

2155-33

International Workshop on Cutting-Edge Plasma Physics

5 - 16 July 2010

High Energy Density Science

Todd Ditmire

Texas Center for High Intensity Laser Science Department of Physics University of Texas at Austin USA

High Energy Density Science

Presented by:

Todd Ditmire

Texas Center for High Intensity Laser Science Department of Physics University of Texas at Austin

"High Energy Density Physics" can be roughly defined as study of matter at energy density 10¹¹ J/m³

High Energy Density Parameter	Value yielding equivalent to 1 Mbar – Energy density of 10 ¹¹ J/m ³
Plasma density with T = 1 keV (10^7 K)	6 x 10 ²⁰ cm ⁻³
Plasma temp at solid density (n≈10 ²³ cm ⁻³)	6 eV
Electromagnetic wave intensity	3 x 10 ¹⁵ W/cm ²
Electric field strength	1.5 x 10 ¹¹ V/m
Magnetic field strength	500 T
Blackbody radiation temperature	400 eV
Current density for 100 MeV electrons	30 MA/cm ²
Laser intensity to yield 1 Mbar ablation pressure	4 x 10 ¹² W/cm ²

High energy density matter is created by heating dense plasma to very high temperature

Most modern ultraintense lasers are based on Chirped Pulse Amplification

The Texas Petawatt design is based on a 3-stage OPCPA amp and a mixed glass chain

The Texas Petawatt Laser is housed in the RLM High Bay

The Texas PW is a compact CPA laser operating with compressed energy of 190 J

The Titan laser at LLNL is a 250 TW Nd:glass laser devoted to HED research

Titan parameters

- OPCPA glass 1054 nm
- · 150 J (future: 400 J)
- 600 fs (future: 400 fs)
- Up to 5 shots per day (future: 3) (contingent on rad. safety)
- kJ long pulse beam

A quantitative understanding of these HED plasma physics issues is of considerable practical importance

HED plasmas exhibit significant differences to classic, tenuous plasmas

Plasma Parameter

$$\Lambda_p = \frac{1}{\sqrt{Zn_o}} \left(\frac{kT_e}{4\pi e^2}\right)^{3/2}$$

Number of electrons within a sphere with radius of the Debye length - determines if shielding picture is appropriate concept

<u>Tokamak plasma</u>	<u>HED plasma</u>
$kT_e = 10 \ keV$ $n_e = 10^{14} \ cm^{-3}$	$kT_e = 100 \ eV$ $n_e = 10^{22} \ cm^{-3}$
$\Lambda_p = 4 \ x \ 10^7$	$\Lambda_p = 4$

From a "plasma point-of-view", HED matter can not be described by classical, two-body interactions

- In "classic" plasmas; Γ < 1
 Particles treated as point charges
 Two body interactions dominate kinetics
- •At high density and temperature; $\Gamma > 1$:
 - •Particle correlations become important
 - Ionization potentials are depressed
 - Energy levels shift

Classic Cluster expansion (BBGKY hierarchy) leading to usual kinetic equations (Vlasov; Fokker-Planck) is not valid • Γ is the strong coupling parameter: ratio of the interaction energy between the particles, V_{ii}, to the kinetic energy, T

•
$$\Gamma = \frac{V_{ii}}{k_B T} = \frac{Z^2 e^2}{r_o k_B T}$$

Solid aluminum is strongly coupled to temperature of >500 eV

The conductivity of a warm-dense strongly coupled plasma differs significantly from an ideal plasma

Calculated conductivity of solid Al vs. Temperature

Having a precise equation of state is critical for modeling many phenomena

Pure hydrodynamics can be described accurately by the Euler equations

Conservation of mass:

 $\frac{\partial \rho}{\partial t} + \nabla \bullet (\rho v) = 0$

Conservation of momentum:

Conservation of entropy:

Laser heated plasma expansion

Super novae explosion

Inertial fusion implosions

Nuclear Weapons

The equations of state of dense plasmas have many complications

Both quantum and Coulomb effects play an important role in the electron EOS

At solid density, Fermi energy is ~ 10 eV. Many HED plasmas have temperature in this vicinity, mandating a quantum mechanical treatment of the plasma

Ionization models do not converge in the HED plasma regime

A significant question in dense plasmas is the extent to which the ionization potential of the plasma ions is altered

The traditional method of calculating continuum lowering is to assume Debye shielding by the plasma electrons

Effective energy needed for ionization is lowered

In strongly coupled plasma, the electrostatic continuum lowering can be estimated using the "lon sphere" model

effective energy needed for ionization is lowered

Different continuum lowering models yield very different predictions in the strongly coupled regime

A Saha model of ionization in solid density carbon plasma illustrates the dramatic impact of continuum lowering

Saha collisional equilibrium implies about twice the electron density in a carbon plasma with continuum lowering

The common theoretical practice is to piece together many different models in the WDM regime

ρ-t diagram (copper): the range of applicability for the best theories in each region, including intricate corrections

In the warm/hot dense matter regime sizeable errors exist in the equation of state

Contours of fractional difference in pressure predicted by different models

• Simple atomic physics

• Although most studied, differences of more than 20% in calculated pressure values can be found in the regime for hot expanded states;

- Complex atomic physics d-shell electrons
- Large model differences in the WDM region
- Measurements required for guidance

Implementation of atomic physics in this (P, T) regime is very challenging

We use direct laser heating of thin foils to study plasmas with temperatures of 1-10 eV

Optically probing the back surface of the foil will allow us to investigate non-equilibrium phenomena due to direct femtosecond laser heating.

Electron (red) and ion (blue) temperature distributions in Al foil 500fs after it was heated with 60 fs pulse at $2.*10^{14}$ W/cm².

Using chirped probe pulses, we can measure the time evolution of the optical properties of a laser-heated plasma

Two sets of probe pulses were split from the pump pulse to perform the entire experiment with a single shot.

□FCC structure □Polycrystalline □grain size ~40nm

We have measured the optical properties of dense Al plasma heated with a 40 fs pulse

Back surface reflectivity and phase shift of 170 nm foil irradiated with 2.2*10¹⁴W/cm²(blue) and 1.6*10¹⁴W/cm²(red) intensities.

- For the first few ps the returned probe signal stays unchanged.
- 6ps later the heat wave reaches the back surface of target, electron temperature rises.
- >10 ps Shock wave reaches the back surface. Phase shift changes are dominated by the particle motion as material expands

So, between 6 and 10 ps we have a heated back surface with a sharp interface to vacuum

Our measurements are roughly consistent with a well known dense plasma conductivity model

Isochoric heating can be combined with optical and x-ray probes to derive information about a hot dense plasma

Short pulse laser produced radiation can be used to heat isochorically bulk matter

With a petawatt laser, very intense, energetic pulses of protons can be produced

Proton spectra from PW irradiation of solids are typically broad, stretching to a cut-off of many MeV

Proton spectrum from Titan irradiation of a slab target

A petawatt-class laser can generate multi-joule pulses of protons to heat a secondary solid target

We have demonstrated proton heating using the LLNL 200 TW Titan laser

Multi-layer targets for proton isochoric heating experiments can be fabricated in silicon wafers

The plasma's temperature is independently measured with a streaked optical pyrometer

We measure the expansion rate of the heated plasma with chirped pulse interferometry

The time history of the temperature and expansion of the heated AI slab was measured on every shot

SOP: Time-resolved temperature

CPI: Time-resolved expansion

- Peak temperature ~ 25 eV
- Optical transition radiation signal at t₀
- Fourier analysis of bending fringes
 → phase shift → expansion in time

Time-resolved measurement of black-body emission indicated that we heated the solid AI to 20 eV

Our proton-heated AI had an EOS which was consistent with the most commonly used SESAME table

This measurement was in solid density aluminum at a maximum temperature of 20 eV

"Rescattering" of laser driven electrons at the surface of a sharp plasma gradient can produce pulses of fast electrons

At relativistic intensity, the laser's magnetic field can also accelerate electrons at a sharp surface

Transport of laser accelerated electrons on a solid target can be diagnosed by imaging their transition radiation

 T_e = 1 MeV, δt = 1.33 fs, d = 10 μm

We have identified two hot electron generation mechanisms at work simultaneously on planar targets

We use the THOR laser to generate harmonics in the ~30 nm region and refocus them into a cluster jet

Cross sectional image of Mo/Si multilayer mirror and EUV reflection mechanism. (IOF Fraunhofer, Jena)

-Uspenskii, Vinogradov et. al., Optics Letters 20, 771 (1998)

Multilayer mirrors are $\lambda/4$ stacks, with periodicity ~10nm. Sc/Si mirror reflectivity R ~ 0.3-0.5 in the 35-50nm region.

We generate 32.7 eV pulses by high harmonic generation in argon

Harmonic selected for these experiments: $hv = 32.7 \text{ eV} (\lambda = 38 \text{ nm})$

XUV photo diode measurements indicate that we focus ~ 1 nJ of 38 nm light into the Xe cluster jet

High charge states are produced when Xe clusters of > 1000 atoms are irradiated

Efficient production of charge states of up to 5+ are observed, with some evidence for charge states up to 8+

The high charge states observed in Xe clusters are anomalous

Time of Flight, μ s

	Charge <u>state</u>
<i>h</i> v _{q=21} = 32.6 eV	Xe ⁰ Xe ⁺¹ Xe ⁺² Xe ⁺³ Xe ⁺⁴

state	Potential
Xe ⁰	12.1 eV
Xe ⁺¹	21.2 eV
Xe ⁺²	32.1 eV
Xe ⁺³	46.7 eV
Xe ⁺⁴	59.7 eV
Xe ⁺⁵	71.8 eV
Xe ⁺⁶	92.1 eV
Xe ⁺⁷	105.9 eV

Ionization

Continuum lowering coupled with photoionization may explain our observed charge states

