subscribers (from 95 institutions); Jan 2010 *eNews* was 40th issue
- "Director's Corner" column, feature articles, ITPA meeting reports, calendar of fusion events, research highlights

IT capabilities

- Bi-weekly videoconference Research Comm and Executive Comm meetings; quarterly video conference Council meetings
- Technical briefings for US STAC members
- Remote seminars: e.g., "LH Capabilities for ITER" (Feb 2009)

4th ITER International Summer School

- ITER Summer School held in US this year
 - May 31-June 4, University of Texas
 - Sponsors: USBPO, National
 Instruments Corp, French Embassy
- Theme: MHD and Plasma Control in Magnetic Fusion Devices
 - Lectures (20), poster sessions (2),
 hands-on computer lab sessions (4)
- Participation
 - 133 participants from 17 countries and 48 institutions

- Final Report–Workshop on Burning Plasma Science: Exploring the Fusion Science Frontier (2000) http:// fire.pppl.gov/ufa_bp_wkshp.html
- Review of Burning Plasma Physics (Fusion Energy Sciences Advisory Committee, 2001) http://fire.ofes.fusion.doe.gov/ More_html/FESAC/Austinfinalfull.pdf
- Burning Plasma: Bringing a Star to Earth (National Academy of Science, 2004)
- **Progress in the ITER Physics Basis, Nuclear Fusion (2007)**