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Galaxy Formation



Evolution of gas component

• Galaxy formation 
involves baryonic gas

• Gas heating and cooling 

• Star formation and 
feedback

• Assembly of gas into 
galaxies  

outflow

inflow

hot gas cold gas SMBH

gas cooling star formation

AGN accretion

feedback of energy, mass and metals

stars
(evolving)
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Basic equations
∂ρ

∂t
+∇ · (ρv) = 0 (continuity) ;

∂v

∂t
+ (v · ∇)v = −

(
∇Φ+

∇P
ρ

)
; (Euler)

∂

∂t

[
ρ

(
v2

2
+ E

)]
+∇ ·

[
ρ

(
v2

2
+

P

ρ
+ E

)
v

]
− ρv · ∇Φ = H− C (Energy) .

ρ, v, P , E are density, velocity, pressure and specific internal energy of the fluid;
H and C are the heating and cooling rates per unit volume.

For an ideal gas with an adiabatic index γ, P = ρ(γ − 1)E , and the energy
can be replaced by

P

γ − 1

(
∂

∂t
+ v · ∇

)
ln

(
P

ργ

)
= H− C (Entropy) .

The gravitational potential Φ satisfies the Poisson equation:

∇2Φ = 4πGρtot ,

where ρtot is the total mass density of the universe including dark matter.
In the linear regime:

δb(k, t) =
δdm(k, t)

1 + k2/k2J
, with k2J =

3a2H2

2c2s
.

Thursday, July 29, 2010



Hydrostatic equilibrium
In this case gravitational forces are balanced by pressure gradients:

∇P (r) = −ρ(r)∇Φ(r)

where the gravitational potential satisfies the Poisson equation

∇2Φ = 4πG (ρdm + ρ) .

The iso-potential surfaces are the same as the isobaric surfaces.
In spherical symmetry and for an ideal gas:

dP

dr
=

d(kBTρ/μmp)

dr
,

dΦ

dr
=

GM(r)

r2
,

M(r): total mass within r; μ = ρ/(nmp) is the mean molecular weight of the
gas. The hydrostatic equation is then

M(r) = −kBT (r)r

μmpG

[
d ln ρ

d ln r
+

d lnT

d ln r

]
.

This provides an estimate of the total mass of a halo from measurements of
the density and temperature profiles, ρ(r) and T (r), of the gas.
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Gas density profile in a potential well
Hydrostatic equilibrium alone is not sufficient to determine the density distribution of the gas, 
because the dependence of the temperature on radius remains unspecified. Further 
assumptions about the gas is needed.  Examples: (i) polytropic equation of state; T(r)=T. 

Polytropic gas:
P = AρΓ ,

where A and Γ are constant.
Hydrostatic equilibrium gives

kBT (r) =
(1− Γ)

Γ
μmp Φ(r) ,

and other quantities follow from the equation of state:

ρ ∝ T 1/(Γ−1) ; P ∝ Tρ .
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Isothermal spheres
In this case T is independent of r, and hydrostatic equilibrium gives

ρ(r) = ρ0 exp

(
− Φ

c2T

)
, c2T ≡

kBT

μmp
,

and the Poisson equation gives

1

r2
d

dr

(
r2

dΦ

dr

)
= 4πG

[
ρdm(r) + ρ0 exp

(
− Φ

c2T

)]
,

which can be solved for given ρdm(r).
If ρdm = 0, this is the Lane-Emden equation. Assume ρ(r) to be a power

law, the solution is:

Φ(r) =
2kBT

μmp
ln

r

r0
, ρ(r) =

2kBT

μmp

1

4πGr2
, M(r) =

2kBT

μmp

r

G
,

with r0 defined by Φ(r0) = 0. Defining the circular velocity of the gaseous
sphere as Vc ≡ [GM(r)/r]1/2, then

V 2
c =

2kBT

μmp
, ρ(r) =

V 2
c

4πGr2
, M(r) =

V 2
c r

G
.

These are the properties of a singular isothermal sphere. Useful but not physical:
ρ(r = 0) =∞ and [dΦ/dr](r = 0) =∞.

Assuming boundary conditions ρ(r = 0) = ρ0 and [dΦ/dr](r = 0) = 0, the
solution can by approximated by the King profile:

ρ(r) =
ρ0

[1 + (r/r0)2]
3/2

, r0 =
3cT√
4πGρ0

,

for r < 2r0. For r > 10r0, ρ(r) approaches that of a singular isothermal sphere.
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Formation of Hot Gaseous Halos
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Accretion shock:

Shock front:

Jump conditions:

ρ2v2 = ρ1v1 ; ρ2v
2
2 +P2 = ρ1v

2
1 +P1 ;

1

2
v22 +

P2

ρ2
+ E2 =

1

2
v21 +

P1

ρ1
+ E1 ,

where subscripts ‘1’ and ‘2’ denote quantities for the upstream and downstream,
respectively.
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These jump conditions (Rankine-Hugoniot jump conditions) can be written
in terms of the Mach number of the upstream gas M̂1 ≡ v1/cs,1 (where c2s,1 =
γP/ρ is the sound speed)

ρ2
ρ1

=
v1
v2

=

[
1

M̂2
1

+
γ − 1

γ + 1

(
1− 1

M̂2
1

)]−1

,
P2

P1
=

2γ

γ + 1
M̂2

1 −
γ − 1

γ + 1
;

T2

T1
=

P2

P1

ρ1
ρ2

=
γ − 1

γ + 1

[
2

γ + 1

(
γM̂2

1 −
1

M̂2
1

)
+

4γ

γ − 1
− γ − 1

γ + 1

]
.

If M̂1 > 1, gas is compressed (ρ2 > ρ1 and P2 > P1), decelerated (v2 < v1) and
heated (T2 > T1).

For strong shock where M̂1 �, 1

ρ2/ρ1 → (γ + 1)/(γ − 1) (= 4 for γ = 5/3) ;

T2 → [2(γ − 1)/(γ + 1)2] (μmp/kB) v
2
1 (= 3μmpv

2
1/16kB for γ = 5/3).
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Heating by accretion shocks
Suppose infall velocity of accreted gas is vin and shocked gas has zero velocity,

then the upstream velocity v1 = vin+vsh and the downstream velocity v2 = vsh,
with vsh the velocity of the shock front. Thus, the jump conditions give

kBT2

μmp
=

v2in
16γ

[
2γ
(
1 +

√
1 + ε

)2 − (γ − 1)ε
] [ 2ε

(1 +
√
1 + ε)2

+ (γ − 1)

]
,

where

ε ≡ γ

v2in

(
4

γ + 1

)2
kBT1

μmp
.

If v21 � kBT1/(μmp) (i.e. ε→ 0 and T1/T2 → 0), we have

T2 = (γ − 1)Tvir

(
vin
Vc

)2

and
ρ2
ρ1

=
γ + 1

γ − 1
.

Thus, if vin is comparable to the circular velocity at the radius of the shock, Vc,
the temperature of the shocked gas will be comparable to the virial temperature.

In general, one can write

1

2
v2in =

1

2
v2ff +ΔW − cs

2
1

γ − 1

[
1−

(
ρta
ρsh

)γ−1
]
.

If shock at the virial radius, then

1

2
v2ff ≡

GM

rsh
− GM

rta
≈ 1

2
V 2
c .

For cold accretion (cs1 ∼ 0) and no shell crossing:

T2 = (γ − 1)Tvir .
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Formation of gaseous halos 

Accretion shocks generate entropy for each mass shell:

S(Mgas) =
P (Mgas)

ργ(Mgas)
=

kB
μmp

T (Mgas)

ργ−1(Mgas)
.

If no cooling, this quantity is conserved. This can be combined with hydrostatic
equilibrium:

dP

dMgas
=

GMCDM

4πr4
and

dr

dMgas
=

1

4πρgasr2
,

to solve for gas profile.
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Gas cooling and heating 

Free-free:
p + e→ p′ + e′ + γ

Bound-free:
H + γ → p + e (photoionization)
p + e→ H+ γ (recombination)

Bound-bound:
H + γ → H∗ (photo-excitation)
H + e→ H∗ + e′ (collisional excitation)
H∗ → H+ γ (spontaneous decay)

Compton scattering:
e + γ → e′ + γ′ (e.g. cooling against CMB)

Free-free cooling rate:

Cff =

∫
εff(ν) dν ≈ 1.4× 10−23T

1/2
8

( ne

cm−3

)2
erg s−1cm−3

Recombination cooling rate:

Ca(T ) = ga
ga+1

nena+1

(
2πmekBT

h2
P

)−3/2
4π

c2

∫ ∞

νa

ν2σpi(ν, a)hP(ν−νa) exp
[
−hP(ν − νa)

kBT

]
dν .

Due to collisional excitation and and de-excitation:

CX,Y = nY nX

∑
b<a

(Ea − Eb) [xbγba(X,Y )− xaγab(X,Y )] ,

xa = na/nX ; γba and γab are the excitation and de-excitation rate coefficients.

Cooling function: Λ ≡ C/n2
H

Assuming 
ionization 

equilibrium
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Photoionization heating
Heating rate:

H =
∑
i

niεi , εi =

∫ ∞

νi

4πJ(ν)

hPν
σphot,i(ν) (hPν − hPνi) dν .

This does not include the energy loss due to recombinations,
which is included in the recombination cooling.

energy of the electron.  In a static 
state, photoionization is
balanced by recombination.  
However, the loss of energy due to
recombination is smaller than the 
gain from photoionization, because
the recombination rate is in general 
higher for lower-energy
electrons, causing a net heating.  The 
photoionization heating rate

In a static state, photoionization is 
balanced by recombination.  

However, the loss of energy due 
to recombination is smaller than 
the gain from photoionization, 
because the recombination rate is 
in general higher for lower-energy 
electrons, causing a net heating.  
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Radiative cooling time scales

Consider a uniform spherical cloud in virial equilibrium:

3kBT

μmp
=

3

5

GM

r
=

3

5

GMgas

fgasr
.

Solving for Mgas gives

Mgas ≈ 8.4× 1012T
3/2
6 f3/2

gas n
−1/2
−3 M� .

Suppose the cloud has a over-density δ at redshift z, then

n−3 ≈ 1.9× 10−2fgas(1 + δ)(Ωm,0h
2)(1 + z)3

and thus

Mgas ≈ 6.1× 1013T
3/2
6 fgas(1 + δ)−1/2(Ωm,0h

2)−1/2(1 + z)−3/2M� .
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The cooling timescale:

tcool ≡ ρE
C =

3nkBT

2n2
HΛ(T )

≈ 3.3× 109
T6

n−3Λ−23(T )
yr ,

E : internal energy per unit mass. This should be compared with free-fall time
scale of the cloud:

tff =

√
3π

32Gρ
=

√
3πfgas

32Gnμmp
≈ 2.1× 109f1/2

gas n
−1/2
−3 yr .

Cooling is effective if tcool � tff

Overcooling problem:

In a hierarchical model of structure 
formation, smaller halos are expected 
to form earlier.  Thus,  at high redshift 
most of the cosmic mass is expected to 
be in low-mass halos in which gas can 
cool effectively. If all the cold gas 
formed stars, there would be no gas left 
today to formed the IGM.  
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Cooling in gaseous halos
Consider a model where the density and pressure profiles have power-law

forms:

ρad(r) = ρ0

(
r

r0

)−α

, Pad(r) = P0

(
r

r0

)−β

.

For an idea gas

Tad(r) = T0

(
r

r0

)α−β

, with T0 =
μmp

kB

P0

ρ0
.

Piecewisely, the cooling function may be written as a power law of T :

Λ(T ) = Λ0

(
T

T0

)ν

,

ν ∈ (−1, 0) in 105K < T < 107K for cosmic composition. The cooling time is

tcool(r) =
3n(r)kBT (r)

2n2
H(r)Λ(T )

= t0

(
r

r0

)1/τ

,

where

t0 ≡ 3

2

kBT0

Λ0

(
μmp

ρ0

)(
n

nH

)2

, τ ≡ [α+ (α− β)(1− ν)]−1 .
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Cooling radius and mass cooling rate

Define the cooling radius, rcool, at which the cooling time is equal to the
age, t, then

rcool(t) = r0

(
t

t0

)τ

.

The mass cooling rate:

Ṁcool(t) = 4πρ(rcool)r
2
cool

drcool
dt

=
4πρ0r

3
0

t0
τ

(
t

t0

)τ(3−α)−1

,

which implies that

Mcool(t) =

⎧⎨
⎩

4πρ0r
3
0

3−α

(
t
t0

)τ(3−α)

if α 
= 3

4πρ0r
3
0

3+(3−β)(1−ν) ln
(

t
t0

)
if α = 3

.

For an isothermal sphere, α = β = 2, so that rcool ∝ Mcool ∝ t1/2. I.e. cooling
region expands with time.

In a growing halo, this is valid only for rcool � rvir.
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Hot-mode versus cold-mode accretion
In an growing halo, there are therefore two length-scales: rvir and rcool:

• rcool � rvir, accreted gas can be shocked and form a hydrostatic gas halo.
The accretion of gas by galaxy in the halo center is through cooling of hot
halo gas (hot-mode accretion);

• rcool > rvir, gas can cool as soon as it is accreted, no shocks and no
hydrostatic gas halo. The accretion of gas by galaxy in the halo center is
through direct cold gas accretion (cold-mode accretion).

Since rvir ∝ Vct and for n(r) ∝ r−2 we have rcool ∝ Λ1/2t1/2, rvir = rcool
defines a critical time for given Vc, tcrit ∝ Λ(T )/V 2

c , so that
Hot-mode accretion at t > tcrit
Cold-mode accretion at t < tcrit

Equivalently, at a given time, there is a critical halo mass Mcrit(t),
Hot-mode accretion at M > Mcrit

Cold-mode accretion at M < Mcrit

What is the value of Mcrit(t)?
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Hot-mode versus cold-mode accretion
the critical mass

A simple model (Birnboim & Dekel 2003) 

Gas is gravitationally stable as long as

γeff ≡ d lnP

d ln ρ
=

Ṗ

P

ρ

ρ̇
>

2γ

γ + 2
3

.

In adiabatic case γeff = γ, the criterion reduces to γ > 4/3.
We need to calculate reff in the presence of cooling:

Ṗ = (γ − 1)
[
ρĖ + ρ̇E

]
; Ė = −PV̇ − L =

P ρ̇

ρ2
− L ,

with V the specific volume. Then

γeff = γ − ρ

ρ̇

L
E .
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Apply the stability criterion to the post-shock gas. Rankine-Hugoniot jump
conditions for a strong shock:

ρ2 =
γ + 1

γ − 1
ρ1 , v2 =

γ − 1

γ + 1
v1 , P2 =

2ρ1v
2
1

γ + 1
.

Since v2 = GM/r = (4πG/3)ρΔvirr
2, we have v(r) = v2(r/rsh). Thus

ρ̇

ρ
= −∇ · v = − 1

r2
∂

∂r

(
r2 v

)
= −3v2

rsh
.

Using

L =
ρ2Λ(T )

μ2m2
p

(nH

n

)2
,

the stability criterion assuming γ = 5/3 reduces to

Λ(T2) < Λcrit = 0.022
m2

p |v1|3
ρ1 rsh

.

Assuming ρ1 = ρb, v1 = Vvir, and rsh = rvir gives:

Λcrit = 61.8×10−23erg cm3 sec−1

(
Tvir

106K

) (
δvir
100

)1/2 (
Ωb,0h

2

0.024

)−1 (
h

0.7

)
(1+z)−3/2.

Note that

Tvir =
μmp

2kB
V 2
vir = 7.5× 105K

(
Mvir

1012h−1M�

)2/3(
δvir
100

)1/3

(1 + z) .
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Note that 1011h−1M� < Mcrit < 1012h−1M�,
with a remarkably weak dependence on redshift.

Cold-mode accretion: Ṁacc ∼ fbṀvir;
Hot-mode accretion: Ṁacc ∼ Ṁcool.
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