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Outline

• The basic paradigm

• Formation and structure of CDM halos

• Formation of gaseous halos

• Formation of galaxies in CDM halos

• Statistical properties of the galaxy 
population
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Galaxy formation Ingredients

• Cosmology: provides the initial and 
boundary conditions for galaxy 
formation

• Gravitational instability: drives large 
scale structure formation

• Formation of dark matter halos in the 
cosmic density field

• Formation of galaxies in dark matter 
halos: gas cooling,  heating and 
accretion; star formation; feedback; 
galaxy merger

• Galaxy evolution: spectral synthesis; 
chemical evolution; dynamical evolution

• Galaxy populations: both low and high z
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The standard paradigm
• Big Bang cosmology

• The Universe is 
dominated by cold dark 
matter and dark energy

• Primordial perturbations, 
probably generated by 
inflation, well constrained 
by observation (CMB; LSS 
etc)

• Cosmological models well 
constrained  

k = 0; Ωm = 0.25; Λ = 0.75; h = 0.7; Ωb = 0.04; n = 1
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Numerical simulation results
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Brief review of structure 
formation 

Gaussian perturbations, completely specified by the linear spectrum P (k):

Pk(|δk|, φk) d|δk| dφk = exp

[
− |δk|2
2V −1

u P (k)

] |δk| d|δk|
V −1
u P (k)

dφk

2π
.

Gravitational instability: structure form from small perturbation due to action of gravity

Initial perturbation spectrum:

Pi(k) = Akn (n ∼ 1) .

Linear Power spectrum
P (k) = Pi(k)T

2(k) ,

T (k): linear transfer function describing linear evolution in EdS phase.

Power spectrum normalization: σ8 = σ(8h−1Mpc), with

σ2(R) =
1

2π2

∫
P (k)Ŵ 2

R(k)k
2dk ;

ŴR(k) =
3

(kR)2
[sin(kR)− kR cos(kR)] .
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Evolution of perturbations
Linear Growth factor: δ(t) ∝ D(t) = a(t)g(t):

g(z) ≈ 5

2
Ωm(z)

{
Ω4/7

m (z)− ΩΛ(z) +

[
1 +

Ωm(z)

2

] [
1 +

ΩΛ(z)

70

]}−1

Nonlinear evolution: in general analytical solution 
difficult to obtain

   For special cases: 
spherical collapse model
ellipsoidal collapse model 
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Spherical collapse model

Consider Λ = 0 as an example. The radius of a mass shell obeys:

d2r

dt2
= −GM

r2
,

where M is the mass within r. Before shell crossing, M is constant:

1

2

(
dr

dt

)2

− GM

r
= E ,

where E is the specific energy of the mass shell, determined by the initial con-
dition of the mass shell,

ri, and vi (or δi) ,

or equivalently

rl(t) = [a(t)/ai]ri, and δl(t)) = [a(t)g(t)/aigi]δi .

(<0 for collapse)
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The solution is:
r

rl(t)
=

1

2

1− cos θ[
5δl(t)/3gt + (1− Ω−1

t )
] ;

Htt =
1

2Ω
1/2
t

θ − sin θ[
5δl(t)/3gt + (1− Ω−1

t )
]3/2 ,

where Ht ≡ H(t), Ωt = Ω(t), gt = g(t).

rmax/rl(t) =
[
5δl(t)/3gt + (1− Ω−1

t )
]−1

; Httmax =
π

2Ω
1/2
t

[
5δl(t)/3gt + (1− Ω−1

t )
]−3/2

.

If turn-around occur at tta, then

δl(tta) =
3g(tta)

5

{[
π

2Ω1/2(tta)H(tta)tta

]2/3
− [

1− Ω−1(tta)
]}

.

For Ω = 1, δl(tta) =
3
5

(
3π
4

)2/3 ≈ 1.06 , and the real density at this time is

ρ(tta) = ρ(tta)

[
rl(tta)

rmax(tta)

]3
=

(
3π

4

)2

ρ(tta) ≈ 5.55ρ(tta) .

Turn-around:
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Gravitational Collapse

A mass shell is said to collapse at a time when r = 0, i.e. when at t = 2tmax

(corresponding to θ = 2π).
For a mass shell to collapse at time tcol requires

δc(tcol) =
3g(tcol)

5

{[
π

Ω1/2(tcol)H(tcol)tcol

]2/3
− [

1− Ω−1(tcol)
]}

.

Since H(t)t and g(t) depend on t only through only on Ω(t) in the matter
dominated epoch, we have

δc(tcol) ≈ 3

5

(
3π

2

)2/3

[Ω(tcol)]
0.0185 ≈ 1.686 .

This is also true for a flat universe with a cosmological constant.

Link non-linear collapse to linear theory  
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Virialization and dark halos
Virial theorem: for a steady state 2K +W = 0 , E = −K = W

2 ,
where K: kinetic energy; W : gravitational potential energy, E = K +W .
Application to spherical collapse, assuming uniform sphere:

E = −3GM2

5rmax

After collapse suppose the radius settles at rvir, then

W = −3GM2

5rvir
= 2E , so that rvir = rmax/2 .

Assume collapse at tvir = tmax/2, the mean over-density in rvir is

1 + Δvir =
ρ(tmax)(rmax/rvir)

3

ρ̄(tvir)
=

ρ(tmax)

ρ̄(tmax)

ρ̄(tmax)

ρ̄(2tmax)

(
rmax

rvir

)3

,

where ρ̄(t) is the background density at t. For Ω = 1, Δvir = 18π2 ≈ 178.

Δvir ≈ (18π2 + 60x− 32x2)/Ωm(tvir) (Λ = 0);

Δvir ≈ (18π2 + 82x− 39x2)/Ωm(tvir) (Ωm + Λ = 1) ,

where x = Ωm(tvir)− 1 (Bryan & Norman 1998).
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Halo mass function: the Press-Schechter (PS) formalism
Spherical collapse model applied to Gaussian density field 

We want F (> M), the mass fraction in collapse objects (halos) with masses
> M at time t, because the mass function can then be obtained from

n(M, t) dM =
ρ

M

∂F (> M)

∂M
dM .

Now consider the smoothed density fluctuations:

δs(x;R) ≡
∫

δ0(x
′)W (x+ x′;R) d3x′ .

For Gaussian filed:

P(δs) =
1√

2πσ(M)
exp

[
− δ2s
2σ2(M)

]
,

where

σ2(M) = 〈δ2s(x;R)〉 = 1

2π2

∫ ∞

0

P (k) W̃ 2(kR) k2 dk ,

with M = ρV (R), is the mass variance of the smoothed field.
The fraction of regions with density contract > δc(t) is

P[> δc(t)] =

∫ ∞

δc(t)

P(δs)dδs =
1

2
erfc

[
δc(t)√
2σ(M)

]
.

Can we set F (> M) = P[> δc(t)]? No, because P → 1/2 as M → 0.
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The PS ansatz
PS argued that material initially in under-dense will eventually be accreted by the 

collapsed objects, doubling their masses  

So PS set F (> M) = 2P[> δc(t)], obtaining the PS mass function

n(M, t) dM =
ρ

M2
fPS(ν) dM ,

where

fPS(ν) =

√
2

π
ν exp(−ν2/2)

∣∣∣∣ d ln νd lnM

∣∣∣∣ ,
with

ν = δc(t)/σ(M) .

Time enters only through δc(t), and mass through σ(M) and its derivative.
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Excursion set derivation of the PS formula
�s

Q2

�c

S2 S3 S1 S

1
B

B’

A

Q

Adopting top-hat filter in k-space: W̃k(k/kc) = 1 for k ≤ kc and = 0 otherwise,
where kc is a cutoff wavenumver, corresponding to a smooth scale R = 1/kc.
Using S ≡ σ2(M),

〈(Δδs)
2〉 = 〈[δs(x; kc +Δkc)− δs(x; kc)]

2〉 = 1

2π2

∫ k=kc+Δkc

k=kc

P (k) k2 dk = σ2(kc+Δkc)−σ2(kc) = ΔS

Thus, for a Gaussian field

P (Δδs|δs)d(Δδs) =
1√

2πΔS
exp

[
− (Δδs)

2

2ΔS

]
d(Δδs) .

As S increases (or M decreases), δs executes an uncorrelated random walk.
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The mass function from excursion set

We need F (> M1) = 1− F (< M1). Note that

F (< M1) = FFU(> S1)

where FFU(> S1) is the fraction of trajectories with first first up-crossing at
S > S1:

FFU(> S1) =

∫ δc

−∞
[P(δs, S1)− P(2δc − δs, S1)] dδs =

∫ ν1

−∞

dx√
2π

e−x2/2−
∫ ∞

ν1

dx√
2π

e−x2/2 .

Thus

fFU(S, δc) dS =
∂FFU

∂S
dS =

1√
2π

δc
S3/2

exp

[
− δ2c
2S

]
dS = fPS(ν)d ln ν

�s
Q2

�c

S2 S3 S1 S

1
B

B’

A

Q
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Halo Progenitors and Merger Trees

Application of excursion set model:  

Progenitor mass distribution;
Halo merger trees (formation histories);
Halo spatial clustering.

Conditional random walk:

fFU(S1, δ1|S2, δ2) dS1 =
1√
2π

δ1 − δ2

(S1 − S2)
3/2

exp

[
− (δ1 − δ2)

2

2 (S1 − S2)

]
dS1 .

Progenitor mass distribution:

n(M1, t1|M2, t2) dM1 =
M2

M1
fFU(S1, δ1|S2, δ2)

∣∣∣∣ dS1

dM1

∣∣∣∣ dM1 .

This provide a way to construct halo merger trees.

S=

=S2 =S1
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Constructing halo merger trees
A simple example, binary trees:

M → Mp +ΔM

The probability of the splitting is given by

fFU(ΔS,Δδ) dΔS =
1√
2π

Δδ

ΔS3/2
exp

[
−Δδ2

2ΔS

]
dΔS ,

Δδ = δc(t−Δt)− δc(t) reflects time step of the merger tree.

Halo assembly time tf when a halo first obtain half of its mass:

P(tf < ta|M0, t0) =

∫ M0

M0/2

M0

M1
fFU(S1, δ1|S0, δ0)

∣∣∣∣ dS1

dM1

∣∣∣∣ dM1 .
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Spatial clustering, halo bias
Average number of (M1, t1) halos in a spherical region (M0, t0):

N(1|0) dM1 =
M0

M1
f(1|0)

∣∣∣∣ dS1

dM1

∣∣∣∣ dM1 ,

where

f(1|0) dS1 ≡ 1√
2π

δ1 − δ0

(S1 − S0)
3/2

exp

[
− (δ1 − δ0)

2

2 (S1 − S0)

]
dS1 .

Define a bias factor:

δLh (1|0) =
N(1|0)

n(M1, z1)VL
− 1 , where VL ≡ 4π

3
R3

0 .

For M0 � M1 (S0 � S1) and |δ0| � δ1:

δLh (1|0) =
ν21 − 1

δ1
δ0 , where ν1 =

δ1√
S1

.

In evolved space

δh(1|0) = N(1|0)
n(M1, z1)VL

VL

VE
− 1 ,

where VL/VE = 1+ δ(t), where δ is the average mass over-density of the evolved
region. Thus

δh(1|0) = δ(t) +
ν21 − 1

δ1
δ0 +

ν21 − 1

δ1
δ0δ(t) .

In the linear regime, δ(t) = D(t)δ0 � 1:

δh(1|0) = bh(M1, δ1; t)δ(t) , where bh(M1, δ1; t) = 1 +
1

D(t)

(
ν21 − 1

δ1

)
.

bh = 1 for ν1 = 1
i.e. M = M∗

where σ(M∗) = δc
bh increases with M
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Comparisons with Numerical Simulations

Models clearly not perfect! 
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Elliptical collapse, an improvement 

Basic idea (Sheth, Mo, Tormen 2001)

(i) Collapse of dark halos depends not only on  
over-density, but also on the shape of the tidal  
field: so ellipsoidal collapse instead of 
spherical collapse

(ii) In a Gaussian density field the shape 
(ellipticity)  of  the tidal field depends on the 
mass of the region in consideration 

(iii) The threshold over-density for collapse  
depends on the mass scale in consideration

(iv) Excursion set with a moving barrier

Mass-dependent collapse threshold:

δec(M)

δsc
= 1 + β

[
σ2(M)

δ2sc

]γ

where β ≈ 0.5, γ ≈ 0.6.

Thursday, July 29, 2010



Excursion set with moving barrier

�s
Q2

�c

S2 S3 S1 S

1
B

B’

A

Q
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Elliptical versus spherical model
Mass function:

fEC(ν) = A

(
1 +

1

ν̃2q

)
fPS(ν̃) ,

where ν̃ = 0.84ν and q = 0.3, A ≈ 0.322.
Halo bias:

bh(M1, δ1, t) = 1 +
1

D(t)δ1

[
ν′1

2
+ bν′1

2(1−c) − ν′1
2c
/
√
a

ν′2c + b(1− c)(1− c/2)

]
,

where ν′1 =
√
aν1, a = 0.707, b = 0.5 and c = 0.6
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Halo internal structure

Density profile
Angular momentum
Substructure
Shape

Most are based on 
N-body simulations
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Dark matter halo profiles

Navarro, Frenk & White (NFW) profile:

ρ(r) = ρcrit
δchar

(r/rs)(1 + r/rs)2
,

rs a scale radius; δchar characteristic density contrast.

M(r) = 4πρδcharr
3
s

[
ln(1 + c x)− c x

1 + c x

]
, Vc(r) =

√
GM(r)

r
,

where x ≡ r/rvir, and

c ≡ rvir
rs

is the halo concentration parameter.

δchar =
Δvir

3

c3

ln(1 + c)− c/(1 + c)
.

For given cosmology and M , NFW profile is characterized by c, which is found
to be related to halo formation history. Zhao et al. (2009):

c(M, t) = 4×
{
1 +

[
t

3.75t0.04(M, t)

]8.4}1/8

,
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Compare with simulation results

ρ(r) = ρ−2 exp

[−2

α

{(
r

r−2

)α

− 1

}]
,

with 0.12 ≤ α ≤ 0.25
cvir = rvir/r−2

NFW profile Einasto profile

Gao et al.  (2009)
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Zhao et al.  (2009)

Theoretical understanding of NFW profile and 
mass-dependence of c

Lu et al. (2006)
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Halo angular momentum
Specified by a dimensionless spin parameter:

λ =
J |E|1/2
GM5/2

, or alternatively λ′ =
J√

2MVvirrvir
,

where J is the total angular momentum, E is the total energy of the halo. For
NFW profile with particles on circular orbits:

E = −4π

∫ rvir

0

ρ(r)V 2
c (r)

2
r2dr ≡ −MV 2

vir

2
FE ,

FE =
c

2

[
1− 1/(1 + c)2 − 2ln(1 + c)/(1 + c)

]
[c/(1 + c)− ln(1 + c)]

2 .

So λ′ = λF
−1/2
E and FE = 1 for a singular isothermal profile ρ(r) ∝ r−2.

Spin parameter distribution:

p(λ) dλ =
1√

2πσlnλ

exp

[
− ln2(λ/λ)

2σ2
lnλ

]
dλ

λ
.

with λ ≈ 0.035 and σlnλ ≈ 0.5.

Theoretical understanding: tidal torque by large-scale structure

J =

∫
VL

d3xi ρ̄ma
3(ax− ax)× v = ρ̄ma

5

∫
VL

d3xi (x− x)× ẋ .

But not very successful.
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Internal angular momentum distribution
Specific angular momentum (per unit mass) distribution within a halos (Bul-

lock et al. 2001):

P (J ) =

{ μJ0

(J0+J )2 if J ≥ 0

0 if J < 0

M(< J ) =

{
Mvir

μJ
J0+J if J ≥ 0

0 if J < 0

Define Jmax by M(< Jmax) = Mvir, then J0 = (μ− 1)Jmax. Note that

Jtot ≡
∫ Jmax

0

P (J )dJ = ζJmax ; ζ = 1− μ

[
1− (μ− 1)ln

(
μ

μ− 1

)]
,

and that
Jtot = J/M =

√
2λVvirrvirF

−1/2
E .

So (λ, μ) specifies the angular momentum distribution. Bullock et al. (2001)
found that μ has a lognormal distribution with μ � 1.25 and σlnμ � 0.4.
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Some implications
For an isolated exponential disk, λ ≈ 0.425. Consider a self-gravitating

gas cloud of with initial spin λi = 0.035. Since M and J are conserved, and
E ∝ 1/R, we have

λ = λi(R/Ri)
−1/2 , (Ri/R) ∼ 70 to get λ = 0.425 from λi = 0.035.

Consider a disk of mass M = 5×1010M� of radius R = 10kpc. Ri = 700kpc.
The free fall time scale is

tff =
√

3π/32Gρ ∼ 43Gyr .

This problem can be solved if disks form in dark matter halos

Angular momentum redistribution or selective assembly 

Thursday, July 29, 2010



Halo shape
In general, dark matter halos are not spherical, better described by elliptical

shape (e.g. Jing & Suto 2002):

s =
a3
a1

, q =
a2
a1

, p =
a3
a2

(a1 ≥ a2 ≥ a3) .

The triaxiality parameter

T =
a21 − a22
a21 − a23

=
1− q2

1− s2
.

T = 0: oblate; T = 1: prolate. Simulations show:

0.5 < T < 0.85; 0.5 < s < 0.75 .

〈s〉(M, z) = (0.54± 0.03)

[
M

M∗(z)

]−0.050±0.003

,

with scatter in s is σs ∼ 0.1.
The probability for p given s is

P(p|s) = 3

2(1− s̃)

[
1−

(
2p− 1− s̃

1− s̃

)2
]
,

with s̃ = max[s, 0.55].
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Halo substructure; the sub-halo population
As a small halo merges into a larger halo it becomes 
a sub-halo orbiting within its host. 

As it orbits, it is subjected to tidal forces from the 
host, causing it to lose mass 
  
The orbit decays due to dynamical friction which 
causes the sub-halo to lose energy and angular 
momentum to the dark matter particles of its host.  

Whether a sub-halo survives as a self-bound entity 
depends on its mass, density profile, and its orbit.

Mass function of survived halos:

dn

d ln(m/M)
=

f0
βΓ(1− γ)

(
m

βM

)−γ

exp

[
−
(

m

βM

)]
,

M : host mass; m: sub-halo mass; γ = 0.9 ± 0.1, 0.1 < β < 0.5, f0 ∼ the mass
fraction in sub-halos.
Un-evolved mass function (uses sub-halo mass at the time when it first becomes
a sub-halo:

dn

d ln(m/M0)
= A

(
m

fM0

)−p

exp

[
−
(

m

fM0

)q]
,

with A � 0.345, f � 0.43, p � 0.8 and q � 3.
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Halo mass function and galaxy mass 
function

Although galaxies form in dark matter halos, the relation 
between galaxies and halos is not simple and can be 

affected by many processes.
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