The Abdus Salam
International Centre for Theoretical Physics (‘_ )

2156-7

Summer School in Cosmology

19 - 30 July 2010

Galaxy Formation

Houjun MO

Department of Astronomy
University of Massachusetts
Amherst, MA 01003
US.A.

Strada Costiera ||, 3415 Trieste, Italy - Tel.+39 040 2240 |1 1; Fax +39 040 224 163 - sci_info@ictp.it



Evolution of gas component

® Galaxy formation inflow
involves baryonic gas

® Gas heating and cooling

. h 1d t
e Star formation and ot gas coldgas I evciving)
feedback

® Assembly of gas into
galaxies

outflow
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Basic equations

% +V-(pv) =0 (continuity) ;
ov VP
E—'_(VV)V__(V(D—FT)) (Elﬂer)

2 2
%{p(%—ké’)]—l—v-{p<%+§+8>v]—pv-V®:H—C (Energy) .

p, v, P, £ are density, velocity, pressure and specific internal energy of the fluid;
‘H and C are the heating and cooling rates per unit volume.

For an ideal gas with an adiabatic index v, P = p(y — 1)&, and the energy
can be replaced by

P 0 P
ﬁ (a +v- V) In (p—7> =H-C (EntrOPY) :

The gravitational potential ® satisfies the Poisson equation:
VQCI) = 47TGptot 5

where piot is the total mass density of the universe including dark matter.
In the linear regime:

dam (k, t)

»  3a*H?
1+ k2/k%’ B '

with  kj 5.2
CS

op(k,t) =
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Hydrostatic equilibrium

In this case gravitational forces are balanced by pressure gradients:
VP(r) = —p(r)Vo(r)
where the gravitational potential satisfies the Poisson equation
V2® = 47G (pam + p) -

The iso-potential surfaces are the same as the isobaric surfaces.
In spherical symmetry and for an ideal gas:
dP  d(ksTp/pmy) d® GM(r)
dr dr oodr 2

M (r): total mass within r; 4 = p/(nm,;) is the mean molecular weight of the
gas. The hydrostatic equation is then

M(r) =

_kgT'(r)r [dlnp N dInT
dlnr = dlnr |

pmpyG

This provides an estimate of the total mass of a halo from measurements of
the density and temperature profiles, p(r) and T'(r), of the gas.
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Gas density profile in a potential well

Hydrostatic equilibrium alone is not sufficient to determine the density distribution of the gas,
because the dependence of the temperature on radius remains unspecified. Further
assumptions about the gas is needed. Examples: (i) polytropic equation of state; T(r)=T.

Polytropic gas:

P=Ap",
where A and I' are constant.
Hydrostatic equilibrium gives
1-T
k() = 5 pm, 0 (x).

and other quantities follow from the equation of state:

poch/(F_l); PocTp.
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Isothermal spheres

In this case T' is independent of r, and hydrostatic equilibrium gives

)= ex — , Cr = ,
P Po €Xp C% T Lmy

and the Poisson equation gives

1d [ ,do ®
£ (8- 3]

which can be solved for given pam (7).
If pgm = 0, this is the Lane-Emden equation. Assume p(r) to be a power
law, the solution is:

2kgT . 7 2kgT 1 2kgT r
In—, p(r)= =, M(r)= —
pmy T pmy 4nGr

)] =

with 7o defined by ®(rg) = 0. Defining the circular velocity of the gaseous
sphere as V., = [GM(r)/r]'/?, then

2kpT V2 V2
2 _ — c M _ _c .
Vi A= s M=

These are the properties of a singular isothermal sphere. Useful but not physical:
p(r =0) = oo and [d®/dr](r = 0) = oco.

Assuming boundary conditions p(r = 0) = pp and [d®/dr|(r = 0) = 0, the
solution can by approximated by the King profile:

Po Ser

o= L+ (r/r2 P2 0 VAwGpo

for r < 2rg. For r > 107y, p(r) approaches that of a singular isothermal sphere.

Thursday, July 29, 2010




Formation of Hot Gaseous Halos

Accretion shock:

Shock front:
> S >: >
— 10 R > h 0, B—= o B
Vi T14> 7\,2 TZ*).:;V?) ’1-‘3—>
- L > -
- - I
=0 |k L>0 L=0
X] X >|<3
Jump conditions:
1 P2 1 Pl
pava = pru1;  pavs + Po = proi + Pr; §U§+p—+52 = §U%+p—+517
2 1

where subscripts ‘1’ and ‘2’ denote quantities for the upstream and downstream,
respectively.
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These jump conditions (Rankine-Hugoniot jump E:onditions) can be written

in terms of the Mach number of the upstream gas M; = v1/cs1 (where cg’l —

vP/p is the sound speed)

—1
1 —1 1 P 2y —1
P12 Mz v+l M? P oy +1 v+ 1

T, P —1] 2 . 1 4 —1
2 _ ;0 yME - —— | T
v+1 M) ov—1 v+l

Ty Pipy ~v+1
If M, > 1, gas is compressed (p2 > p; and P, > Pj), decelerated (vy < v1) and
heated (1o > Th). A
For strong shock where M; >, 1

p2/p1 = (v +1)/(y—=1) (=4 forvy=5/3);

Ty — [2(y = 1)/(y + 1)?] (mp /ke) v3 (= Bumyv}/16ks for v = 5/3).
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Heating by accretion shocks

Suppose infall velocity of accreted gas is v;, and shocked gas has zero velocity,
then the upstream velocity v = vj, +vsn and the downstream velocity vy = wvgp,
with vg, the velocity of the shock front. Thus, the jump conditions give

kT, — v? 2 { 2¢€ ]
= 12v(1 1 —(v—1 —1
o =165 (2 VI = 0= | e+ - D)
where

0 ( 4 )2 kT
v \y+1/)  pmp
If v? > kgTi/(umyp) (ie. € = 0 and Ty /T» — 0), we have
Vin ) p2 _y+1
To=(v—1) Ty (7C> and E = ﬁ

Thus, if v;, is comparable to the circular velocity at the radius of the shock, V.,
the temperature of the shocked gas will be comparable to the virial temperature.
In general, one can write

1 1 2 y—1
§Ui2n = §Uf2f + AW — Gs1 [1 — (pta) ] .

If shock at the virial radius, then

For cold accretion (cg; ~ 0) and no shell crossing:

T = (’Y - 1)Tvir .
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Formation of gaseous halos

Accretion shocks generate entropy for each mass shell:

P(Mgas) . kB T(Mgas)

S(Myos) = — .
Meaz) = 5 ) — iy o7 (M)

If no cooling, this quantity is conserved. This can be combined with hydrostatic
equilibrium:
dP  GMcpwm dr 1

_ Z7CbM d - -
My dmrt Y AMg.  Ampgar?

to solve for gas profile.
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Gas cooling and heating
Radiative processes: Cooling function: A = C/ng

= T T IIIIIII T T IIIIIII T IIIIIIII T rmrirriirme

Free-free:
pt+e—p +e +v 100 | Assuming B
Bound-free: — - ionization [
H + v — p + e (photoionization) n - equilibrium B
p +e — H + v (recombination) ”g [ ]
Bound-bound: w 10F E
H + v — H* (photo-excitation) E F
H+ e — H* + €’ (collisional excitation) 5 >
H* — H + ~ (spontaneous decay) = ]
Compton scattering: = 1 E
e+v—¢e +7 (e.g. cooling against CMB)
1 1 Ll |||I 1 1 L1 |||I 1 1 Ll 1 |||I 1 1 Ll 1 |||-
Free-free cooling rate: 10* 10° 108 107 108
T [K]
o - _o31/2 [ Me )2 1. -3
Cq = /eff(y) dv ~ 1.4 x 1071y (Cm_3) ergs ~cm
Recombination cooling rate:
Ja 2mmekpT 32 yr hp(v — v,
Co(T) = Enena—kl <T> 2 y VQUpi(V7 a)hp(v—v,) exp —% dv.

Due to collisional excitation and and de-excitation:

CX,Y =nynx Z (Ea - Eb) [xbryba(Xa Y) - xa’Yab(X7 Y)] )

b<a

Tq = Ng/Nx; Voa and 4, are the excitation and de-excitation rate coefficients.
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Photoionization heating

Heating rate:

hpl/

< 4nJ
H = Zniei , €, — / 7T—(V)O'];,hot,i(V) (th — thi) dv .

i

This does not include the energy loss due to recombinations,
which is included in the recombination cooling.

-22 :— -
NQ::
~
: C -3
In a static state, photoionization is X
balanced by recombination. S .,
However, the loss of energy due .
to recombination is smaller than
the gain from photoionization, of n,=10-2 )
because the recombination rate is
. . . Ncl:
in general hlghf:r for lower energy S
electrons, causing a net heating. &
w
S-24
_25-IIIIIIIII\IIIIIIIIIIIIIII-

- ny=10"2

-IIIIIIII\IIIIIIIIIIIIIIII

4 5 6 7 8
log T (K)

4 5 6 7 8
log T (K)
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Radiative cooling time scales

Consider a uniform spherical cloud in virial equilibrium:

kT 3GM 3 GMg,
pm, 5 15 feas?

Solving for Mg,s gives

Myas ~ 8.4 x 10127272 £3/21, 1M,

gas

Suppose the cloud has a over-density 0 at redshift z, then
n_321.9x 1072 fous(1 + 6)(Qm,0h*) (1 + 2)°
and thus

Myas ~ 6.1 x 10837572 00 (14 6) "2 (Qm 0h?) " V2(1 + 2)73/?M, .
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The cooling timescale:

teool = - = ~ 3.3 x 10°

2nZ A(T)

Tg
n_3A_23(T

YT,
)

&: internal energy per unit mass. This should be compared with free-fall time

scale of the cloud:

b 3 37 faas
e V 32Gp  \| 32Gnum,

Cooling is effective if .00 < tg

T T T T I/‘I T T }' I T T T T |/1 T T T I
[ $ AR R ]
0 % N N % ~
7
L / /o
%
5 P i
L 5 4
Ittt CE ettt g e /|
=2 s A e e 7
7 i
— :‘ """"" A /_
O }'/ """"""""" vy g yoof g yoret
g / -
o -4l Nt a2 LR
e ” 7 E
, s
= - s -
L / -
Q0
%
oS -6 < —
2 s i
%
5 P i
L Va -
% s
-8 - s/ s/ s/ s s -
b % % % % KN -
B s &/ o/ >/ N4 i
s % % N2 S,
- / / -
_10 | V| L L ( L L A L I L L L L ( L L L L I L L L L
3 4 5 6 7 8
log T [K]

~ 2.1 X 109fl/2n:;/2yr.

gas

Overcooling problem:

In a hierarchical model of structure
formation, smaller halos are expected
to form earlier. Thus, at high redshift
most of the cosmic mass is expected to
be in low-mass halos in which gas can
cool effectively. If all the cold gas
formed stars, there would be no gas left
today to formed the IGM.
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Cooling in gaseous halos

Consider a model where the density and pressure profiles have power-law

forms:
r\ r\ P
pad(m:po(—) , Pad<r>:Po(—) .
To To

For an idea gas

r

a—p
Tad(T) = T() (%) y Wlth TO =

Himp &
ks po

Piecewisely, the cooling function may be written as a power law of T

v € (—1,0) in 10°K < T < 10K for cosmic composition. The cooling time is

o = ()

tcool (T) — ,
0

where

to= 3ot (L) (ﬂ) S

Po nu
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Cooling radius and mass cooling rate

Define the cooling radius, rc.o1, at which the cooling time is equal to the

age, t, then
t T
Tcool(t) —T0 (_> .
to

. dreos 4 3 4 T(3—a)—1
Mcool(t) — 477:0(7“6001)7“3001 Lcool = GLOM T 5
dt Lo

The mass cooling rate:

which implies that

AT pors 7'(3—04) .
Meool(t) = 2 (1) a3
i1 (£) =

3+(3-8)(1-v) to

For an isothermal sphere, @ = 8 = 2, so that r.oo X Meool X t1/2. Te. cooling
region expands with time.

In a growing halo, this is valid only for r¢q01 < Tyir-
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Hot-mode versus cold-mode accretion

In an growing halo, there are therefore two length-scales: i, and 7¢o01:

® ool K Tyir, accreted gas can be shocked and form a hydrostatic gas halo.
The accretion of gas by galaxy in the halo center is through cooling of hot
halo gas (hot-mode accretion);

® ool > Tvir, gas can cool as soon as it is accreted, no shocks and no
hydrostatic gas halo. The accretion of gas by galaxy in the halo center is
through direct cold gas accretion (cold-mode accretion).

Since ryi; o< V.t and for n(r) oc =2 we have reoor o< AY2tY2) riin = 7ol

defines a critical time for given V,, tc o< A(T)/V2, so that
Hot-mode accretion at ¢ > t. it
Cold-mode accretion at t < tepit

Equivalently, at a given time, there is a critical halo mass M.t (),
Hot-mode accretion at M > M it
Cold-mode accretion at M < Mt

What is the value of Mt (t)?
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Hot-mode versus cold-mode accretion
the critical mass

A Simp|e model (Birnboim & Dekel 2003)

Gas is gravitationally stable as long as

dlnP_Pp> 2y
dlnp  Pp~ y+2

Yeff =

In adiabatic case veg = 7, the criterion reduces to v > 4/3.
We need to calculate rog in the presence of cooling:

PZ(W—l)[pc‘fﬂLpS}; E=-PV—-L="F—

with V' the specific volume. Then

_ . _PrE

Thursday, July 29, 2010




Apply the stability criterion to the post-shock gas. Rankine-Hugoniot jump
conditions for a strong shock:

e 2:2mv%
y—1777 y+1 y+1-

P2

Since v2 = GM/r = (471G /3)pAi.1?, we have v(r) = va(r/rgn). Thus

.

1 0 3U2
;:—V~V:—r—25 (TQU):—TSh.

Using

r_ AT (n_H)2 |

p2m2 \ n
the stability criterion assuming v = 5/3 reduces to
my [v1]?

A(Tg) < Acrit = 0.022
P1 Tsh

Assuming p; = py,, v1 = Viir, and gy = 7yir gives:

T, 5o \ V2 o2\t [ h
Acrit = 61.8x107% Ssec™! [ ™ o — ) (1+2)7%2,
t % erg cisee 106k ) \ 100 0.024 o7 ) U2

Note that

2/3 1/3
Hmyp - o 5 Mvir 5ViI‘
T = M2 y2 754 10°K 14 2).

Yoy i = 1510 (1012h—1M@> (100) (1+2)
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M, (1+2)%2 [h-M,)
10° 10 10t 102 108 10% 10

-—l—rrrmq—l—rrmﬂ'—l—rrmﬂ'—l—n'm'u'—l—rrmﬂ'—l—rrmﬂ'—-
/£ //
/
100 | Cold p =L -
F | Mode y y 3
— [ A y i
1 L /4 7 -
%) 7 Hot
"’E i 7 Mode i
°© 10| —
ap - ]
~ » -
o L 4
5 I -
e i
RIS E
’ .
:I 1 1 IIIIII 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIII-

104 108 108 107 108
T [K]

Note that 101th~ 1My < M < 101207 1M,
with a remarkably weak dependence on redshift.

Cold-mode accretion: Myce ~ f, Myir;
Hot-mode accretion: M. ~ Mcool.
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