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Galaxy Formation



Formation of the galaxy population

• Cosmology: provides the initial and 
boundary conditions for galaxy 
formation

• Gravitational instability: drives large 
scale structure formation

• Formation of dark matter halos in the 
cosmic density field

• Formation of galaxies in dark matter 
halos: gas cooling,  heating and 
accretion; star formation; feedback; 
galaxy merger

• Galaxy evolution: spectral synthesis; 
chemical evolution; dynamical evolution

• Galaxy populations: both low and high z

Can we understand the galaxy population in current cosmology?
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The main observed properties
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Tully-Fisher relation for 
spiral galaxies

Fundamental plane for 
elliptical  galaxies
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Link galaxies to dark matter halos
(Halo population        galaxy population)

HON

CDM simulation (Virgo consortium)

2dFGRS (Peacock et al. 2000)

P(N|M)

Halo Occupation Distribution: P (N |M), the probability that a halo of mass
M contains N galaxies (of given properties)
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Galaxy luminosity function versus halo 
mass function

We use the Conditional Luminosity Function to link the distributions of
galaxies and CDM halos

Φ(L|M)dL is average number of galaxies with luminosities in the range L,
L+ dL that ‘live’ in halos of mass M .
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Conditional luminosity function

The luminosity function:
Φ(L) =

∫∞
0

Φ(L|M)n(M) dM

The average luminosity in a halo of mass M :
〈L〉(M) =

∫∞
0

Φ(L|M)L dL

Average number of galaxies in a halo of mass M with L > L1:
NM (L > L1) =

∫∞
L1

Φ(L|M) dL

Clustering properties of galaxies as function of luminosity:
ξgg(r|L) = b2(L) ξdm(r)

b̄(L) = 1
Φ(L)

∫∞
0

Φ(L|M) b(M)n(M) dM

REMINDER: n(M), b(M), ξdm(r) are well-understood halo properties
The conditional LF is the ideal statistical ‘tool’ to link
the distributions of dark matter halos and galaxies.
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Assuming the CLF also has the Schechter form:

Φ(L|M)dL =
Φ̃∗

L̃∗

(
L

L̃∗

)α̃

exp(−L/L̃∗) dL.

Here Φ̃∗, L̃∗ and α̃ all depend onM . The forms of these dependencies are param-
eterized. Monte-Carlo Markov Chain is used to sample posterior distribution of
free parameters.
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Light distribution in universe

P (L,M) dL dM =
1

ρ̄L
n(M) Φ(L|M)L dL dM

P (M |L)dM =
Φ(L|M)n(M) dM

Φ(L)

50% of light is produced in halos with M < 2× 1012h−1M�
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Comparison with galaxy-galaxy lensing 
results

From Φ(L|M) to obtain P (M |L) ∝ Φ(L|M)n(M)

φ(L)
.

And asume galaxy distribution in halos follows that of mass.
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 Semi-analytical model of galaxy 
formation

• Full numerical simulations: limited by numerical 
resolution; many processes, such as star 
formation, feedback have to be treated by 
uncertain sub-grid prescriptions. Since many of 
the details are not well understood, the parameter 
space is too large to be explored numerically.

• Semi-analytical models: processes are modeled as 
a set of `prescriptions’ that carry a number of free 
parameters. The free parameters in the models are 
then tuned to reproduce certain observational 
data of the galaxy population.
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Basic processes

• Hierarchical formation of DM halos (halo merger histories)

• Baryons get shock heated

• Hot gas cools and settles in a disk in the center of the halo 
potential well

• Cold gas in disk is transformed into stars (star formation)

• Energy output from stars (feedback) reheats some of cold gas

• After haloes merge, galaxies sink to center by dynamical friction

• After halos merge, galaxies sink to center by dynamical friction

• Chemical evolution and stellar population
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Some examples of SAM prescriptions 
Radiative cooling:

Modeled by cooling function Λ(T, Z), du/dt = Cn2
HΛ,

where u is the internal energy density of the gas.

The cooling timescale:

tcool ≡ ρE
C =

3nkBT

2n2
HΛ(T )

≈ 3.3× 109
T6

n−3Λ−23(T )
yr ,

E : internal energy per unit mass. This should be compared
with free-fall time scale of the cloud:

tff =

√
3π

32Gρ
=

√
3πfgas

32Gnμmp
≈ 2.1× 109f1/2

gas n
−1/2
−3 yr .

Cooling is effective if tcool � tff .

Define a cooling radius through tcool(rcool) = tage, and a free-fall radius
through tff(rff) = tage, the cold gas accretion rate is

Ṁacc = 4πρgas(racc)r
2
acc

dracc
dt

, racc = min[rcool, rff ].

Uncertainties in choosing tage and in the gas density profile, ρgas.
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Star formation prescription

Star formation rate in gaseous disks

Ṁ∗ = ε∗
Mcold

τd
,

where τd is the dynamical time scale of the disk, and star formation efficiency
is parameterized as

ε∗ =

{
αSF Vvir ≥ VSF;

αSF

(
Vvir

VSF

)βSF

Vvir < VSF,

where αSF and βSF are parameters and their values are not known a priori. For
example, the value of βSF ranges from 0 to 2.5 in early models.
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Supernova feedback
The SN energy released by a mass of ΔM∗ of star formation

Efb = αSN
1

2
ΔM∗V 2

SN ,

where VSN = 630km/s and αSN describes the feedback efficiency.
The effects of feedback:

(i) heating the ISM to hot halo gas;
(ii) ejecting the ISM from the halo;
(iii) driving out hot wind from halo.

Efb =
1

2
(1− fej) frhΔM∗V 2

vir +
1

2
fejfrhΔM∗v2esc +

1

2
ΔMwindv

2
esc .

frh = αRH

(
V0

Vvir

)βRH

; fej = αEJ

(
V0

vesc

)βEJ

.

ΔMwind = εWΔM∗

{
αSN

(
VSN

vesc

)2

− frh

[(
Vvir

vesc

)2

+ fej

]}
.

All the model parameters are quite uncertain.
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A fiducial model family

16 free parameters
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How to use SAM to study galaxy formation?

• Early SAM applications: a subset of model 
parameters is held fixed while other parameters are 
adjusted to match some observational properties;  
the goodness of fit is often assessed ``by eye''. 

• Problems with this approach:                                  
(i) many model parameters are uncertain, fixing   
parameters is equivalent to imposing 
unsubstantiated priors;                                           
(ii) no statistically rigorous inference can be made 
about models.

• Given the uncertainties in models, and the large 
amounts of observational data, galaxy formation is 
best studied with the Bayesian inference approach.    
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The Bayesian Approach

Bayesian Theorem: The posterior probability of a set of parameters Θ in a
model (or hypothesis) M for given data D is

P (Θ|D,M) ∝ P (Θ|M)L(D|Θ,M),

where P (Θ|M) is the prior probability distribution describing the knowledge
about the parameters acquired before seeing the data, and L(D|Θ,M) is the
likelihood of data D for the given model parameter set Θ.

This not only allows to derive posterior distributions of model parameters
for a given model family, it also allows to compare different model families using
Bayesian evidence.
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Bayesian Evidence

The normalization of the posterior,

P (D|M) =

∫
P (Θ|M)L(D|Θ,M)dΘ

is the total likelihood of the data for the given model. The probability of the
model for the given data is

P (M |D) =
P (M)P (D|M)

P (D)
.

Thus, for two model families M1 and M2, their relative odd for the given data
is

P (M1|D)

P (M2|D)
=

P (M1)P (D|M1)

P (M2)P (D|M2)

The ratio P (M1)/P (M2) is the relative prior probability, and P (D|M1)/P (D|M2)
is the Bayesian evidence and can be obtained from the posterior distribution.
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The Markov-Chain Monte-Carlo (MCMC)

• For our problem, it is impossible to derive 
the posterior probability distribution 
analytically,  A MCMC approach is adopted 
to sample the posterior.

• Bayesian Inference Engine, a software 
package, developed at UMass, which 
includes advanced MCMC algorithms 
(differential evolution, tempering scheme, 
etc) and supports parallel computation. 
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The Bayesian SAM 
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Inference from galaxy stellar mass function 

Posterior distribution complex
Degeneracy among parameters
(e.g. αSF - fSF)
Some parameters extreme,
suggesting new physics:
Star formation efficiency,
∝ V βSF

vir , βSF ∼ 7;
Feedback efficiency,
∝ V −βRH

vir , βRH ∼ 8.
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Inference from conditional stellar mass function 

Data:   Yang et al (2009)

central galaxies

satellite galaxies

total

model that fits the 
   stellar mass function 
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The fiducial model family

median

95% range
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Model including tidal stripping

Stripping fraction: dfs = αTS
dt

tdyn

Bayesian evidence

This model family:
logP (D|M) = −45.6+3.40

−7.48;

Fiducial family (no stripping):
logP (D|M) = −69.15+2.19

−0.89 .
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Posterior distribution

FiducialFamily 1 Family 2 Family 3
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Intra-cluster stars 
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Inference from HI mass 
function

K-band luminosity function  HI-mass function function  
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Posterior Distribution
K-band LF K-band LF plus HI mass function
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Another model family
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Model predictions for high-z 
galaxies 
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Stellar mass - halo mass relation
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Conclusions

• The cosmological framework for galaxy formation 
well established.

• Many physical processes affecting galaxy 
formation, especially those associated with dark 
matter halos,  are well understood, but many 
others are still poorly understood.

• Copious observational data are available now and 
in the near future to constrain models. 

• A lot of work needs to be done. 
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