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A Conventional Superconductor-1

A conventional superconductor (SC)=perfect conductor with no
magnetic flux in its interior (Meissner–Ochsenfeld effect).

Quantum phenomena-Cooper pairs-Super electrons of charge (−2e)
and mass (2me) . Electrodynamics defined by Steady-state
Maxwell

∇×B =
4π
c

J, (1)

and the constitutive relationship

∇× J = − c

4π
B
λ2

s

, (2)

where λs = c/ωps is the skin depth (ωps = (4π ns e
2
s/ms)1/2 is the

corresponding plasma frequency). The current J = −ns esvs is
entirely due to super electrons stipulated to have zero canonical
momentum ms vs − (es/c)A = 0.
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A Conventional Superconductor-2

The standard form of the London equation follows

∇2B =
B
λ2

s

, (3)

For a system with dimension �� λs, the magnetic flux is confined
to a distance λs near the edge; in this narrow skin, the field
literally jumps from a value 0 to its external value.

Magnetic field B and current J are restricted to the same skin
depth. Within the London framework, then, the current and flux
expulsion are indistinguishable and equivalent; either expulsion
could define the canonical superconductivity.
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Perfect Diamagnetism- Classical Systems

Can perfect diamagnetism be found in classical systems?

Warning- This is not an an attempt at a classical derivation of
standard superconductivity- conventional superconductivity is well
known to have quantum origin!

We are attempting here to explore if there are classical systems
that mimic the electrodynamics of superconductors- Is something
akin to a London state classically accessible?

And if so could the theoretical underpinnings of such systems be
experimentally tested?
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Survey-A well-known example invoking magnetic helicity

The Woltejer-Taylor state (real α)

∇×B = α−1B⇒ ∇2B = − B
α2

(4)

is exactly an antithesis of (3) and implies that the magnetic flux
occupies the whole region (B is oscillatory).

Equation (4), pertaining to a perfectly conducting fluid, was
derived in ideal magnetohydrodynamics (MHD) by minimizing the
magnetic energy (<>=

∫
d3x)

Em =< B2/8π >, (5)

subject to the constraint of an invariant magnetic helicity

hm =
1
8π
〈A ·B〉 (6)
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Systems ”richer” than MHD

Notice that unconstrained minimization would lead to the trivial
solution B=0

The recognition of magnetic helicity as an invariant was a major
factor in our understanding of the structure of the magnetic fields
and the subsequent discovery and development of self-organized
states accessible in ideal MHD

The helicity, a measure of the structural- topological complexity of
a solenoidal vector field, is easily generalizable to systems more
complicated than MHD; the constancy of the so called
”generalized” helicities can be harnessed to generate new and
interesting field configurations.
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Electrodynamics of perfect conductors

A perfectly conducting super electron gas (charge −e∗ and mass
m∗) obeys

∂P
∂t

≡ ∂

∂t

(
A− cm∗

e∗
u
)

= u×Ω +∇
(
u2

2
+ g

)
, (7)

where the generalized vorticity (GV),

Ω = ∇×P = B− cm∗

e∗
∇× u, (8)

u is the fluid mechanical velocity, P is proportional to canonical
momentum, and the last term represents gradient forces
(pressure–). Curl of Eq.7 converts it to the vortex dynamical form:

∂Ω
∂t

= ∇× (u×Ω). (9)
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A very special solution

∂Ω
∂t

= ∇× (u×Ω). (10)

has a special and unique solution Ω = 0

If GV is zero, it is also a constant of motion.

The condition Ω = 0 (with J = −n e∗ u) is precisely the constitutive

relation (2) that yields the London equation.

Electrodynamically, then, Quantum transitions simply supply an initial

condition that assures perfect diamagnetism.

The ”singular” Ω = 0 is electromagnetic ‘signature’ of the

superconducting state. The more general Ω = μu, permitted as an

equilibrium solution of (7) is not

Surely for a classical system, the latter will may be the general solution

with Ω = 0 as a possible limiting case.
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Ideal Perfect Fluids- Accessible States-a primer-1

A plasma consisting of several dynamic species (the standard

superconductor has only one – the super electrons) is embedded in a

strong confining magnetic field B0 = êz B0

The total magnetic field BT = B +B0êz, B produced by plasma

currents.

Each of these perfectly conducting components, derived for a fluid with

constant density and isotropic pressure, obeys

∂

∂t
Pα = vα ×Ωα +B0 (vα × êz)−∇ψα, (11)

where Pα = A + (mαc/qα)vα, Ωα = ∇×Pα = B + (mαc/qα)∇× vα is

the generalized vorticity for the species α with mass (charge) mα(qα),

and ψα = c/qα(pα/nα + .5mαv
2
α + qαφ) spells out the gradient forces;

pα(nα) is the pressure(density) and φ is the electrostatic potential.
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Ideal Perfect Fluids- Accessible States-a primer-2

The uniform static external field B0(∂B0/∂t = 0) distinguisshed from the

dynamic magnetic field B. Tremendously simplification results when: 1)

no variation along confining field (∂/∂z = 0), and 2) motions are

compressible (∇ · vα = 0).

The allowed velocity field

vα = vzα êz + êz ×∇χα, (12)

implying

vα × êz = ∇χα, (13)

converts (11) into (ψ̂α = ψα −B0χ)

∂Pα

∂t
= vα ×Ωα −∇ψ̂α, (14)

Dynamics in strong magnetic field reduced to one with no confining

field; the confining field has simply gone to modify the gradient force

-not pertinent for current investigation
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Ideal Perfect Fluids- Accessible States-a primer-3

Dynamics is governed by Eq.(14), and its curl

∂Ωα

∂t
= ∇× (vα ×Ωα) , (15)

and the Ampere’s law ∇×B = (4π/c)J, J =
∑
qαnαvα.

Following (n+ 1) bilinear invariants emerge: the total energy

[<>=
∫
d3x]

E =

〈
B2

8π
+

1

2

∑
α

nαmαv
2
α

〉
, (16)

and a generalized helicity (GH) for each species

hα =
1
8π
〈Pα ·Ωα〉 (17)

Unless the electron inertia is neglected (like in MHD) it is hα, and
not the magnetic helicity hm that is conserved.
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Variational principle- Accessible States

Relaxed states are derived via the variational principle

δ
(
E − μ−1

α hα

)
= 0, (18)

minimizing the energy with the helicity constraints. The constant
μα are Lagrange multipliers. The Euler–Lagrange equations

Ωα = B +
mαc

qα
∇× vα = (4π/c)μαqαnαvα (19)

align generalized vorticities of each species along its velocity.

All variations are incompressible and normal components of fields
vanish at the boundaries. Eq.(19) is an equilibrium solution
provided the Bernoulli condition (∇ψ) = 0 is satisfied- Bernoulli
conditions are not directly relevant to today’s lecture.

The structure of the magnetic and velocity fields for these relaxed
states can be obtained by solving (19) in conjunction with
Ampere’s law.
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Search for Perfect Diamagnetism-A Model

The model plasma has two distinct components – a bulk plasma of

essentially stationary (non–dynamic) electrons and ions, and a dynamic

fast component that could be either electrons or ions.

The dynamic component (to be designated fast with a label f) carries all

the current as well as the kinetic energy of the system, i.e.,

|qfnfvf | � |qeneve|, |qinivi|, and nfmfv
2
f � nemeu

2
e, nimiv

2
i .

The fast dynamical component mimics the superelectrons; can be

justifiably treated as ideal( infinite conductivity). A single generalized

helicity hf is of essence. Magnetic fields are determined by Eq. 19, and

∇×B =
(

4π

c

)
qfnfvf . (20)

Normalization (λf is the skin depth, λ2
f = c2/ω2

pf , ω2
pf = (4πq2fnf/mf ))

yields (∇×∇×B = −∇2B):

∇×∇×B + B =
μf

λf
∇×B, (21)
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Working out the Model-1

But for the Lagrange multiplier μf = 0, Eq.(21) is nothing but the

London equation with fields restricted to a skin depth λf

Surely, then, electrodynamically μf = 0 (which for the relaxed state

insures Ωf = 0) is just the necessary and sufficient condition for perfect

diamagnetism!.

The model system has a general solution (A± are constants)

B = A+G+ +AG− (22)

where G±, known as Beltrami fields, are, in turn, the solutions of

∇×G± = λ±G± (23)

with

λ± = .5

⎡⎣μf

λf
±

[(
μf

λf

)2

− 4

]1/2
⎤⎦ . (24)
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Working out the Model-2

The roots λ± are real for (μf/λf )2 > 4 - no diamagnetism

Form a complex conjugate pair for (μf/λf )2 < 4-partial diamagnetism

In the latter case G∗
+ = G− and A+ must be A∗− in order for the

solution [B = 2 Re(A+G+] to be real.

As |μf/λf | goes from zero to larger values, the system begins with

perfect diamagnetism (λ± = ±i), switches to partial diamagnetism (±
complex), and finally succumbs to the W-T state (λ± real)

The transition from complex to real roots happens at the critical value

|μf/λf | = 2.

Evidently the amount of ‘diamagnetism’ displayed by this relaxed state

is controlled by the parameter |μf/λf |.
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Working out the Model-3

An expression for μf for the relaxed equilibrium state (19-20) is readily

derived through a the following steps:

hf =
1

8π
〈Pf ·Ωf 〉 =

μf

2c

〈(
A +

mfc

qf
vf

)
· qfnfvf

〉
= μf

〈
1

2
mfnfv

2
f +

B2

8π

〉
yielding the revealing identification

μf =
hf

E
(25)

The Lagrange multiplier (dimensions of a length) measures the

generalized helicity as a fraction of the total energy. A ratio of two

constants of motion, the control parameter μf is an invariant of the

system and is fully determined by the initial ‘preparation’ of the system.

Helicity is an impediment to perfect diamagnetism!
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Summary-Conclusions-1

Similar Electrodynamics for a standard superconductor and that of a

magnetically confined ideal plasma - consisting of a fast dynamic

component and an essentially stationary ion–electron bulk plasma

The generalized helicity h = (8π)−1 〈P ·Ω〉, an invariant measure of the

‘knottedness’ of the field of generalized vorticity Ω, emerges as a

fundamental determinant of the class of magnetic field configurations

that the system can entertain.

The state of Perfect Diamagnetism corresponds to h = 0. For minimum

energy relaxed states, this condition implies the constitutive relationship

Ω = 0 [Ω ∝ μv, μ = h/E], the very definition of superconductivity.

The constant of the motion h is determined by the initial conditions =¿

the electrodynamics of a super–conductor is fully reproduced if the

quantum correlations provided the correct initial condition, h = 0.

Quantum correlations do produce the super–electrons precisely in this

state.
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Summary-Conclusions-2

With the helicity h established as the fundamental determinant of the “

diamagnetic content”, whole series of experiments become possible.

The classical plasma is not bound to be in a helicity–free state; it can, in

principle, entertain (or be prepared in) configurations of arbitrary

helicity (or helicity/energy). Its magnetic behavior, therefore, can vary

over a broad range; from perfect or nearly perfect diamagnetism to no

diamagnetism.

Perfect diamagnetism is asymptotically accessible to a classical system

with length μ = h/E ( may be termed the decorrelation length) much

smaller than the skin depth

A clever experimentalist can play, for example, with a beam- plasma

system (by experimenting with how to inject an ion or an electron beam

in an ambient plasma) to bring the generalized helicity to any arbitrary

value. She could accomplish the same feat for a classical plasma what

quantum mechanics does in a conventional superconductor.
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Summary-Conclusions-3

Even in the zero or near zero helicity state, classical systems display

immense variety in the degree of localization.

With appropriate choices of fast electron and/or ion beams with a range

of densities, one can create skin lengths which can vary over several

orders of magnitude.

Current channels of arbitrary extent could be experimentally created.

Whenever one finds excessive localization of current in space,

astrophysical or laboratory plasmas, one should look, it seems, for a

classical “super–conducting” explanation.
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