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Abstract

The aim of this lecture is to delineate the fundamental relation between the vorticity generation

and entropy production. The notion of "vorticity" is naturally (or canonically) generalized to

unify fluid vortexes and magnetic fields (EM vorticity). The source of vorticity is a properly defined

entropy term TdS (a possibly non-exact differential form breaking the conservation of circulations);

the differential is defined in 4D space-time. We will show that the relativistic distortion of space-

time can create a seed of cosmic vorticity/magnetic field. Vortexes influence the heat transport

and modify the temperature and entropy distributions. The self-organization of convection cells

or transport barriers (both are the creations of vorticity) are, then, described as spontaneous

mechanisms self-regulating the entropy production. We will show that transport barriers are self-

organized with "maximizing" the entropy production rate.

PACS numbers:



I. THERMODYNAMIC LAW AND FLUID MECHANICS

A. Preliminaries

Here we delineate how the thermodynamic laws are built in fluid mechanics equations,

or how fluid mechanics can be built around the fundamental thermodynamic relations. In

the primitive narrative of thermodynamics, the "energy" does not include the kinetic energy

of fluid motion (collective motion); quasi-static process is the subject of main interest. To

formulate the emergence of infinitely diverse "motion" of fluids, we have to implement the

following two formulations into the model:

1. The explicit form of the mechanical energy (consisting of kinetic and potential ener-

gies).

2. The geometric formula to calculate variations d in space-time.

Needless to say, it is impossible to describe all possible processes of chaotic dynamics

in a non-equilibrium system. Here the notion of "motion" is limited to a class of fluid (or

collective) motion (which we will denote by v). We consider elements of the fluid, and

assume that every element obeys thermodynamic laws. Let p = ran be the mass density of

the fluid; m is the mass of a particle of the fluid constituent and n is the number density.

When the volume of a fluid element is V, the number of particles contained in the element

is nV. We normalize nV to be unity (in some appropriate unit); in what follows an element

is such that nV = 1.

The first law associated with each fluid element (nV = 1) may be written as

dE = SW + SQ, (1)

where E is the total energy of the fluid element, SW is the mechanical work, and SQ is

the heat exchange [1]. Here E consists of mechanical (collective) and thermal energies. The

mechanical work may not be simply —PdV, but we assume that only — PdV works to change

E of each fluid element; all other mechanical processes may "rearrange" the partitions among

the constituents of E. To represent such "internal work" pertaining to fluid motion, we write

= de + 5EF,



where e denotes the thermal energy (which includes the rest mass energy). The second term

is internal in the sense that 5EF evaluated along the fluid motion vanishes, while it dictates

the motion of the fluid. As to be shown later, we will generalize the energy (enthalpy) to

be a tensor, and then, 8EF may be interpreted as the non-exact part of the variation of the

tensor energy (enthalpy). The first law now reads as

de + SEF = -PdV + SQ, (2)

By the standard Legendre transformation, we introduce the enthalpy h = e + PV, and

rewrite (2) as

dh + SEF = n^dP + SQ. (3)

The second law is written as SQ = T(dS — SSi) with T and S as temperature and entropy,

respectively. The quantity 6Si(> 0) denotes internal entropy production. Combining the

first and second laws, we may write

dh + SEF = n-xdP + T(dS - 6Si). (4)

The proper representation of the enthalpy H = E+VP must combine the fluid (collective)

kinetic energy (mt>2/2), potential energy (0), thermal energy (e), and VP = n~1P. However,

in a quasi-static homogeneous fluid, H reduces into the static enthalpy h = e + n~1P. Then,

putting 5EF = 0 and 6Si = 0, (4) reduces into the well-known quasi-static thermodynamic

relation

dh = n^dP + TdS. (5)

The generalization of (5) to (4) requires space-time tensor framework; the generalized H

is no longer a scalar state variable, so that dH may include a non-exact part, which has

been denoted by SEF. In the conventional argument of "quasi-static process", the paths of

evaluating variations (denoted d or 5) are not explicitly connected to the notion of time —

they are not dynamical processes, but are caused by hand. However, we are now considering

a fluid motion, in which the variations of parameters are caused by autonomous dynamical

processes. Hence, the paths of variations must be explicitly related to the orbits of fluid

elements in space-time.



B. Energy-Momentum Tensor and Thermodynamic Law

In a dynamic fluid system, the (molar) enthalpy becomes a tensor:

where V11 is the space-time 4-velocity (see Landau-Lifshitz [2] and Appendix A). The specific

fluid energy is

by which the adiabatic equation of motion is written as

d ^ = 0. (6)

To incorporate non-adiabatic effects, we may add a heat term such as nQnu = d^D^ to the

left-hand side (see Appendix A). We may calculate

1" = d^ (nhU»Uv -

= nU^d^ {hUv) - dvP (7)

= ndvh + ncU^M^ - d"P, (8)

where the antisymmetric matter field tensor is defined by

cM^ = dIJ{hUu)-du{hU1*). (9)

In the first step (7), we calculate

v) = nU^df, (hUu)

The second term vanishes because of mass conservation. Contracting both sides of (9) with

Up, we obtain

= Utldll{hUv) - duh.

Using this relation in (7) yields (8).

Dividing (6) by n, we obtain

= -duh + n-xdvP. (10)



By the thermodynamic relation (5), the right-hand side of (10) may be written as —TdS.

A non-adiabatic equation of motion may be written as

cU^M^ = -dvh + n~1dvP + @v, (11)

which is compared with the conceptual equation (3); the term cUflM
llu embodies 5Ep, while

the heat term Qv corresponds to SQ.

The term cU^M^v has the following properties:

1. Since M^u is antisymmetric, contracting with the 4-velocity Uv yields \JvUjlM
illV = 0,

implying that it does not work when evaluated along with each element of the fluid,

i.e., it is an "internal" term.

2. In the adiabatic equation of motion (6), the fact that UJJ^M1111 = 0 implies isentropic

flow.

3. While cUllM
ilv does not work when evaluated along the streamlines, it can create

"vorticity". The geometric implication of this term will be delineated in Sec. II.

C. Plasma Model — matter-EM unification

By generalizing the Hamiltonian and momentum to be canonical being amenable to the

EM field theory, we obtain the dynamics equations describing matter-EM coupling [3], i.e.,

model of plasmas. Let A^1 = (cp, A) denote the EM 4-potential. The canonical Hamiltonian

(enthalpy) and momentum are, respectively, H = (p — qA)2/2m + (j)-\-h and <p^ = V^ + qA^1.

The matter-EM field tensor is, then,

M"v ->• M"v = dflpnu - dup^ = M"" + qF^.

II. CIRCULATION THEOREM

A. Classical Kelvin's Theorem

The circulation §L 5Q, associated with a physical quantity 5Q, calculated along the loop

L, may be zero or finite depending on whether SQ equals an exact differential dip ((p being

a state variable) or not. For example, if SQ = TdS (T: temperature, S: entropy), the



L(x')

U

FIG. 1: Transport of a loop and circulation. Given a loop L in space, the circulation of a vector

field P is the integral §L P • dx. Two loops L(T) and iJ(r'), connected by the "flow" dx/dr = U

(the parameter r may be regarded as time), are shown in the figure. A circulation theorem pertains

to a "movement" of loops; the rate of change of circulation is calculated as (12). To generalize

the argument to the relativistic regime, we have to immerse the loop in the 4-d space-time and

transport it by the 4-velocity dx^/dr = U^; see Fig. 2. The relativistic space-time circulation

conserves in ideal fluids; see (14).

circulation is generally finite and measures the heat gained in a quasi-static thermodynamic

cycle.

An ideal fluid can be viewed as a realization of an infinite number of ideal isolated

(adiabatic) cycles covering space. Along the time dependent loop L(t), convected by the

fluid motion, the rate of change of circulation associated with the canonical momentum

§L,t-, P • dx is identically zero. In fact, if two loops L{t) and L[if) are connected by the

"flow" dx/dt = U, the rate of change of circulation is calculated as

^- I P-dx= <fc [dTP + (V x P) x U] • dx. (12)
dt JL(t) JL(T)

The fluid equation may be written as (Appendix A)

dtP+{\7xP)xv = -V

= -VH + TVS, (13)

where H = mv2/2 + 4> + h (</>: potential energy, h: static enthalpy; V(e + n~1p) = Vh =

n~lVp + TVS'). If VS = 0 (for example, barotropic relation holds), the rate of change of

circulation equals the circulation of an exact fluid-dynamic force derived from the energy

density, i.e., §L,t) VH • dx = §L,f, dH = 0. In the standard non-relativistic description of an

ideal fluid, therefore, if the initial state has no circulation (vorticity), the later state will also
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(a)
-——T\

t\>

FIG. 2: Transport of a surface (and its boundary) in space-time. Two figures compare the evolu-

tion of a surface and its boundary (loop) moved, respectively, by (a) the non-relativistic velocity

(dxj/dt = Vj\ 3-vector) and (b) the relativistic 4-velocity (dx^/ds = U^). The figures are drawn

in the space-time x-y-t with v/c = (tanhx,0, 0) (thus 7 = sech~ x). In the Lorentz-covariant

theory, the circulation theorem applies to a loop L(s) that is moved by the 4-velocity U^ in the

4-dimensional space-time.

be vorticity-free (Kelvin's circulation theorem). For the vorticity to be created, the "force"

on the fluid must not be an exact differential.

B. Generalized 4D Circulation theorem

In the relativistic space-time, the loop L(t) pertaining to a "synchronic space" (t = con-

stant cross section of space-time in a reference frame) ceases to be the appropriate geometric

object along which the circulation must be evaluated (see Fig. 1). The loop moves in space-

time with a 4-velocity W* = (7, 7 V-3/c) (VJ: the reference-frame velocity) and the relativistic

circulation must be described as a function of the proper time s. In Fig. 2, the respective

evolutions of the "synchronic loop" L(t) and the "relativistic loop" L(s) are compared. The

synchronicity of the loop L(s) is broken by the nonuniformity of the proper time. The

circulation of a 4-vector <p^ along the relativistic loop L(s) obeys

d_
Is

(14)
'L(s) J JL(s)

If p11 is an appropriate momentum, the relativistic equation of motion relates the integrand

{d^pv — dupv) Uv with an effective force (Appendix A). If the force is exact, the relativistic



circulation will be conserved; the ideal fluid does, indeed, obey an appropriate relativistic

Kelvin circulation theorem. However, vorticity (or magnetic field) is defined on synchronic

space (hence, it is reference-dependent); its circulation still pertains to the synchronic loop

L(t). The field must be mapped from the naturally distorted L(s) back to L{t)—this re-

ciprocal distortion, represented by a Jacobian 7"1, imparts a shear to the thermodynamic

force (i.e, changes dH to ^/~1dH) destroying its exactness.

C. Creation of Vorticity/Magnetic Field

The generalized vorticity tl (or the generalized magnetic field B) is defined by V x go (or

(c/g)V x go), where go is the vector part of pu'. The equation of motion is written succinctly

as [3]

dJ^MT = -TdvS. (15)

Substituting (15) into (14) shows that the rate of change of circulation of p^ is balanced by

the integral along L(s) of {T/c)dllS. It is the 3-vector part of (15)

that explicitly shows the relativistic modification of the force TVS by the factor 7"1. Here,

the generalized electric field & = E^ + (mc/^.A/f0-7 satisfies Faraday's law dtB = —V x E.

The appearance of 7"1 on the right-hand side is due to the mapping back of the relativistic

space-time onto the synchronic space in which the conventional circulation and the vorticity

are to be calculated. To evaluate the rate of change of B (with respect to the reference time

t), we must go back to (16) whose curl reveals the source for magnetic field generation:

S = -V x (—VS] = -V (—} x VS, (17)

which may be broken into the familiar baroclinic term SB = —(c/q/y)'VT x VS1 and the

relativistically induced new term

(^)( | ) 2 (18)



III. THERMODYNAMICS OF SELF-ORGANIZATION

A. Creation of Vortex and Heat Transport

Here we study the role of vorticity generation term TdS in the self-organization of trans-

port barrier [5]. The following discussion is non-relativistic.

We start by a classical example of fluid-mechanical nonlinear process creating non-trivial

(bifurcated) mode of non-equilibrium structure, "vortex". As described in Sec. II, non-exact

TdS is the causal of vorticity (see [4] for the geometric and analytic properties of the this

Clebsch form). Here we study an example of thermal convection (so-called Benard convec-

tion), and delineate how an inhomogeneous entropy —due to an ambient inhomogeneity

caused by gravity— can drive circulation. We invoke a simple model:

g, (19)

where g = —mCVx1. We may rewrite (19) as

m[dtv - v x (V x v)] = -VH + TVS', (20)

where H = mv2 /2-\-mGx1 + h. We consider a small perturbation (but nonlinear with respect

to v), caused by heat transfer through the fluid, around a constant-temperature (T = To)

mechanical equilibrium (we mark equilibrium quantities by subscript " e"):

ve = 0, he + mGx1 - T0Se = const. (21)

The perturbed (heated) fluid motion obeys

m[dtv - D X ( V X J ) ) ] = -V(h - T0S) + TVSe. (22)

The first term on the right-hand side is exact, while the second term is non-exact (see

Appendix B for the comparison with the standard Boussinesq's model of thermal convection).

This "baroclinic effect" is caused by the collaboration of the ambient inhomogeneity of

Se (imposed by gravity) and the inhomogeneity of heating producing heat transport. The

equilibrium Se is a function of x1 (hight). If the heating of the fluid is inhomogeneous only in

x1, the static T may be a function of only x1, and, then, the driving term TVSe reduces into

an exact term. A flow, however, may break symmetry, and T will become inhomogeneous

in other directions.

9



B. Thermodynamic Balance

From the preceding example of creation of vorticity, it is now clear that the non-exact

entropy term TdS is the origin of a dynamic structure=vortex in a fluid. Our question

is, then, how efficiently the heat TdS = SQ can be converted to a collective motion. The

efficiency depends on the "mechanism" of conversion (which involves some instability causing

initial motion and some nonlinear process converting the instability to a quasi-static ordered

motion of organized vortex), however, there must be an abstract thermodynamic balance

relation.

Let us rewrite the thermodynamic relation (4) as

dh - TodS + SEF = SW+(l-1^]sQ- T0SSi, (23)

where To is a positive constant (reference temperature) and 5W = n~1dP. As noted before,

SEF vanishes when evaluated along the streamline of each fluid element. However, if we

consider a mean flow velocity averaging out the fluctuating (turbulent) small-scale fluid

motion, SEF may have a finite value.

Dividing (23) by an infinitesimal time dt, and denoting 5Y/dt = Y, we obtain a rate

equation:

jt(h-T0S) + EF-W=(l-?fjQ- T0St. (24)

Integrating (24) over the fluid, we obtain a macroscopic energy balance relation. In

a quasi-stationary state (could be far from thermal equilibrium), a sufficiently long-term

average of a state variable must be constant. Hence, we may assume that the volume

integral of the state variables (h and S) are constant (we neglect the mass flow across both

boundaries, so that every fluid element is confined in the fixed domain; see Appendix C). We

assume that the system does not absorb or emit the energy mechanically, so J WdM = 0.

Integrating (24) over all fluid elements (we denote by dM = pd3x the mass element of the

fluid; p = ran is the mass density), then, yields

EFdM = f M - ^ j QdM -To f StdM. (25)

10
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FIG. 3: Equivalent diagram of heat engine in a boundary layer. Creation of vorticity may either

(a) open a channel of convective heat transport (for example, Benard convection), or (b) block the

heat transport (for example, zonal flow creating a heat-transport barrier).

C. Quasi-static Layer Model

We will now study the thermodynamics of a "layer" bounded from the inside by an

internal heat source, and from the outside by a cold heat bath (see Fig. 3). We will specify

the total heat flux i*\ entering the layer through the inner boundary I \ in contact with the

core plasma. The temperature of the outer boundary Fo is fixed by the temperature To of the

heat bath (hereafter, we set the reference temperature To to be the heat bath temperature).

The inner-boundary temperature 71 (whose value measures the layer temperature gradients),

however, is the essential parameter that needs to be determined. The outer-boundary heat

flux Fo must balance Fx in a quasi-steady state (then, we write Fi = Fo = F).

In a quasi-stationary state, heat does not accumulate or disperse in any fixed volume

element for a sufficiently long term average, so we may put Q = 0 inside the domain.

However, the system may exchange the heat with the exterior at the boundaries. In terms

11



of the heat flux F, we may write

± - - ) QdM = I - - - J F. (26)
in

Using (26) transforms (25) to

J EFdM =(I-^)F-T0J StdM. (27)

If the heat were to transport only by diffusion in a stationary medium, (27) holds with

EF = 0, and the internal entropy production is given by Si = f • V(l /T) with the heat flux

/ . However, a finite temperature difference Tg"1 — T{1 can create vorticity —note that the

factor (1 — T0/Ti) is Carnot's efficiency measuring the fraction of the heat flux that may

be converted to mechanical energy. If such a mechanism of vorticity creation works, the

vorticity term EF becomes finite, which will make a new balance with an enhanced internal

entropy production S1,. The influence, however, is not only that; the creation of vortex may

change the heat flux, and thus, 7\ will also change.

The vortex can influence the heat transport in two different ways. In a stationary fluid,

the creation of vortex opens a channel of heat transport by convective motion, reducing the

effective impedance of the heat conduction (see Fig. 3 (a)). On the other hand, in a turbulent

fluid, the creation of an ordered shear flow (or zonal flow) brings about stretching effect and

suppresses the turbulent heat transport. In this case, the effective impedance of the heat

conduction increases (see Fig. 3 (b)). In the next subsection, we will analyze the latter case.

D. Thermodynamic Model of Self-Organized Transport Barrier

When the impedance r\ of heat conduction is given, we may write

T = To + VF, (28)

where To (outer-boundary temperature) is a given constant. The heat transport is dominated

by turbulence, thus r\ is a complex function of various parameters and conditions. The power

P that is ready to be converted into a coherent (or collective) motion will be the principal

parameter dominating rj. We put rj = f]o + ^i(-P), where f]o is the minimum (or baseline)

impedance corresponding to the non-organized turbulent state, and r)i(P) is the increment

of the impedance brought about by the self-organization of coherent motion (we assume

12



> 0 and r/i(O) = 0). As to be shown later, a larger r\ yields a larger P. We consider

the minimum non-trivial model [5]:

(29)

with

(30)

where a (> 0) is a constant. A positive a yields an increased impedance when the flow

produces (by a positive P) an ordered structure such as a zonal flow.

For the convenience of latter calculations, we define TD = To + f]oF, which is the mini-

mum inner-boundary temperature. The power P must be smaller than the Carnot-cycle's

power (the ideal conversion of the internal energy to a mechanical energy). Subtracting the

minimum entropy production due to the baseline heat diffusion, we may write [see (27)]

The non-organized state is such that T = TD and P = 0; this state may be called a linear

branch because (29) reduces into a linear relation between T and F.

Let us see how an organized state (or nonlinear branch) emerges with yielding T > TD

and enhancing the entropy production rate. We solve (29) with (30) and (31) to obtain (see

Fig. 4)

{T^T° {F<F'h (32,
X or T2 = aF2T0/TD (F > Fc),

where

(33)

is the threshold of the flux F over which the nonlinear branch bifurcates.

Stability analysis shows that the organized state (nonlinear branch) T = T2 =

aF2T0/TD (> TD) is stable, while the non-organized state (linear branch) T = Tt = TD

destabilizes over the threshold [5].

Going back to the essentials of the model, we note that the new element that could

impart this non-standard behavior to the heat transport is our choice of the inner boundary

condition; instead of specifying the temperature 7\ at the inner boundary, we have chosen

to specify the amount of heat flux F entering the layer. In fact, we can easily verify that the

13
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FIG. 4: Bifurcation of solutions (intersections of the graphs y = g(AT*) and y = AT*). If

g'(0) > 1, we have the second branch of solutions with AT* > 0. In this graph, parameters are

To = 1, a = 2, r/o = 1, and F = 1, 10.

higher impedance (nonlinear) branch still self-organizes if 71 is fixed instead of controlling F,

but, then, the entropy production rate is reduced from that of the lower impedance (linear)

branch. One may invoke the analogy of electric circuit: If a nonlinear impedance (Z) is

connected to a constant-current (/) power supply, the entropy production rate is -Z72, while

it is V2 jZ if connected to a constant-voltage (V) power supply.

It is F that brings in the energy that would be eventually channeled into an ordered flow;

unless F is large enough (larger than a threshold value), the "heat engine" does not work, i.e,

the high temperature-contrast state is not accessible. Since the high temperature-contrast

state is the final product of the heat engine, the factor measuring the temperature-contrast,

(1 —T0/Ti) scales the strength of the two seemingly contradictory constituent processes -the

Carnot efficiency for generating mechanical energy (flow), and the entropy production (or

emission). Such a state of affairs could pertain if, for instance, the dissipation mechanisms

that create the total entropy were independent of the mechanisms that convert the "free

energy" into an ordered flow.

The two opposing mechanisms could, indeed, act independently and simultaneously if the

"domains" of their efficient operation were non-overlapping. We propose that a recourse to

scale-separation does precisely what is needed : (1) the total entropy production is dominated

by small scale perturbations with a large damping rate (oc L~2; L: eddy size) keeping the

eddy amplitudes (sacrifice for the dissipation) to be very small, (2) The flow, being a coherent

14



macroscopic structure, is created in the large scale, perhaps, from an instability driven by

the entering heat flux F; its creation/characteristics are not affected by the short scale

dissipation responsible for entropy production.

APPENDIX A: RELATIVISTIC AND NONRELATIVISTIC 4-DIMENSIONAL

REPRESENTATIONS

1. Basic Definitions

Following the standard notation, we write

x" = (ct, x, y, z), xli = (ct, -x, -y, -z),

and

,-v5 f v ) d (
OX11 \COt J OXn \COt

The non-relativistic (NR) 4-velocity is (normalizing by c)

The relativistic (R) 4-velocity is defined by the proper-time derivative:

= (7>-7«/c),(7,7V/C), U,

where ds2 = dx^dx^ and 7 = l / \ / l — v2/c2. Obviously, U^U^ = 1.

The NR particle energy-momentum 4-vector is

p^ = (mv21'(2c), mv).

The R particle energy-momentum 4-vector is

^ = (E/c,p).

where E = ^rac2 and p = ^rav. Obviously, V^V^ = m2c2. The classical limit of E is

me2 + mv2/2, thus p° « P° - me2.

15



2. Fluid Energy-Momentum

For a fluid, we invoke the enthalpy 4-vector; the NR 4-enthalpy is

pf- = (H/c,mv),

where
2

H = — + (/> + £ + n~lP.
2

The R 4-enthalpy is

-p" = (h/c) U» = (-yh/c,j(h/c2)v).

where

is the proper (static) molar enthalpy. The energy e includes the rest mass energy me? as

well as the thermal energy , so that h/c2 is the effective rest mass of the fluid element. In

the NR limit, we may approximate

mc +
c c \ 2

= -(me2 + H) =mc + p°, (Al)

and V^ = "j(h/c2)v fa mw = p>.

3. Field Tensor and Equation of Motion

The matter field tensor is, for the NR fluid,

and for the R fluid,

^ = dllTv - d"

The adiabatic fluid equation is written as

c UpM"" + duh - n~lduP = 0. (A2)

By the thermodynamic law (5), we may write

duh - n-xduP = TduS (A3)

16



with the entropy S. Hence, (A2) may be rewritten as

cU M^v + Td"S = 0. (A4)

Contracting both sides of (A4) with Uv, we obtain TUvd
p'S = 0, implying entropy conser-

vation.

Non-adiabatic effects modify (A4) as

cUllM>lv + TdvS = Qu (A5)

with a heat term such that 0^ = — n~1dIID^u. If a heat flux / occurs in the fluid, we should

include 0° = 5Q/c = —n~1djfj (i.e., we set D"° = /•?). Contracting both sides of (A4) with

Uu, we now obtain TUud
uS = 6Q.

4. Explicit Form of NR Equations

Let us examine how the tensor equation (A2) reproduces the NR fluid equations. First

we assume that the space dimension = 1. Then,

0 [dt(mv) + dxH]/

-[dt(mv) + dxH]/c 0

and, thus, the equation of motion (A2) reads as

—v[dt(mv) + dxH]/c

-[dt{mv) + dxH]

-Td:,:S

Plugging the second equation to the first equation (i.e., contracting both sides with Uu)

yields

which implies the entropy conservation. The heat term 0° = SQ must be added if heat

transport occurs.

Plugging H = mv2/2 + 4> + h into the second equation, we obtain

d

/ ^ + ̂ W1VP. (A6)
2 /
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Extending the space dimension to 3, we obtain

m I — v + (V x v) x v J = -VH + TVS'

= _ V (^ + 0 ) - n^VP. (A7)

APPENDIX B: BOUSSINESQ MODEL OF CREATION OF VORTICITY

Here we reveal the relation between the Boussinesq model of buoyancy-driven vorticity

generation and the general formulation of the vorticity drive in terms of TdS.

The thermal convection may be described by a fluid equation including gravity:

- V P
(Bl)

where g = —V{mGx). The static force balance is written as n^VPo = 9- For a sufficiently

small variation of temperature T (in a constant pressure process), the change of density h

around the static density n0 may be written as

Using this relation, we may approximate the right-hand side of (Bl) as

Z V P + zVW + P)
n no + n

_ - V P nVP0
2

n0 n0

Plugging (B2) into (Bl) yields the well-known Boussinesq model of buoyancy.

The ambient density no is often approximated to be a constant; then the first term of

(B2) is exact, while the second term may be non-exact and may create vorticity. We may

rewrite it as the entropy term. By Maxwell's relation

fdS\ (dV\ 1 fdn\ a
I I — I I

\dPjT \dTjp n2l3T/D n

we may write
VP0

a
no
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so the non-exact vorticity generation term reads as

^ = TVS,,.
n0

On the other hand, the exact terms are related as (approximating that n0 and To are

constants)
- V P

= - Vh + To VS,
n0

proving that (B2) is equivalent to the linearization of — Vh + TVS' + g.

APPENDIX C: FLUID-ELEMENT INTEGRAL AND CONSERVATION LAWS

Denoting by dM the mass element, the total amount of some state variable X (evaluated

for a unit mass) is given by X = J XdM. Note that this representation uses the Lagrangian

frame {dM moves with the fluid). To evaluate the time derivative of X, it is convenient to

use the Eulerian frame. With defining the mass density p = mn, we may write dM = pd3x,

where d3x is the volume element (Lebesgue measure) of the laboratory frame. We observe,

using the mass conservation law dp/dt + V • (vp) = 0 (v is the flow velocity),

[j^(Xp) + V • (vXp)j d3x- £ V • (vXp)d3x

= f \^-X + v • VX) pd3x - [ (n • v)pXd2x

f ^-x) dM- f (n • v)pXd2x (Cl)
n\dt J Jon

where n is the unit normal vector, directed outward, on the boundary dCl, and dX/dt =

dX/dt + v • VX is the convective (Lagrangian) derivative. In a steady state, dX/dt = 0.

If we assume that the mass flow is confined in the domain, (n • v)pX must vanish on the

boundary. Then, we obtain dX/dt = 0, the constancy of the specific X for every mass

element of the fluid.

[1] In this lecture, we denote by dX the variation of a state variable X, which is an exact differential

form on the parameter space. General variation is denoted by 6Y, which may not be a variation

of some variable Y, but only variation SY may be describable.
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